共查询到20条相似文献,搜索用时 46 毫秒
1.
The Puf family of RNA-binding proteins regulates mRNA translation and decay via interactions with 3' untranslated regions (3' UTRs) of target mRNAs. In yeast, Puf3p binds the 3' UTR of COX17 mRNA and promotes rapid deadenylation and decay. We have investigated the sequences required for Puf3p recruitment to this 3' UTR and have identified two separate binding sites. These sites are specific for Puf3p, as they cannot bind another Puf protein, Puf5p. Both sites use a conserved UGUANAUA sequence, whereas one site contains additional sequences that enhance binding affinity. In vivo, presence of either site partially stimulates COX17 mRNA decay, but full decay regulation requires the presence of both sites. No other sequences outside the 3' UTR are required to mediate this decay regulation. The Puf repeat domain of Puf3p is sufficient not only for in vitro binding to the 3' UTR, but also in vivo stimulation of COX17 mRNA decay. These experiments indicate that the essential residues involved in mRNA decay regulation are wholly contained within this RNA-binding domain. 相似文献
2.
3.
Centrin/Cdc31 is a novel regulator of protein degradation 总被引:1,自引:0,他引:1
Rad23 is required for efficient protein degradation and performs an important role in nucleotide excision repair. Saccharomyces cerevisiae Rad23, and its human counterpart (hHR23), are present in a complex containing the DNA repair factor Rad4 (termed XPC, for xeroderma pigmentosum group C, in humans). XPC/hHR23 was also reported to bind centrin-2, a member of the superfamily of calcium-binding EF-hand proteins. We report here that yeast centrin, which is encoded by CDC31, is similarly present in a complex with Rad4/Rad23 (called NEF2). The interaction between Cdc31 and Rad23/Rad4 varied by growth phase and reflected oscillations in Cdc31 levels. Strikingly, a cdc31 mutant that formed a weaker interaction with Rad4 showed sensitivity to UV light. Based on the dual function of Rad23, in both DNA repair and protein degradation, we questioned if Cdc31 also participated in protein degradation. We report here that Cdc31 binds the proteasome and multiubiquitinated proteins through its carboxy-terminal EF-hand motifs. Moreover, cdc31 mutants were highly sensitive to drugs that cause protein damage, failed to efficiently degrade proteolytic substrates, and formed altered interactions with the proteasome. These findings reveal for the first time a new role for centrin/Cdc31 in protein degradation. 相似文献
4.
5.
6.
Yeast Btn2 facilitates the retrieval of specific proteins from late endosomes (LEs) to the Golgi, a process that may be adversely affected in Batten disease patients. We isolated the putative yeast orthologue of a human complex I deficiency gene, designated here as BTN3, as encoding a Btn2-interacting protein and negative regulator. First, yeast overexpressing BTN3 phenocopy the deletion of BTN2 and mislocalize certain trans-Golgi proteins, like Kex2 and Yif1, to the LE and vacuole, respectively. In contrast, the deletion of BTN3 results in a tighter pattern of protein localization to the Golgi. Second, BTN3 overexpression alters Btn2 localization from the IPOD compartment, which correlates with a sharp reduction in Btn2-mediated [URE3] prion curing. Third, Btn3 and the Snc1 v-SNARE compete for the same binding domain on Btn2, and this competition controls Btn2 localization and function. The inhibitory effects upon protein retrieval and prion curing suggest that Btn3 sequesters Btn2 away from its substrates, thus down-regulating protein trafficking and aggregation. Therefore Btn3 is a novel negative regulator of intracellular protein sorting, which may be of importance in the onset of complex I deficiency and Batten disease in humans. 相似文献
7.
8.
The cdc7 protein kinase is a dosage dependent regulator of septum formation in fission yeast. 总被引:17,自引:3,他引:17 下载免费PDF全文
Mutation of the Schizosaccharomyces pombe cdc7 gene prevents formation of the division septum and cytokinesis. We have cloned the cdc7 gene and show that it encodes a protein kinase which is essential for cell division. In the absence of cdc7 function, spore germination, DNA synthesis and mitosis are unaffected, but cells are unable to initiate formation of the division septum. Overexpression of p120cdc7 causes cell cycle arrest; cells complete mitosis and then undergo multiple rounds of septum formation without cell cleavage. This phenotype, which is similar to that resulting from inactivation of cdc16 protein, requires the kinase activity of p120cdc7. Mutations inactivating the early septation gene, cdc11, suppress the formation of multiple septa and allow cells to proliferate normally. If formation of the division septum is prevented by inactivation of either cdc14 or cdc15, p120cdc7 overproduction does not interfere with other events in the mitotic cell cycle. Septation is not induced by overexpression of p120cdc7 in G2 arrested cells, indicating that it does not bypass the normal dependency of septation upon initiation of mitosis. These findings indicate that the p120cdc7 protein kinase plays a key role in initiation of septum formation and cytokinesis in fission yeast and suggest that p120cdc7 interacts with the cdc11 protein in the control of septation. 相似文献
9.
Puf proteins regulate mRNA degradation and translation through interactions with 3′ untranslated regions (UTRs). Such regulation provides an efficient method to rapidly alter protein production during cellular stress. YHB1 encodes the only protein to detoxify nitric oxide in yeast. Here we show that YHB1 mRNA is destabilized by Puf1p, Puf4p, and Puf5p through two overlapping Puf recognition elements (PREs) in the YHB1 3′ UTR. Overexpression of any of the three Pufs is sufficient to fully rescue wild-type decay in the absence of other Pufs, and overexpression of Puf4p or Puf5p can enhance the rate of wild-type decay. YHB1 mRNA decay stimulation by Puf proteins is also responsive to cellular stress. YHB1 mRNA is stabilized in galactose and high culture density, indicating inactivation of the Puf proteins. This condition-specific inactivation of Pufs is overcome by Puf overexpression, and Puf4p/Puf5p overexpression during nitric oxide exposure reduces the steady-state level of endogenous YHB1 mRNA, resulting in slow growth. Puf inactivation is not a result of altered expression or localization. Puf1p and Puf4p can bind target mRNA in inactivating conditions; however, Puf5p binding is reduced. This work demonstrates how multiple Puf proteins coordinately regulate YHB1 mRNA to protect cells from nitric oxide stress. 相似文献
10.
11.
12.
U. Spirig M. Glavas D. Bodmer G. Reiss P. Burda V. Lippuner S. te Heesen M. Aebi 《Molecular & general genetics : MGG》1997,256(6):628-637
N-linked protein glycosylation is an essential process in eukaryotic cells. In the central reaction, the oligosaccharyltransferase
(OTase) catalyzes the transfer of the oligosaccharide Glc3Man9GlcNAc2 from dolicholpyrophosphate onto asparagine residues of nascent polypeptide chains in the lumen of the endoplasmic reticulum.
The product of the essential gene STT3 is required for OTase activity in vivo, but is not present in highly purified OTase preparations. Using affinity purification
of a tagged Stt3 protein, we now demonstrate that other components of the OTase complex, namely Ost1p, Wbp1p and Swp1p, specifically
co-purify with the Stt3 protein. In addition, different conditional stt3 alleles can be suppressed by overexpression of either OST3 and OST4, which encode small components of the OTase complex. These genetic and biochemical data show that the highly conserved Stt3p
is a component of the oligosaccharyltransferase complex.
Received: 3 June 1997 / Accepted: 29 July 1997 相似文献
13.
14.
15.
16.
17.
Jakob CA Bodmer D Spirig U Battig P Marcil A Dignard D Bergeron JJ Thomas DY Aebi M 《EMBO reports》2001,2(5):423-430
Misfolded proteins are recognized in the endoplasmic reticulum (ER), transported back to the cytoplasm and degraded by the proteasome. Processing intermediates of N-linked oligosaccharides on incompletely folded glycoproteins have an important role in their folding/refolding, and also in their targeting to proteolytic degradation. In Saccharomyces cerevisiae, we have identified a gene coding for a non-essential protein that is homologous to mannosidase I (HTM1) and that is required for degradation of glycoproteins. Deletion of the HTM1 gene does not affect oligosaccharide trimming. However, deletion of HTM1 does reduce the rate of degradation of the mutant glycoproteins such as carboxypeptidase Y, ABC-transporter Pdr5-26p and oligosaccharyltransferase subunit Stt3-7p, but not of mutant Sec61-2p, a non-glycoprotein. Our results indicate that although Htm1p is not involved in processing of N-linked oligosaccharides, it is required for their proteolytic degradation. We propose that this mannosidase homolog is a lectin that recognizes Man8GlcNAc2 oligosaccharides that serve as signals in the degradation pathway. 相似文献
18.
19.
20.
Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast 下载免费PDF全文
Zhang Y Nijbroek G Sullivan ML McCracken AA Watkins SC Michaelis S Brodsky JL 《Molecular biology of the cell》2001,12(5):1303-1314
Membrane and secretory proteins fold in the endoplasmic reticulum (ER), and misfolded proteins may be retained and targeted for ER-associated protein degradation (ERAD). To elucidate the mechanism by which an integral membrane protein in the ER is degraded, we studied the fate of the cystic fibrosis transmembrane conductance regulator (CFTR) in the yeast Saccharomyces cerevisiae. Our data indicate that CFTR resides in the ER and is stabilized in strains defective for proteasome activity or deleted for the ubiquitin-conjugating enzymes Ubc6p and Ubc7p, thus demonstrating that CFTR is a bona fide ERAD substrate in yeast. We also found that heat shock protein 70 (Hsp70), although not required for the degradation of soluble lumenal ERAD substrates, is required to facilitate CFTR turnover. Conversely, calnexin and binding protein (BiP), which are required for the proteolysis of ER lumenal proteins in both yeast and mammals, are dispensable for the degradation of CFTR, suggesting unique mechanisms for the disposal of at least some soluble and integral membrane ERAD substrates in yeast. 相似文献