首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Enemy Release hypothesis holds that exotic plants may have an advantage over native plants because their specialized natural enemies are absent. We tested this hypothesis by measuring leaf damage and plant abundance for naturally-occurring plants in prairies, and by removing natural enemies in an enemy exclusion experiment. We classified plants as invasive exotic, noninvasive exotic, or native, to determine if their degree of invasiveness influenced their relationships with natural enemies. Our field surveys showed that invasive exotic plants generally had significantly lower levels of foliar damage than native species while there was no consistent pattern for noninvasive exotics compared to natives. The relationship between damage and abundance was different for exotic and native plants: foliar damage decreased with increasing abundance for exotic plants while the trend was positive for native plants. While these results from the field surveys supported the Enemy Release Hypothesis, the enemy exclusion experiment did not. There was no relationship between a species?? status as exotic or native and its degree of release from herbivory. Pastinaca sativa, the invasive exotic in this experiment, experienced gains in leaf area and vegetative biomass when treated with pesticides, indicating substantial herbivore pressure in the introduced range. These results show that foliar damage may not accurately predict the amount of herbivore pressure that plants actually experience, and that the Enemy Release hypothesis is not sufficient to explain the invasiveness of P. sativa in prairies.  相似文献   

2.
Our understanding of the interrelated mechanisms driving plant invasions, such as the interplay between enemy release and resource‐acquisition traits, is biased by an aboveground perspective. To address this bias, I hypothesize that plant release from belowground enemies (especially fungal pathogens) will give invasive plant species a fitness advantage in the alien range, via shifts in root traits (e.g., increased specific root length and branching intensity) that increase resource uptake and competitive ability compared to native species in the alien range, and compared to plants of the invader in its native range. Such root‐trait changes could be ecological or evolutionary in nature. I explain how shifts in root traits could occur as a consequence of enemy release and contribute to invasion success of alien plants, and how they could be interrelated with other potential belowground drivers of invasion success (allelopathy, mutualist enhancement). Finally, I outline the approaches that could be taken to test whether belowground enemy release results in increased competitive ability and nutrient uptake by invasive alien plants, via changes in root traits in the alien range.  相似文献   

3.
Intact tropical forests are generally considered to be resistant to invasions by exotic species, although the shrub Clidemia hirta (Melastomataceae) is highly invasive in tropical forests outside its native range. Release from natural enemies (e.g., herbivores and pathogens) contributes to C. hirta invasion success where native melastomes are absent, and here we examine the role of enemies when C. hirta co-occurs with native Melastomataceae species and associated herbivores and pathogens. We study 21 forest sites within agricultural landscapes in Sabah, Malaysian Borneo, recording herbivory rates in C. hirta and related native Melastoma spp. plants along two 100-m transects per site that varied in canopy cover. Overall, we found evidence of enemy release; C. hirta had significantly lower herbivory (median occurrence of herbivory per plant = 79% of leaves per plant; median intensity of herbivory per leaf = 6% of leaf area) than native melastomes (93% and 20%, respectively). Herbivory on C. hirta increased when closer to native Melastoma plants with high herbivory damage, and in more shaded locations, and was associated with fewer reproductive organs on C. hirta. This suggests host-sharing by specialist Melastomataceae herbivores is occurring and may explain why invasion success of C. hirta is lower on Borneo than at locations without related native species present. Thus, natural enemy populations may provide a “biological control service” to suppress invasions of exotic species (i.e., biotic resistance). However, lower herbivory pressures in more open canopy locations may make highly degraded forests within these landscapes more susceptible to invasion.  相似文献   

4.
Recent studies have concluded that release from native soil pathogens may explain invasion of exotic plant species. However, release from soil enemies does not explain all plant invasions. The invasion of Ammophila arenaria (marram grass or European beach grass) in California provides an illustrative example for which the enemy release hypothesis has been refuted. To explore the possible role of plant–soil community interactions in this invasion, we developed a mathematical model. First, we analyzed the role of plant–soil community interactions in the succession of A. arenaria in its native range (north-western Europe). Then, we used our model to explore for California how alternative plant–soil community interactions may generate the same effect as if A. arenaria were released from soil enemies. This analysis was carried out by construction of a 'recovery plane' that discriminates between plant competition and plant–soil community interactions. Our model shows that in California, the accumulation of local pathogens by A. arenaria could result in exclusion of native plant species. Moreover, this mechanism could trigger the rate and spatial pattern of invasive spread generally observed in nature. We propose that our 'accumulation of local pathogens' hypothesis could serve as an alternative explanation for the enemy release hypothesis to be considered in further experimental studies on invasive plant species.  相似文献   

5.
Warren  Robert J.  Bradford  Mark A. 《Plant Ecology》2021,222(1):107-117

Non-native plants may meet little resistance in the novel range if they leave their biological enemies at home. As a result, species invasion can be rapid and appear unlimited. However, with time, organisms may acquire novel enemies in the novel range, or home-range enemies also may colonize the novel range. For plants, several authors have suggested that enemy release may give way to enemy acquisition in which pathogens accumulate and suppresses non-native plants. The ‘naturalization’ that occurs with acquired enemies may take decades to develop, yet most species invasion research lasts less than 4 years, and data tracking plant invasion before and after the appearance of pathogens are rare. Microstegium vimineum is an Asian grass that has invaded deciduous forest habitats in the southern Midwestern and Southeastern USA and is currently expanding in the Northeastern USA. We recorded widespread expansions in M. populations in North Carolina and Georgia (USA) between 2009 and 2011 but noticed that a fungal pathogen (indicated by leaf lesions; Bipolaris sp.) appeared on several of the populations in 2011. In 2019, we re-sampled these populations to determine whether the appearance of the fungal pathogen corresponded with a suppression of M. vimineum expansion. We found the once-expanding M. vimineum populations in retreat in 2019, and the plant population contractions were greater (and seed production lesser) where the fungal leaf spot disease was most extensive. These results suggest that enemy acquisition suppressed an active non-native plant invasion. We also found that where M. vimineum populations declined (or disappeared) native plants appeared to fill in the gap. Hence, whereby exotic species may gain advantage in novel habitat with the loss of their native-range pathogens, with longer time spans, enemy release may give way to enemy acquisition and native populations may recover if they are immune to the pathogens.

  相似文献   

6.

Background and Aims

In this Botanical Briefing we describe how the interactions between plants and their biotic environment can change during range-expansion within a continent and how this may influence plant invasiveness.

Scope

We address how mechanisms explaining intercontinental plant invasions by exotics (such as release from enemies) may also apply to climate-warming-induced range-expanding exotics within the same continent. We focus on above-ground and below-ground interactions of plants, enemies and symbionts, on plant defences, and on nutrient cycling.

Conclusions

Range-expansion by plants may result in above-ground and below-ground enemy release. This enemy release can be due to the higher dispersal capacity of plants than of natural enemies. Moreover, lower-latitudinal plants can have higher defence levels than plants from temperate regions, making them better defended against herbivory. In a world that contains fewer enemies, exotic plants will experience less selection pressure to maintain high levels of defensive secondary metabolites. Range-expanders potentially affect ecosystem processes, such as nutrient cycling. These features are quite comparable with what is known of intercontinental invasive exotic plants. However, intracontinental range-expanding plants will have ongoing gene-flow between the newly established populations and the populations in the native range. This is a major difference from intercontinental invasive exotic plants, which become more severely disconnected from their source populations.  相似文献   

7.
Testing the enemy release hypothesis: a review and meta-analysis   总被引:1,自引:0,他引:1  
One of the most cited hypotheses explaining the inordinate success of a small proportion of introduced plants that become pests is the ‘natural enemies hypothesis’. This states that invasive introduced plants spread rapidly because they are liberated from their co-evolved natural enemies. This hypothesis had not been properly tested until recently. Previous reviews on this topic have been narrative and vote counting in nature. In this review, we carried out quantitative synthesis and meta-analysis using existing literature on plants and their herbivores to test the different components of the enemy release hypothesis. We found supporting evidence in that (1) insect herbivore fauna richness is significantly greater in the native than introduced ranges, and the reduction is skewed disproportionally towards specialists and insects feeding on reproductive parts; and (2) herbivore damage levels are greater on native plants than on introduced invasive congeners. However, herbivore damage levels are only marginally greater for plants in native than in introduced ranges, probably due to the small numbers of this type of study. Studies quantifying herbivore impacts on plant population dynamics are too scarce to make conclusions for either comparison of plants in native vs introduced ranges or of co-occurring native and introduced congeners. For future research, we advocate that more than two-way comparisons between plants in native and introduced ranges, or native and introduced congeners are needed. In addition, the use of herbivore exclusions to quantify the impacts of herbivory on complete sets of population vital rates of native vs introduced species are highly desirable. Furthermore, three-way comparisons among congeners of native plants, introduced invasive, and introduced non-invasive plants can also shed light on the importance of enemy release. Finally, simultaneously testing the enemy release hypothesis and other competing hypotheses will provide significant insights into the mechanisms governing the undesirable success of invasive species.  相似文献   

8.
The use of plants to provide nectar and pollen resources to natural enemies through habitat management is a growing focus of conservation biological control. Current guidelines frequently recommend use of annual plants exotic to the management area, but native perennial plants are likely to provide similar resources and may have several advantages over exotics. We compared a set of 43 native Michigan perennial plants and 5 frequently recommended exotic annual plants for their attractiveness to natural enemies and herbivores for 2 yr. Plant species differed significantly in their attractiveness to natural enemies. In year 1, the exotic annual plants outperformed many of the newly established native perennial plants. In year 2, however, many native perennial plants attracted higher numbers of natural enemies than exotic plants. In year 2, we compared each flowering plant against the background vegetation (grass) for their attractiveness to natural enemies and herbivores. Screening individual plant species allowed rapid assessment of attractiveness to natural enemies. We identified 24 native perennial plants that attracted high numbers of natural enemies with promise for habitat management. Among the most attractive are Eupatorium perfoliatum L., Monarda punctata L., Silphium perfoliatum L., Potentilla fruticosa auct. non L., Coreopsis lanceolata L., Spiraea alba Duroi, Agastache nepetoides (L.) Kuntze, Anemone canadensis L., and Angelica atropurpurea L. Subsets of these plants can now be tested to develop a community of native plant species that attracts diverse natural enemy taxa and provides nectar and pollen throughout the growing season.  相似文献   

9.
The enemy release hypothesis (ERH) of plant invasion asserts that natural enemies limit populations of invasive plants more strongly in native ranges than in non‐native ranges. Despite considerable empirical attention, few studies have directly tested this idea, especially with respect to generalist herbivores. This knowledge gap is important because escaping the effects of generalists is a critical aspect of the ERH that may help explain successful plant invasions. Here, we used consumer exclosures and seed addition experiments to contrast the effects of granivorous rodents (an important guild of generalists) on the establishment of cheatgrass (Bromus tectorum) in western Asia, where cheatgrass is native, versus the Great Basin Desert, USA, where cheatgrass is exotic and highly invasive. Consistent with the ERH, rodent foraging reduced cheatgrass establishment by nearly 60% in western Asia but had no effect in the Great Basin. This main result corresponded with a region‐specific foraging pattern: rodents in the Great Basin but not western Asia generally avoided seeds from cheatgrass relative to seeds from native competitors. Our results suggest that enemy release from the effects of an important guild of generalists may contribute to the explosive success of cheatgrass in the Great Basin. These findings corroborate classic theory on enemy release and expand our understanding of how generalists can influence the trajectory of exotic plant invasions.  相似文献   

10.
Allelopathy and exotic plant invasion   总被引:52,自引:0,他引:52  
The primary hypothesis for the astonishing success of many exotics as community invaders relative to their importance in their native communities is that they have escaped the natural enemies that control their population growth – the `natural enemies hypothesis'. However, the frequent failure of introduced biocontrols, weak consumer effects on the growth and reproduction of some invaders, and the lack of consistent strong top-down regulation in many natural ecological systems indicate that other mechanisms must be involved in the success of some exotic plants. One mechanism may be the release by the invader of chemical compounds that have harmful effects on the members of the recipient plant community (i.e., allelopathy). Here, we provide an abbreviated compilation of evidence for allelopathy in general, present a detailed case study for Centaurea diffusa, an invasive Eurasian forb in western North America, and review general evidence for allelopathic effects of invasive plants in native communities. The primary rationale for considering allelopathy as a mechanism for the success of invaders is based on two premises. First, invaders often establish virtual monocultures where diverse communities once flourished, a phenomenon unusual in natural communities. Second, allelopathy may be more important in recipient than in origin communities because the former are more likely to be naïve to the chemicals possessed by newly arrived species. Indeed, results from experiments on C. diffusa suggest that this invader produces chemicals that long-term and familiar Eurasian neighbors have adapted to, but that C. diffusa's new North American neighbors have not. A large number of early studies demonstrated strong potential allelopathic effects of exotic invasive plants; however, most of this work rests on controversial methodology. Nevertheless, during the last 15 years, methodological approaches have improved. Allelopathic effects have been tested on native species, allelochemicals have been tested in varying resource conditions, models have been used to estimate comparisons of resource and allelopathic effects, and experimental techniques have been used to ameliorate chemical effects. We do not recommend allelopathy as a `unifying theory' for plant interactions, nor do we espouse the view that allelopathy is the dominant way that plants interact, but we argue that non-resource mechanisms should be returned to the discussion table as a potential mechanism for explaining the remarkable success of some invasive species. Ecologists should consider the possibility that resource and non-resource mechanisms may work simultaneously, but vary in their relative importance depending on the ecological context in which they are studied. One such context might be exotic plant invasion.  相似文献   

11.
We surveyed the prevalence and amount of leaf damage related to herbivory and pathogens on 12 pairs of exotic (invasive and noninvasive) and ecologically similar native plant species in tallgrass prairie to examine whether patterns of damage match predictions from the enemy release hypothesis. We also assessed whether natural enemy impacts differed in response to key environmental factors in tallgrass prairie by surveying the prevalence of rust on the dominant C4 grass, Andropogon gerardii, and its congeneric invasive exotic C4 grass, A. bladhii, in response to fire and nitrogen fertilization treatments. Overall, we found that the native species sustain 56.4% more overall leaf damage and 83.6% more herbivore-related leaf damage when compared to the exotic species. Moreover, we found that the invasive exotic species sustained less damage from enemies relative to their corresponding native species than the noninvasive exotic species. Finally, we found that burning and nitrogen fertilization both significantly increased the prevalence of rust fungi in the native grass, while rust fungi rarely occurred on the exotic grass. These results indicate that reduced damage from enemies may in part explain the successful naturalization of exotic species and the spread of invasive exotic species in tallgrass prairie.  相似文献   

12.
Inbreeding and enemy infestation are common in plants and can synergistically reduce their performance. This inbreeding ×environment (I × E) interaction may be of particular importance for the success of plant invasions if introduced populations experience a release from attack by natural enemies relative to their native conspecifics. Here, we investigate whether inbreeding affects plant infestation damage, whether inbreeding depression in growth and reproduction is mitigated by enemy release, and whether this effect is more pronounced in invasive than native plant populations. We used the invader Silene latifolia and its natural enemies as a study system. We performed two generations of experimental out‐ and inbreeding within eight native (European) and eight invasive (North American) populations under controlled conditions using field‐collected seeds. Subsequently, we exposed the offspring to an enemy exclusion and inclusion treatment in a common garden in the species’ native range to assess the interactive effects of population origin (range), breeding treatment, and enemy treatment on infestation damage, growth, and reproduction. Inbreeding increased flower and leaf infestation damage in plants from both ranges, but had opposing effects on fruit damage in native versus invasive plants. Inbreeding significantly reduced plant fitness; whereby, inbreeding depression in fruit number was higher in enemy inclusions than exclusions. This effect was equally pronounced in populations from both distribution ranges. Moreover, the magnitude of inbreeding depression in fruit number was lower in invasive than native populations. These results support that inbreeding has the potential to reduce plant defenses in S. latifolia, which magnifies inbreeding depression in the presence of enemies. However, future studies are necessary to further explore whether enemy release in the invaded habitat has actually decreased inbreeding depression and thus facilitated the persistence of inbred founder populations and invasion success.  相似文献   

13.
Abstract The enemies release hypothesis proposes that exotic species can become invasive by escaping from predators and parasites in their novel environment. Agrawal et al. (Enemy release? An experiment with congeneric plant pairs and diverse above‐ and below‐ground enemies. Ecology, 86, 2979–2989) proposed that areas or times in which damage to introduced species is low provide opportunities for the invasion of native habitat. We tested whether ornamental settings may provide areas with low levels of herbivory for trees and shrubs, potentially facilitating invasion success. First, we compared levels of leaf herbivory among native and exotic species in ornamental and natural settings in Cincinnati, Ohio, United States. In the second study, we compared levels of herbivory for invasive and noninvasive exotic species between natural and ornamental settings. We found lower levels of leaf damage for exotic species than for native species; however, we found no differences in the amount of leaf damage suffered in ornamental or natural settings. Our results do not provide any evidence that ornamental settings afford additional release from herbivory for exotic plant species.  相似文献   

14.
When entering a new community, introduced species leave behind members of their native community while simultaneously forming novel biotic interactions. Escape from enemies during the process of introduction has long been hypothesized to drive the increased performance of invasive species. However, recent studies and quantitative syntheses find that invaders often receive similar, or even more, damage from enemies than do native species. Therefore, invasives may be those more tolerant to enemy damage, or those able to maintain competitive ability in light of enemy damage. Here, we investigate whether tolerance and competitive ability could contribute to invasive plant success. We determined whether invasive plants were more competitive than native or noninvasive exotic species in both the presence and absence of simulated herbivory. We found competition and herbivory additively reduced individual performance, and affected the performance of native, invasive, and noninvasive exotic species’ to the same degree. However, invasives exerted stronger competitive effects on an abundant native species (Elymus canadensis) in both the presence and absence of herbivory. Therefore, while invasive species responded similarly to competition and simulated herbivory, their competitive effects on natives may contribute to their success in their introduced range.  相似文献   

15.
外来物种入侵严重威胁着乡土植物多样性并削弱了生态系统服务功能。本文基于滇西北怒江河谷植被调查的样方数据, 从群落水平研究了乡土和入侵植物多样性的空间分布格局, 以及地形、气候、人类干扰等因子对两种格局的影响。本研究共记录到外来入侵植物26种, 隶属于13科21属; 乡土植物1,145种, 分属于158科628属。沿着怒江河谷, 入侵植物物种丰富度随纬度与海拔的增加而减少; 乡土物种丰富度则随纬度增加而增加, 并在海拔梯度上呈单峰格局。运用广义线性模型分析公路边缘效应(反映生境干扰)、气候、地形和土壤等环境因素对物种丰富度分布格局的影响。等级方差分离的结果显示, 公路两侧的生境干扰对入侵种和乡土种的丰富度格局均具有首要影响。在自然环境因子中, 降水量是入侵植物丰富度的主要限制因子, 而乡土物种丰富度则主要受到地形因子尤其是坡向的影响。结构方程模型的分析结果也表明, 乡土植物和入侵植物丰富度之间的负相关关系反映了二者对环境响应的差异。本文结果支持物种入侵的资源可利用性限制假说, 并强调了人类活动对生物多样性的负面影响; 乡土植物或已较好地适应了干旱河谷气候, 但并没有显示出对外来物种入侵的抵抗作用。  相似文献   

16.
In a field experiment with 30 locally occurring old‐field plant species grown in a common garden, we found that non‐native plants suffer levels of attack (leaf herbivory) equal to or greater than levels suffered by congeneric native plants. This phylogenetically controlled analysis is in striking contrast to the recent findings from surveys of exotic organisms, and suggests that even if ‘enemy release’ does accompany the invasion process, this may not be an important mechanism of invasion, particularly for plants with close relatives in the recipient flora.  相似文献   

17.
Aims Within a habitat of multiple plant species, increased resource availabilities and altered species abundances following disturbances create opportunities for exotic species to successfully establish and subsequently naturalize into its non-native environment. Such post-disturbance changes in abiotic and biotic environments may also promote a naturalized exotic species (or invading species) to become invasive through rapid colonization of the habitat sites by reducing the extent and size of resident plant species. By combining species life history traits with that of the disturbance-induced changes in habitat characteristics, we aimed to determine those interacting factors and associated mechanism allowing an exotic invasion to start off.Methods We used a modified version of the classic competition–colonization (CC) model which was formulated first by Hastings (1980) and studied later by Tilman (1994) to explain spatial coexistence of multiple species. Within this model framework, recruitment-limited spatial competition has explicitly been linked with interspecific resource competition without altering the basic assumptions and structure of the original CC model.Important findings The model results showed that at a constant rate of resource supply, invading species can stably coexist with native species via trade-offs between species competitive ability and colonizing ability. On the other hand, the model predicted that with a fluctuating resource condition, invading species can successfully invade a habitat following continuous reductions in the size and extent of native species. Whether or not invading species holds competitive superiority over the native species for limiting resource, we showed that there exists a range of variation in available resource that allows an exotic invasion to start off in post-disturbance habitat. The associated disturbance-induced mechanism promoting invading species to become invasive has been identified. It states that occurrences of disturbances such as fire or clear-cutting influence variation in resource availability, and in addition open up many vacant microsites; given these disturbance-induced changes, invading species with a higher rate of propagule production and with a higher survival rate of adults particularly in low-resource condition recruits microsites at faster rate relative to native competitor species, and with a given range of variation in resource availabilities, it maintains continued expansions following reductions in size and extent of native species. Moreover, we identified those interacting factors and their specific roles that drive this mechanism. These factors include propagule supply, variable resource level and vacant microsite availability. Increased availability of vacant microsites following disturbances creates an opportunity for rapid colonization. Given this opportunity, higher number of propagules supplied by the invading species enhances the rate of colonization success, whereas the resource variation within a range of given thresholds maintains enhanced colonization rate of the invading species while it depresses native competitor species. Owing to the each factor's invasion regulatory ability, controlling one or all of them may have strong negative impact on the occurrence of exotic invasion.  相似文献   

18.
Ecosystems may suffer from the impact of invasive species. Thus, understanding the mechanisms contributing to successful invasions is fundamental for limiting the effects of invasive species. Most intuitive, the enemy release hypothesis predicts that invasive species might be more successful in the exotic range than resident sympatric species owing to the absence of coevolution with native enemies. Here, we test the enemy release hypothesis for the invasion of Europe by the North American spider Mermessus trilobatus. We compare the susceptibility of invasive Mermessus trilobatus and a native species with similar life history to a shared predator with which both species commonly co‐occur in Europe. Contrary to our expectations, invasive Mermessus trilobatus were consumed three times more frequently by native predators than their native counterparts. Our study shows that invasive Mermessus trilobatus is more sensitive to a dominant native predator than local sympatric species. This suggests that the relation between the invasive spider and its native predator is dominated by prey naïveté rather than enemy release. Further studies investigating evolutionary and ecological processes behind the invasion success of Mermessus trilobatus, including testing natural parasites and rapid reproduction, are needed to explain its invasion success in Europe.  相似文献   

19.
张黎华  冯玉龙 《生态学报》2007,27(2):802-809
随着生物入侵所引起的生态及经济问题日益严重,对有害入侵生物的防治问题也备受人们关注。生物防治因具有持续、高效、安全等优点,已成为防治有害入侵生物的重要方法。传统生防是防治有害入侵杂草的一种重要方法。在简单介绍生物防治的基础上,重点阐述了传统生物防治的理论基础——天敌逃逸假说,生防因子对外来人侵种的影响及其对本地非目标种的直接和间接效应,并针对这些问题,对我国开展生物防治工作提出几点建议。  相似文献   

20.
The evolution of increased competitive ability (EICA) hypothesis predicts that plants released from natural enemies should evolve to become more invasive through a shift in resource allocation from defense to growth. Resource availability in the environment is widely regarded as a major determinant of defense investment and invasiveness, and thus should be incorporated into the conceptual framework of EICA. Analysis of a simple model from the optimal defense literature demonstrates that, in contrast to the EICA hypothesis, enemy release is neither sufficient nor necessary for evolution of reduced resistance among introduced plants when habitat productivity co-varies. In particular, if the invasive range is more nutrient-poor than the native range, there could be selection for more plant defenses even with enemy release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号