首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The complete life cycle of the microsporidium Hyalinocysta chapmani is described from the primary mosquito host Culiseta melanura and the intermediate copepod host Orthocyclops modestus. Infections are initiated in larval C. melanura following the oral ingestion of uninucleate spores from infected copepods. Spores germinate within the lumen of the midgut and directly invade fat body tissue where all development occurs. Uninucleated schizonts undergo binary division (schizogony) followed by karyokinesis (nuclear division) to form diplokaryotic meronts. Merogony is by synchronous binary division. The onset of sporogony is characterized by the simultaneous secretion of a sporophorous vesicle and meiotic division of the diplokaryon resulting in the formation of eight ovoid meiospores enclosed within a sporophorous vesicle. Most infected larvae die during the fourth stadium and there is no evidence of a developmental sequence leading to vertical transmission. Hyalinocysta chapmani is horizontally transmitted to O. modestus via oral ingestion of meiospores. Infections become established within ovarian tissue of females and all parasite development is haplophasic. Uninucleate schizonts divide by binary division during an initial schizogonic cycle. Newly formed uninucleate cells produce a thin sporophorous vesicle and undergo repeated nuclear division during sporogony to produce a rosette-shaped, multinucleated sporogonial plasmodium with up to 18 nuclei. This is followed by cytoplasmic cleavage, sporogenesis, and disintegration of the sporophorous vesicle to form membrane-free uninucleate spores. Infected females eventually die and there is no egg development. The small subunit rDNA sequence of H. chapmani isolated from meiospores from C. melanura was identical to the small subunit rDNA sequence obtained from spores from O. modestus, corroborating the laboratory transmission studies and confirming the intermediary role of O. modestus in the life cycle. Phylogenetic analysis was conducted with closely related microsporidia from mosquitoes. Hyalinocysta chapmani did not cluster within described Amblyospora species and can be considered a sister group, warranting separate genus status.  相似文献   

2.
The epizootiology of the microsporidium Amblyospora albifasciati was studied in natural populations of its definitive host, a multivoltine, neotropical, floodwater mosquito, Aedes albifasciatus, and its intermediate copepod host, Mesocyclops annulatus, in an ephemeral floodwater habitat during a 12-month period. A. albifasciati was enzootic in mosquitoes. Vertically (transovarially) transmitted meiospore infections occurred regularly and were detected in five of eight larval broods but the prevalence of infection was always low, ranging from 0.5 to 6.9% with an overall average of 0.7%. Horizontal transmission of A. albifasciati infection from copepods to mosquitoes was nominal and limited. It was detected at levels of 6.4 to 20% in larval Ae. albifasciatus populations on two occasions, the month of August and late September through early October. The low levels of horizontal transmission of infection to mosquito larvae appeared to be the principal limiting factor that prevented the proliferation of A. albifasciati in Ae. albifasciatus populations. Copepod populations were abundant from May through September and weekly prevalence rates of A. albifasciati averaged over 50% (range = 5.8 to 100%). The moderately high infection rates in M. annulatus copepods were inconsistent with the low prevalence of meiospore infection in Ae. albifasciatus mosquito larvae. Results suggest that either meiospores of A. albifasciati produced in the mosquito host are highly infectious to copepods or they are long-lived and remain viable within the pool as long as some standing water is present. Observations further indicate that A. albifasciati has a significant detrimental impact on M. annulatus copepod populations but minimal impact on larval populations of Ae. albifasciatus at this site.  相似文献   

3.
The life cycle of Amblyospora indicola, a parasite of the mosquito Culex sitiens, was revealed by field observations and laboratory infection experiments conducted in Australia. In northern Queensland, infected C. sitiens larvae were often found breeding in association with two cyclopoid copepods: Apocyclops dengizicus and an undescribed species of the same genus. The latter species was found to be an intermediate copepod host of this microsporidium whereas A. dengizicus was not. One complete cycle of the parasite extends over two mosquito generations (by transovarial transmission from females with binucleate spores to their eggs) and by horizontal transmission between mosquitoes and copepods. The latter involves horizontal transmission from mosquitoes to copepods via meiospores produced in larval fat body infections and horizontal transmission from copepods to mosquitoes via uninucleate spores produced within infected copepods. Uninucleate clavate spores were formed in Apocyclops sp. nov. copepods 7-10 days after exposure to larval meiospores and were infectious to larvae of a microsporidian-free colony of C. sitiens. The development of A. indicola within mosquito larvae exposed to infected copepods is similar to that of A. dyxenoides infecting C. annulirostris. It proceeds from stages with a single nucleus to diplokaryotic binucleate cells in oenocytes. These stages persist through pupation to adult emergence after which time a proportion of male mosquitoes and female mosquitoes may develop binucleate spores without the need for a blood meal. A proportion of both male and female larval progeny of infected females with binucleate spores develop patent fat body infections via transovarial transmission and die in the fourth larval instar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The epizootiology of Amblyospora camposi was studied in a natural population of Culex renatoi, a bromeliad-inhabiting mosquito, and its intermediate host, Paracyclops fimbriatus fimbriatus, over a 2-year period. Twenty Eryngium cabrerae plants were sampled monthly from January 2003 to January 2005 and the prevalence of A. camposi in P.f. fimbriatus and Cx. renatoi populations was determined. The monthly prevalence rates of meiospore infections in Cx. renatoi larvae never exceeded 5.5% and was detected in 50% of the monthly samples. Meiospores were available in plants over the course of the study at a mean concentration of 2 x 10(4) meiospores/ml. Within each plant the parasite was maintained by horizontal transmission. P.f. fimbriatus with vegetative stages and mature spores were found regularly in bromeliads suggesting efficient meiospore infectivity to field copepod populations. The mean concentration of spores from copepods found in plants was 8 x 10(2) spores/ml. Infections in copepods were detected in 54% of the monthly samples with a prevalence rate ranging from 0.55 to 17.4% and an overall average of 5.1%. Vegetative stages in fourth instar mosquito larvae (probably derived from the horizontal pathway via spores formed in copepods) were detected in 12.5% of the monthly samples with an overall prevalence rate of 1.1%. Infections in female and male adults were detected in 20.8% of the monthly samples with an overall average of 4.1% and 6.8%, respectively.  相似文献   

5.
The epizootiology of the microsporidium Amblyospora stimuli was studied in natural populations of a univoltine mosquito, Aedes stimulans, inhabiting a temporary vernal pool over an 18-year period. The yearly prevalence of benign oenocytic infections in adult females was variable, ranging from 1.0 to 9.6% (mean = 5.1%). The yearly prevalence of transovarially transmitted meiospore infections in larval populations was consistently lower but less variable, ranging from 1.3 to 5.9% (mean = 3.5%). Meiospore infections in F(1)-generation larvae were significantly correlated with infections in parental-generation females, thus suggesting that larval infection rates could be substantially increased if methods were available to facilitate transmission of A. stimuli to a larger portion of the female population via inundative or inoculative release of infected copepods. No correlation was found when infections in filial-generation adult females were measured against meiospore infections in larvae from the preceding year. Analysis of yearly prevalence data using Fine's Fundamental Vertical Transmission Equation revealed low rates of horizontal transmission from the intermediate copepod host to female larvae in most years, ranging from 0.1 to 8.7% (mean = 3.1%). A. stimuli is enzootic, persists at a very low level, and has minimal impact on Ae. stimulans populations at this site. The low incidence rate of horizontal transmission to larvae appears to be due largely to a paucity of copepods and is a major factor that limits the abundance and subsequent proliferation of A. stimuli in Ae. stimulans populations at this locale. Results support the view that host-parasite cospeciation is an important mechanism of evolution in this group of mosquito/copepod microsporidia.  相似文献   

6.
Factors that directly impact horizontal transmission of the microsporidium Amblyospora albifasciati to its intermediate copepod host, Mesocyclops annulatus were examined in laboratory bioassays. Results were evaluated in relation to life history strategies that facilitate persistence of the parasite in natural populations of its definitive mosquito host, Ochlerotatusalbifasciatus. A moderately high quantity of meiospores from mosquito larvae was required to infect adult female copepods; the IC50 was estimated at 3.6 × 104 meiospores/ml. Meiospore infectivity following storage at 25 °C was detected up to 30 days, while meiospores stored at 4 °C remained infectious to copepods for 17 months with virtually no decline in infectivity. Uninfected female M. annulatus are long-lived; no appreciable mortality was observed in field-collected individuals for 26 days, with a few individuals surviving up to 70 days. The pathological impact of A. albifasciati infection on M. annulatus resulted in a 30% reduction in survivorship after 7 days followed by gradual progressive mortality with no infected individuals surviving more than 40 days. This moderate level of pathogenicity allows for a steady continual release of spores into the environment where they may be ingested by mosquito larvae. Infected female copepods survived in sediment under conditions of desiccation up to 30 days, thus demonstrating their capacity to function as a link for maintaining A. albifasciati between mosquito generations following periods of desiccation. The susceptibility of late stage copepodid M. annulatus to meiospores of A. albifasciati and subsequent transstadial transmission of infection to adult females was established.  相似文献   

7.
The effects of infection by a microsporidium, Vairimorpha necatrix (Kramer), on the endogenous levels of juvenile hormones in tomato moth (Lacanobia oleracea L.) larvae were investigated. Levels of juvenile hormone II (JH II) were 10-fold greater in the infected larvae on day two of the sixth stadium but no significant difference was observed on day seven. Juvenile hormone I (JH I) was also detected in day two and day seven sixth instar infected larvae but was not detected in non-infected larvae. The duration of the fifth and sixth stadia was significantly longer for infected larvae when compared with non-infected larvae. No evidence was found to suggest that supernumerary moults are a feature of infection by V. necatrix in L. oleracea larvae. Experiments were performed to determine whether the elevation in JH levels, which probably prevents pupation, is an adaptive mechanism of the microsporidium for extending the growth phase of the host, thereby allowing increased spore production. A proportion of infected larvae were collected on days 9 and 24 of the sixth stadium and spore extracts prepared from each larva. These days represent the average duration of the sixth stadium required for uninfected larvae to reach pupation, and the average number of days that V. necatrix-infected larvae survive in the sixth stadium before dying from infection. The mean spore yields from infected larvae 24 days into the sixth stadium were significantly higher than the spore yields obtained from day nine sixth instar larvae. The hypothesis that V. necatrix manipulates host endocrinology (i.e. prolong the host larval state to maximise spore yield) is discussed in context with the results obtained.  相似文献   

8.
A microsporidium from Hippodamia convergens was transmitted horizontally to three non-target coccinellid hosts (Adalia bipunctata L., Coccinella septempunctata L. and Harmonia axyridis Pallas) under laboratory conditions. For all species examined, microsporidia-infected larvae took significantly longer to develop than did uninfected larvae but the microsporidium had no effect on larval mortality. Adult sex ratios of uninfected and microsporidia-infected adults were about 1:1 (♀:♂) and did not differ significantly. At the end of a 90-day trial, microsporidia-infected H. convergens produced significantly fewer eggs and did not live as long as uninfected individuals. Differences in fecundity and longevity were not observed for the three non-target coccinellids that were examined. Mean spore counts from smear preparations of microsporidia-infected A. bipunctata did not differ significantly from H. convergens, suggesting that A. bipunctata (a native coccinellid) is a suitable host for the microsporidium but infection was lighter in C. septempunctata and H. axyridis (introduced species). Vertical transmission of the pathogen was observed during the 90-day trial by examining eggs and larvae that were produced by microsporidia-infected adults. For all species examined, 100% vertical transmission of the pathogen was eventually observed. Three eugregarines were found in two adult A. bipunctata: Gregarine A trophozoites are similar in size to those of Gregarina katherina Watson (described earlier from Coccinella spp.), Gregarine B trophozoites are similar in size to those of Gregarine A but are morphology distinct, and Gregarine C trophozoites are similar in size to G. barbarara Watson (described earlier from A. bipunctata).  相似文献   

9.
New information on the life cycle and fine structure of Pilosporella chapmani, a microsporidium of the mosquito Aedes triseriatus, is presented. Pilosporella chapmani is shown to have two sporulation sequences, one of them being involved in transovarial transmission. One sequence, involving meiosis and production of a moniliform sporogonial plasmodium, occurs in the larval fat body, resulting in eight uninucleate, spherical, and fully developed spores. The other occurs in oenocytes of adult mosquitoes and results in isolated, binucleate, elongate, and thin-walled spores. Also, for the first time, metabolic products are shown to be expelled into the surrounding host tissues through the wall of the sporocyst.  相似文献   

10.
Laboratory observations were made of the microsporidian parasite Amblyospora dyxenoides in its natural mosquito host, Culex annulirostris. There were no differences in the numbers of eggs laid and in the proportions which hatched between infected and uninfected females, indicating that the parasite did not affect fecundity. Unlike other species of Amblyospora which have been studied the development of binucleate spores in adult mosquitoes increase with age of the host in both sexes and in females it proceeds independently of egg development and blood feeding. The same trend is apparent for adult mosquitoes which acquired the infection in the larval stage by horizontal transmission from the intermediate copepod host as well as for mosquitoes which acquired oenocytic infections by transovarial transmission. There was considerable variation in the proportion of mosquitoes which became infected after exposure to A. dyxenoides infected copepods. Infections in larval progeny of female mosquitoes infected via spores produced in copepods ranged from 0 to 100% in individual batches and averaged 45.6% with meiospore infections, 19.3% with oenocytic infections, with the remaining 35.7% being uninfected. Similar variability was observed in the progeny of infected female mosquitoes in the second generation after exposure to infected copepods. During experiments in which the microsporidium was maintained in C. annulirostris through 9 successive transovarially transmitted cycles (by selectively rearing the progeny of females infected with binucleate spores after an initial exposure to infected copepods) the proportion of infected progeny with oenocytic infections increased from 25 to around 50% whereas the incidence of meiospore infections declined from 50 to 10%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Convergent lady beetles, Hippodamia convergens Guérin-Méneville, are a popular choice for aphid control in North America. An unidentified microsporidium was found in H. convergens adults that were purchased from a commercial insectary in 2004. This study examined egg cannibalism and egg predation as a means of horizontal transmission of the unidentified microsporidium among H. convergens larvae and three coccinellid species found in Nova Scotia: Coccinella septempunctata (seven-spotted lady beetle), C. trifasciata perplexa (three-banded lady beetle), and Harmonia axyridis (multicolored Asian lady beetle). The microsporidium was transmitted with 100% efficiency when first instars fed on microsporidia-infected eggs. Mean spore count data from smear preparations of infected beetles suggest that the infection was as heavy in C. trifasciata perplexa (a native coccinellid) (11.2 ± 0.96 spores/100 μm2) as it was in H. convergens (the natural host) (12.8 ± 1.16) but lighter in the introduced species C. septempunctata (7.5 ± 0.65) and H. axyridis (0.8 ± 0.11). For all of the beetle species examined, larval development was significantly longer for microsporidia-infected individuals than for their uninfected cohorts. The microsporidium had no effect on larval mortality. Based on the results of this study, field-collected H. convergens should be examined for microsporidia and uninfected individuals should be used to rear individuals for release in biological control programs. However, this is unlikely to happen because H. convergens are relatively easy and inexpensive to collect from their overwintering sites for redistribution.  相似文献   

12.
The natural ecology of a heterosporous microsporidium, Amblyospora connecticus was investigated at three different salt marsh habitats during 1986-1989. The parasite has a well-defined seasonal transmission cycle that occurs regularly each year and intimately involves the primary mosquito host, Aedes cantator, and the intermediate copepod host, Acanthocyclops vernalis. In the spring, the microsporidium is horizontally transmitted from the copepod, where it appears to overwinter, to the mosquito via the ingestion of haploid spores produced in the copepod. Mosquitoes develop a benign infection, and females transmit the microsporidium transovarially to their progeny via infected eggs. Oviposition occurs during the summer and infected eggs hatch synchronously in the fall causing widespread epizootics. Infected larvae die, and the cycle is completed when meiospores are released into the pool and subsequently are eaten by A. vernalis, which reappears in the fall and early winter. Amblyospora connecticus thereby persists by surviving in one of two living hosts throughout most of its life cycle rather than in the extra-corporeal environment. This represents an important survival strategy for A. connecticus as results show the salt marsh habitat to be a relatively unstable environment that is subject to periodic flooding and drying. The adaptive significance of utilizing an intermediate host in the life cycle is discussed as it directly facilitates transmission and enhances survival of the microsporidium.  相似文献   

13.
The interactions in multiple species infections and effects on the horizontal transmission of three microsporidian species, Vairimorpha disparis, Nosema lymantriae and Endoreticulatus schubergi, infecting Lymantria dispar were evaluated in the laboratory. Simultaneous and sequential inoculations of host larvae were performed and the resulting infections were evaluated. Test larvae were exposed to the inoculated larvae to measure horizontal transmission. Dual species infections demonstrated interspecific competition between Nosema and Vairimorpha in the host larvae, but no observable competition occurred between Endoreticulatus and either of the other microsporidian species. Timing of inoculation was an important factor determining the outcome of competition between Nosema and Vairimorpha. The species inoculated first showed a higher rate of successful establishment; a time lag of 7 days between inoculations allowed the first species to essentially exclude the second. The microsporidia differed in efficiency of horizontal transmission. Nosema and Endoreticulatus were transmitted at very high rates, close to 100%. Horizontal transmission of Vairimorpha was less efficient, ranging from 25% to a maximum of 75%. The patterns of infection observed in inoculated larvae were reflected in the test larvae that acquired infections in the horizontal transmission experiments. Competition with Vairimorpha suppressed horizontal transmission of Nosema after simultaneous and sequential inoculation. In simultaneous inoculation experiments Endoreticulatus had no effect on transmission of Nosema and Vairimorpha.  相似文献   

14.
Helicosporidium sp. is a pathogenic alga that replicates in the hemolymph of various invertebrate hosts. Morphogenesis of the infectious life stage, the cyst, occurs in the infected host, but to date cannot be induced in vitro. Using larvae of the heterologous host Helicoverpa zea, we examined potential factors influencing pathogenicity and in vivo cyst production of the alga and the impact of infection on host survival. Factors tested were cyst dosage administered per os (ranging from 102 to 105 cysts per larva) and host age at exposure (third, fourth, and fifth larval instar). Cyst production occurred between 7 and 13 days after treatment, regardless of host age at treatment. Increasing dosage increased both percent infection and mortality, but cyst production did not track the total infection response. Increasing host age at exposure mitigated dosage effects on infection and mortality and also elevated cyst production in later-treated larvae. Only the highest dosage produced a significant decrease in the overall time to death. Moderate cyst dosages and later host ages were most effective at regenerating Helicosporidium cysts.  相似文献   

15.
Effects of parasitism, polydnavirus, and venom of the endoparasitoid Glyptapanteles liparidis on Lymantria dispar larvae infected with the microsporidium Vairimorpha sp. and uninfected hosts were studied. We tested the impact on growth and development of hosts, as well as on microsporidian infection. Both parasitism and polydnavirus/venom treatment alone caused a slight increase in growth rate and relative growth rate in uninfected fourth instar hosts. This effect was more pronounced with the addition of Vairimorpha infection. With no parasitism, however, infection reduced host growth markedly. Microsporidiosis delayed larval molts of L. dispar, and additional polydnavirus/venom treatment or parasitization induced significantly earlier molting. Polydnavirus/venom treatment of uninfected L. dispar resulted in prolonged larval development due to supernumerary molts and in higher pupal mortality. Infected larvae treated with polydnavirus/venom died earlier than infected larvae that were not treated and produced more Vairimorpha spores per unit fresh mass of the host.  相似文献   

16.
Nosema lymantriae is a microsporidian pathogen of the gypsy moth, Lymantria dispar that has been documented to be at least partially responsible for the collapse of L. dispar outbreak populations in Europe. To quantify horizontal transmission of this pathogen under field conditions we performed caged-tree experiments that varied (1) the density of the pathogen through the introduction of laboratory-infected larvae, and (2) the total time that susceptible (test) larvae were exposed to these infected larvae. The time frame of the experiments extended from the early phase of colonization of the target tissues by the microsporidium to the onset of pathogen-induced mortality or pupation of test larvae. Upon termination of each experiment, the prevalence of infection in test larvae was evaluated. In the experiments performed over a range of pathogen densities, infection of test larvae increased with increasing density of inoculated larvae, from 14.2 ± 3.5% at density of 10 inoculated per 100 larvae to 36.7 ± 5.7% at 30 inoculated per 100 larvae. At higher densities, percent infection in test larvae appeared to level off (35.7 ± 5.5% at 50 inoculated per 100 larvae). When larval exposure to the pathogen was varied, transmission of N. lymantriae did not occur within the first 15 d post-inoculation (dpi) (11 d post-exposure of test larvae to inoculated larvae). We found the first infected test larvae in samples taken 20 dpi (16 d post-exposure). Transmission increased over time; in the cages sampled 25 dpi (21 d post-exposure), Nosema prevalence in test larvae ranged from 20.6% to 39.2%.  相似文献   

17.
The gypsy moth, Lymantria dispar L. (Lepidoptera, Lymantriidae), a serious defoliator of deciduous trees, is an economically important pest when population densities are high. Outbreaking populations are, however, subject to some moderating influences in the form of entomopathogens, including several species of microsporidia. In this study, we conducted laboratory experiments to investigate the transmission of an unusual Nosema sp. isolated from L. dispar in Schweinfurt, Germany; this isolate infects only the silk glands and, to a lesser extent, Malpighian tubules of the larval host. The latent period ended between 8 and 15 days after oral inoculation and spores were continuously released in the feces of infected larvae until pupation. Exclusion of feces from the rearing cages resulted in a 58% decrease in horizontal transmission. The silk of only 2 of 25 infected larvae contained microsporidian spores. When larvae were exposed to silk that was artificially contaminated with Nosema sp., 5% became infected. No evidence was found for venereal or transovum (including transovarial) transmission of this parasite.  相似文献   

18.
Microsporidian parasites infect almost all invertebrate and vertebrate hosts and have significant effects on individual and population fitness. Phylogenetic analysis demonstrates that the phylum is highly divergent and that some lineages show strong associations with host taxa. We here examine the diversity and distribution of parasites in gastropod molluscs to test for host-parasite co-association. 16 populations representing 10 species of freshwater snails were screened using microsporidian specific small subunit rDNA primers. Four novel microsporidian parasite sequences were detected within populations of three host species from the genera Bulinus, Biomphalaria and Planorbis. Prevalence ranged from 5 to 84%. Phylogenetic analysis of these novel sequences reveals that they group together as a paraphyletic assemblage in the microsporidian tree basal to the two lineages containing the genera Encephalitozoon and Nosema. Preliminary observation of one microsporidian infection, show parasites distributed in all tissue systems of Bulinus globosus. However, infection is most prevalent in the digestive gland while also in the egg sacs, suggesting that the microsporidium is using a mixed strategy of horizontal and vertical transmission in this population.  相似文献   

19.
Various instars of Choristoneura occidentalis were fed with a range of doses of Nosema fumiferanae and reared at 20, 24 and 28 degrees C to determine the influence of temperature and dose on the time to spore egestion and the number of spores egested in the frass. When larvae were fed in the third stadium, as few as 10(2) spores per larva initiated infection, and both onset of spore egestion and the number of spores egested were affected by a complex relationship between temperature and inoculation dose. Onset of spore egestion varied from 11 to 15 days postinoculation. At 20 degrees C, the onset was delayed and spore production decreased with increasing inoculation dose whereas at higher temperatures spores were first egested at the lowest dose and spore production increased with dose. When larvae were fed spores in the fifth and sixth stadium, no spores were egested because pupation occurred before completion of the incubation period. To assess the effect of temperature on horizontal transmission, Choristoneura fumiferana larvae fed with 10(4) N. fumiferanae spores per larva were reared with uninfected larvae at 15, 20 and 25 degrees C. At 15 degrees C, we observed the highest degree of horizontal transmission, defined by the largest change in N. fumiferanae prevalence, even though the density of spores available for horizontal transmission was the lowest. Infected adults eclosed later than uninfected adults and the time to eclosion was also dependent on sex and temperature. We relate our experimental findings to consequences for horizontal and vertical transmission of N. fumiferanae in spruce budworm populations.  相似文献   

20.
We examined the interaction between an invertebrate iridescent virus (IIV) isolated from Spodoptera frugiperda (J.E. Smith) and the solitary ichneumonid endoparasitoid Eiphosoma vitticolle Cresson. In choice tests, parasitoids examined and stung significantly more virus infected than healthy larvae, apparently due to a lack of defense reaction in virus infected hosts. Parasitoid-mediated virus transmission was observed in 100% of the female parasitoids that stung a virus infected host in the laboratory. Each female parasitoid transmitted the virus to an average (+/-SE) of 3.7+/-0.3 larvae immediately after stinging an infected larva. Caged field experiments supported this result; virus transmission to healthy larvae only occurred in cages containing infected hosts (as inoculum) and parasitoids (as vectors). The virus was highly detrimental to parasitoid development because of premature host death and lethal infection of the developing endoparasitoid. Female parasitoids that emerged from virus infected hosts did not transmit the virus to healthy hosts. We suggest that the polyphagous habits of many noctuid parasitoids combined with the catholic host range of most IIVs may represent a mechanism for the transmission of IIVs between different host species in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号