首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A purified low-spin form of cytochrome P-450 was isolated from phenobarbital-induced rabbit liver microsomes. The preparation was functionally active and free from cytochromes b5 and P-420 and phospholipids. The specific content of the cytochrome was 18 nmoles per mg of protein. At the molecular weight of the hemoprotein of 50,000, it corresponds to 90% of purification. The purified hemoprotein binds substrates of type II and some substrates of type I. The complexes formed reveal spectral properties, similar to those for the complexes of these substrates with the microsomal form of cytochrome P-450.  相似文献   

2.
The mechanism of benzene oxygenation in liver microsomes and in reconstituted enzyme systems from rabbit liver was investigated. It was found that the NADPH-dependent transformation of benzene to water-soluble metabolites and to phenol catalyzed by cytochrome P-450 LM2 in membrane vesicles was inhibited by catalase, horseradish peroxidase, superoxide dismutase, and hydroxyl radical scavengers such as mannitol, dimethyl sulfoxide, and catechol, indicating the participation of hydrogen peroxide, superoxide anions, and hydroxyl radicals in the process. The cytochrome P-450 LM2-dependent, hydroxyl radical-mediated destruction of deoxyribose was inhibited concomitantly to the benzene oxidation. Also the microsomal benzene metabolism, which did not exhibit Michaelis-Menten kinetics, was effectively inhibited by six different hydroxyl radical scavengers. Biphenyl was formed in the reconstituted system, indicating the cytochrome P-450-dependent production of a hydroxycyclohexadienyl radical as a consequence of interactions between hydroxyl radicals and benzene. The formation of benzene metabolites covalently bound to protein was efficiently inhibited by radical scavengers but not by epoxide hydrolase. The results indicate that the microsomal cytochrome P-450-dependent oxidation of benzene is mediated by hydroxyl radicals formed in a modified Haber-Weiss reaction between hydrogen peroxide and superoxide anions and suggest that any cellular superoxide-generating system may be sufficient for the metabolic activation of benzene and structurally related compounds.  相似文献   

3.
Cytochrome P-450-dependent prostaglandin omega-hydroxylation is induced over 100-fold during late gestation in rabbit pulmonary microsomes (Powell, W.S. (1978) J. Biol. Chem. 253, 6711-6716). Purification of cytochromes P-450 from lung microsomes of pregnant rabbits yielded three fractions. Two of these fractions correspond to rabbit lung P-450I (LM2) and P-450II (LM5), which together constitute 70-97% of total cytochrome P-450 in lung microsomes from nonpregnant rabbits. The third form, which we designate rabbit cytochrome P-450PG-omega, regioselectively hydroxylates prostaglandins at the omega-position in reconstituted systems with a turnover of 1-5 min-1. Titration with purified pig liver cytochrome b5, demonstrated a 4-fold maximum stimulation at a cytochrome b5 to a P-450 molar ratio of 1-2. Rabbit lung P-450PG-omega formed a typical type I binding spectrum upon the addition of prostaglandin E1 with a calculated K8 of 1 microM, which agreed reasonably well with the kinetically calculated Km of 3 microM. Cytochrome P-450PG-omega was isolated as a low-spin isozyme with a lambda max (450 nm) in the CO-difference spectrum distinguishable from P-450I (451 nm) and P-450II (449 nm). Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis demonstrated that although purified P-450PG-omega had a relatively low specific content (12.1 nmol mg-1), it appeared homogeneous with a calculated minimum Mr of 56,000, intermediate between rabbit LM4 and LM6. When lung microsomes from pregnant and nonpregnant rabbit were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a protein band, with a Mr identical to P-450PG-omega, was observed in the pregnant rabbit, whereas this band appeared to be very faint or absent in microsomes from the nonpregnant rabbit. Purification of cytochromes P-450 from nonpregnant rabbit lung yielded only P-450I and P-450II. P-450PG-omega appears to be a novel rabbit P-450, possessing high activity towards omega-hydroxylation of prostaglandins, and is greatly induced during pregnancy in rabbit lung.  相似文献   

4.
The ethanol-induced rabbit liver microsomal cytochrome P-450, P-450LM3a, has been shown previously to efficiently catalyze the demethylation of N-nitrosodimethylamine (NDMA) with a Km of 2.9 mM. Since the predominant Km in hepatic microsomes from ethanol-treated rabbits is 0.07 mM, the role of P-450LM3a in the activation of this carcinogen has been uncertain. In the present study, antibodies to P-450LM3a were shown to almost completely inhibit NDMA demethylation by the purified P-450 in a reconstituted system as well as the low-Km activity of liver microsomes from control or ethanol-treated rabbits. In contrast, the antibody did not inhibit the high-Km NDMA demethylase activity in the microsomes. These results indicate that P-450LM3a is the major P-450 responsible for the low-Km NDMA demethylase activity. In addition, evidence is provided for the existence of a cytochrome immunochemically similar to P-450LM3a in liver microsomes from rats, mice, and guinea pigs that effectively catalyzes the demethylation of NDMA.  相似文献   

5.
Oligomers and monomers of NADPH-cytochrome P450 reductase and cytochrome P450 LM2 (2B4) isolated from the liver microsomes of phenobarbital-treated rabbits were examined for physicochemical properties and catalytic activities. As measured using laser correlation spectroscopy the particle sizes of NADPH-cytochrome P450 reductase and cytochrome P450 LM2 oligomers were 14.8 +/- 1.7 and 19.2 +/- 1.4 nm, respectively. Twenty-four-hour incubation with Emulgen 913 at 4 degrees C at a molar ratio of 1:100 led to the monomerization of NADPH-cytochrome P450 reductase and cytochrome P450 LM2 oligomers, the particle sizes diminishing to 6.1 +/- 1.3 and 5.2 +/- 0.4 nm, respectively. The thermal stability of NADPH-cytochrome P450 reductase monomers was the same as that of oligomers, whereas cytochrome P450 LM2 monomers were less thermostable than oligomers and cytochrome P450 in microsomes. Similar to cytochrome P450 LM2 oligomers and the microsomal hemoprotein, cytochrome P450 LM2 monomers formed complexes with type I and II substrates, but with Kd values higher than those of microsomes and cytochrome P450 LM2 oligomers. Kinetic parameters (Vmax and Km) of H2O2- and cumene hydroperoxide-dependent oxidation of benzphetamine and aniline in the presence of cytochrome P450 LM2 oligomers, monomers, and microsomes were determined. Peroxidase activities of the oligomers and monomers were the same, but were lower than those of microsomes. Thus the substitution of protein-protein interactions in cytochrome P450 LM2 oligomers with protein-detergent interactions in the monomers did not influence the catalytic properties of the hemoprotein.  相似文献   

6.
The dilution of rabbit liver microsomes by soy-bean phospholipids was used as methodical approach to investigate the molecular organization of NADPH-dependent microsomal redox chain. The ultrastructural analysis of control and phospholipid diluted microsomes revealed that the incorporation of exogenous phospholipids into microsome membranes increased their surface area, as well as decreased the lateral density distribution and size of intramembrane particles. The dilution of microsome membranes by phospholipids slowed down the initial rate of cytochrome P-450 reduction by NADPH. The apparent second order rate constant of cytochrome P-450 reduction by NADPH: cytochrome P-450-reductase did not change in phospholipid-enriched microsomes. The results obtained provide strong evidence for the random distribution of NADPH-specific flavoprotein and cytochrome P-450 in liver microsome membranes.  相似文献   

7.
Two types of cytochrome P-450, P-450LM2 and P-450LM3, have been purified from rabbit liver microsomes and incorporated into phospholipid vesicles by a cholate gel filtration technique together with purified preparations of NADPH-cytochrome P-450 reductase. The catalytic properties of the vesicles have been compared with a system reconstituted with small amounts of dilauroylphosphatidylcholine (DLPC). 6 beta-Hydroxylation of androstenedione proceeded at a rate 10 times higher in the vesicles compared to the DLPC-system. The kinetics for the reaction were the same in the vesicles as in intact microsomes i.e. sigmoidal substrate curves were obtained and Hill-coefficients of about 1.4 were calculated in these systems. In contrast, Michaelis-Menten kinetics were obtained for 6 beta-hydroxylation in the DLPC-system. The results could indicate cooperativity between different P-450 molecules in the intact membrane but not in the DLPC-system. P-450LM2-catalyzed 16-hydroxylation of androstenedione was in contrast to the situation with P-450LM3 inhibited in the vesicles as compared to the DLPC system. It is suggested that for evaluation of substrate specificity and other properties of different types of liver microsomal P-450, phospholipid vesicles may be a more relevant integration level than the DLPC-system.  相似文献   

8.
Oral administration of triacetyloleandomycin (TAO), 1 mmol/kg/day for 7 days to mature male New Zealand White rabbit results in a significant increase in the content of liver microsomal cytochrome P-450. This increase is accompanied by the occurrence on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the microsomes of a strong band in the zone of electrophoretic mobility associated with the LM3 isozymes and the stimulation of a number of monooxygenase activities of these microsomes including aminopyrine, chlorcyclizine, TAO, and erythromycin demethylation as well as 2-OH-estradiol and 6 beta OH-testosterone hydroxylation. Cytochrome P-450 LM3 (TAO) from these liver microsomes, purified to electrophoretic homogeneity, had Mr = 52,000 as determined by calibrated sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Comparison with isozymes LM3a, LM3b, and LM3c isolated from control animals, by a number of criteria including spectral data, amino acid content, NH2-terminal sequence analysis, peptide mapping, immunological properties, and monooxygenase activities of reconstituted system, indicated that isozymes LM3 (TAO) and LM3b are very similar, if not identical, proteins. We conclude that TAO must be considered as a new type of inducer of microsomal cytochrome P-450 from rabbit liver.  相似文献   

9.
The previously described, iodine-labeled alkylating stable nitroxyl radicals located at different distances between the N-O. group and the iodine atom were used for a comparative study of the structure of microsomal cytochromes P-450 and P-448 active centers. The radicals were shown to change the optical spectra of Fe3+ located in the active site of the enzyme that are similar to those induced by cytochrome P-450 substrates. Some differences in the type of the radicals binding to control, phenobarbital- and 3-methylcholanthrene-induced microsomes were revealed. The alkylating radical substrate analogs covalently bound to microsomal cytochrome P-450 in the vicinity of the active center, resulting in the inhibition of oxidation of type I and II substrates (e. g., aniline and naphthalene). The value of the spectral binding constant (Ks) for naphthalene in the presence of the radical covalently bound to the cytochrome P-450 active center showed a tendency to increase. Using the ESR technique, the interaction between Fe3+ and the radical localized in the active site of cytochrome P-450 was demonstrated. The contribution of Fe3+ to the relaxation of the radicals covalently bound to cytochrome P-450 was evaluated from the values of the spin label ESR spectra saturation curves at 77K. The distances between the N-O. group of these radicals and Fe3+ in the enzyme active center for the three types of microsomes were determined. The data obtained point to structural peculiarities of the active center of cytochrome P-450, depending on the microsomal type.  相似文献   

10.
The inactivation of five dithionite reduced soluble cytochrome P-450 isoforms has been studied. The inactivation of microsomal rabbit liver isoform LM2 and bacterial linalool cytochrome P-450 is followed by its conversion into cytochrome P-420. Microsomal rabbit liver isoform LM4, bacterial camphor and p-cymene cytochromes P-450 were not inactivated under these conditions. The inactivation of linalool cytochrome P-450 and LM2 isoform is a first order reaction; the rate constants for linalool cytochrome P-450 and LM2 are 0.3 and 0.1 min-1, respectively. In the case of linalool cytochrome P-450 its carboxycomplex (Fe2+-CO) is inactivated, while in the case of LM2 the inactivation affects its oxycomplex (Fe2+-O2). The amino acid residues of linalool cytochrome P-450 are probably modified due to a direct electron transfer in its carboxycomplex. The amino acid residues of LM2 isoform are modified, presumably due to oxidation by oxygen active species which are released during the oxycomplex decay.  相似文献   

11.
The interaction of substrates of the microsomal mixed-function oxidases with cytochromes P-450 and P-448 was investigated by using liver microsomes from rats pretreated with phenobarbital or 3-methylcholanthrene, and with purified forms of the cytochromes isolated from rabbit liver. The two forms of the cytochrome have different substrate specificities; cytochrome P-450 has one type 1 substrate-binding site that can accommodate a large variety of substrates, but in contrast cytochrome P-448 may possess two type 1 substrate-binding sites, one of which is different to that of cytochrome P-450 in that it shows a specificity for substrates such as safrole and 9-hydroxy-ellipticine. These findings explain why the two forms of the cytochrome have different substrate specificities and play contrasting roles in the activation and deactivation of xenobiotics.  相似文献   

12.
A form of cytochrome P-450 which comigrates with cytochrome P-450LM4 (molecular weight, 55 000) on SDS-polyacrylamide gel was purified from liver microsomes of cholestyramine-treated rabbits. This form of cytochrome P-450 catalyzed the 7 alpha-hydroxylation of cholesterol with an activity of 37.5 pmol/min per nmol cytochrome P-450 in the reconstituted enzyme system containing cytochrome P-450 and NADPH-cytochrome P-450 reductase. The substrate specificity of this form of cytochrome P-450 was compared with cytochrome P-450LM4 isolated from phenobarbital- and beta-naphthoflavone-treated rabbit liver microsomes. The latter two isoenzymes do not catalyze 7 alpha-hydroxylation of cholesterol, but are more active in O-deethylation of 7-ethoxycoumarin and p-nitrophenetole. Ouchterlony double diffusion revealed cross-reactivity between anti-P-450LM4 (phenobarbital) IgG and cytochrome P-450 isolated from cholestyramine- or beta-naphthoflavone-treated rabbit liver microsomes. A two-dimensional iodinated tryptic peptide fingerprint indicated only minor structural differences among these three cytochrome P-450LM4 preparations.  相似文献   

13.
The kinetics of chromate reduction by liver microsomes isolated from rats pretreated with phenobarbital or 3-methylcholanthrene with NADPH or NADH cofactor have been followed. Induction of cytochrome P-450 and NADPH-cytochrome P-450 reductase activity in microsomes by phenobarbital pretreatment caused a decrease in the apparent chromate-enzyme dissociation constant, Km, and an increase in the apparent second-order rate constant, kcat/Km, but did not affect the kcat of NADPH-mediated microsomal metabolism of chromate. Induction of cytochrome P-448 in microsomes by 3-methylcholanthrene pretreatment did not affect the kinetics of NADPH-mediated reduction of chromate by microsomes. The kinetics of NADH-mediated microsomal chromate reduction were unaffected by the drug treatments. The effects of specific enzyme inhibitors on the kinetics of microsomal chromate reduction have been determined. 2'-AMP and 3-pyridinealdehyde-NAD, inhibitors of NADPH-cytochrome P-450 reductase and NADH-cytochrome b5 reductase, inhibited the rate of microsomal reduction of chromate with NADPH and NADH. Metyrapone and carbon monoxide, specific inhibitors of cytochrome P-450, inhibited the rate of NADPH-mediated microsomal reduction of chromate, whereas high concentrations of dimethyl-sulfoxide (0.5 M) enhanced the rate. These results suggest that the electron-transport cytochrome P-450 system is involved in the reduction of chromate by microsomal systems. The NADPH and NADH cofactors supply reducing equivalents ultimately to cytochrome P-450 which functions as a reductase in chromate metabolism. The lower oxidation state(s) produced upon chromate reduction may represent the ultimate carcinogenic form(s) of chromium. These studies provide evidence for the role of cytochrome P-450 in the activation of inorganic carcinogens.  相似文献   

14.
The effect of flavone and 7,8-benzoflavone on the metabolism of benzo[a]pyrene to fluorescent phenols by five cytochrome P-450 isozymes obtained from rabbit liver microsomes was determined. Benzo[a]pyrene metabolism was stimulated more than 5-fold by the addition of 600 microM flavone to a reconstituted monooxygenase system consisting of NADPH, cytochrome P-450 reductase, dilauroylphosphatidylcholine, and cytochrome P-450LM3c or cytochrome P-450LM4. In contrast, an inhibitory effect of flavone on benzo[a]pyrene metabolism was observed when cytochrome P-450LM2, cytochrome P-450LM3b, or cytochrome P-450LM6 was used in the reconstituted system. 7,8-Benzoflavone (50-100 microM) stimulated benzo[a]pyrene metabolism by the reconstituted monooxygenase system about 10-fold when cytochrome P-450LM3c was used, but benzo[a]pyrene hydroxylation was strongly inhibited when 7,8-benzoflavone was added to the cytochrome P-450LM6-dependent system. Smaller effects of 7,8-benzoflavone were observed on the metabolism of benzo[a]pyrene by the cytochrome P-450LM2-, cytochrome P-450LM3b-, and cytochrome P-450LM4-dependent monooxygenase systems. These results demonstrate that the activating and inhibiting effects of flavone and 7,8-benzoflavone on benzo[a]pyrene metabolism depend on the type of cytochrome P-450 used in the reconstituted monooxygenase system.  相似文献   

15.
The kinetic parameters of NADPH-dependent cytochrome P450 LM2 (2B4) reduction and substrate oxidation in the monomeric reconstituted system, consisting of purified NADPH-cytochrome P450 reductase and cytochrome P450 LM2 monomers, and in phenobarbital-induced rabbit liver microsomes were compared. In the absence of benzphetamine, NADPH-dependent reduction of cytochrome P450 LM2 was monophasic in the monomeric reconstituted system and biphasic in the microsomes. The presence of the substrate in the monomeric reconstituted system caused the appearance of the fast phase. In this system substrate-free cytochrome P450 LM2 was entirely low-spin, and the addition of benzphetamine shifted the spin equilibrium to a high state very weakly. No correlation between high-spin content and the proportion of the fast phase of NADPH-dependent LM2 reduction was found in the system. Vmax values for the oxidation of type I substrates (benzphetamine, dimethylaniline, aminopyrine) in the monomeric reconstituted system were higher or the same as in the microsomes, whereas Km values for the substrates and NADPH were lower in the microsomes. Maximal activity of the monomeric reconstituted system was observed at a 1:1 NADPH-cytochrome P450 reductase/cytochrome P450 LM2 ratio. Measurements of benzphetamine oxidation as a function of NADPH-cytochrome P450 reductase/cytochrome P450 LM2 ratio at a constant total protein concentration allowed the Kd of the NADPH-cytochrome P450 reductase/cytochrome P450 LM2 complex to be estimated as 6.4 +/- 0.5 microM. Complex formation between the NADPH-cytochrome P450 reductase and cytochrome P450 LM2 monomers was not detected by recording the difference binding spectra of the reductase monomers with LM2 monomers or by treatment the mixture of the monomers of the proteins with the crosslinking reagent, water-soluble carbodiimide.  相似文献   

16.
1- Anti-liver/kidney microsome autoantibodies type 1 (anti-LKM1), observed in some children with chronic active hepatitis, were used to isolate their antigen in human liver microsomes. A protein, called P-LKM1 was thus purified. This protein was recognized by a rabbit antiserum directed against the related human cytochromes P-450 bufI and P-450 bufII. 2- A human liver microsomal protein immunoprecipitated with anti-LKM1 sera was also recognized by anti cytochromes P-450 bufI/II antibodies. 3- Anti-LKM1 antibodies potently inhibited microsomal bufuralol 1'-hydroxylation. These results displayed the possible identity between cytochrome P-450 bufI/II and LKM1 antigen.  相似文献   

17.
The arylcyclopropanes (cyclopropylarenes) cyclopropylbenzene and diphenylcyclopropane are oxidized by rabbit liver microsomal cytochrome P-450, both by the microsomal fraction and by the purified cytochrome in a reconstituted system. The products formed, principally benzoic acid, are due to an unusual triple oxidation of the substrate, which probably remains attached to the active site during the several steps of the oxidation. Both substrates were found to be inhibitors of the cytochrome P-450-dependent O-de-ethylation of 7-ethoxycoumarin. Model oxidation studies with cumene hydroperoxide as oxidizing agent and rabbit liver microsomal fraction as source of enzyme gave similar products to the microsomal and reconstituted systems. The significance of these results in the mechanism of oxidation catalysed by cytochrome P-450 is discussed.  相似文献   

18.
1. Cytochrome P-450LgM2 was purified from sheep lung microsomes in the presence of detergents, Emulgen 913 and cholate. 2. The purification procedure involved the chromatography of the detergent solubilized microsomes on DEAE-cellulose and hydroxylapatite. 3. Cytochrome P-450LgM2 was further purified on second DEAE-cellulose and hydroxylapatite columns. 4. The specific content of the highly purified P-450LgM2 was 16-18 nmol P-450/mg protein and purified 164-fold. 5. The yield was 16% of the initial content in microsomes. 6. The SDS-polyacrylamide slab gel electrophoresis (PAGE) of the purified lung cytochrome P-450LgM2 showed one protein band having the monomer molecular weight of 49,500. 7. The absolute CO-difference spectrum of dithionate-reduced P-450LgM2 gave a peak at 451 nm. 8. When sheep lung cytochrome P-450LgM2 and P-450LM2 purified from liver of phenobarbital (PB)-induced rabbit were subjected to Western Blotting and visualized immunochemically with anti-P-450LM2, they showed identical mobilities. 9. P-450LgM2 was found to be very active in N-demethylation of benzphetamine in a reconstituted system containing purified sheep lung reductase and synthetic lipid. 10. Turnover numbers (min-1) for benzphetamine, aniline, ethylmorphine and p-nitrophenol were determined to be 273, 1.2, 15.5 and 1.05, respectively, in a reconstituted microsomal lung monooxygenase system. 11. Spectral, electrophoretic, biocatalytic and immunochemical properties of sheep lung P-450LgM2 were found to be similar to those of P-450 isozyme 2, purified from PB-treated rabbit liver and of rabbit lung microsomes.  相似文献   

19.
It was shown that the lipophilic nitroxyl radical--2-hexyl-2,3,5,5-tetramethyl-4-(3-iodo-2-oxopropyliden)-im idazolidine- 1-oxyl, an affinity modified of rat liver microsomal cytochrome P-450, interacts with various forms of cytochrome P-450 as substrate type I, and it inhibits the oxidation of substrates specific for these forms. During its intravenous injection with egg phosphatidylcholine liposomes the radical is partly bound to liver microsomes, which is accompanied by a decrease of the oxygenase activity of microsomal preparations (by 30-50%) as well as by prolongation of the soporific effect of hexabarbital (2-3-fold).  相似文献   

20.
Hydrocarbons of different structures interact with microsomal and solubilized cytochrome P-450 from liver of phenobarbital-pretreated rats forming a high spin enzyme-substrate type complex. The affinity of cytochrome P-450 for hydrocarbons increases with increasing lipophilicity independently of the chemical structure. The binding capacity of microsomal P-450 for aliphatic hydrocarbons is generally higher than for aromates. Mutual influence in binding of two different hydrocarbons by microsomal P-450 is stronger among aromatic than among aliphatic hydrocarbons; in both cases it appears to be effected rather by specific interaction of both substances with the binding site than by a nonspecific influence on the microsomal membrane. Only one fraction of low spin form of solubilized cytochrome P-450 from rat liver interacts with hydrocarbons. The binding capacity for aromatic and aliphatic substances corresponds to that found in microsomes. The affinity for the most lipiphilic substrate, perhydrophenanthrene, is equal in microsomal and solubilized preparation; with decreasing lipophilicity the affinity of solubilized P-450 decreases faster than in microsomes. The LM2 fraction of cytochrome P-450 from phenobarbital-pretreated rabbits interacts only with aliphatic hydrocarbons with wide variation of the binding capacity. The affinity is generally one order of magnitude lower than in microsomes. Active fractions of solubilized P-450 from both species are rapidly converted to P-420 by dithionite. The extent of this conversion is strongly reduced by saturation with substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号