首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used the technique of phosphate: water oxygen exchange to measure the rate of ATP and Pi release and Pi binding to myosin subfragment 1 and actomyosin subfragment 1 from rabbit skeletal muscle. The oxygen exchange distributions for ATP and Pi release fit a simple kinetic model with a single set of rate constants for each step. For actomyosin subfragment 1 (20 degrees C, pH 7.0, I = 50 mM), the rate constant governing ATP release is approximately 8 s-1, Pi release is at approximately 60 s-1 and Pi rebinds to an ADP state at greater than 120 M-1 s-1. These rate constants are similar to those that may occur for undistorted cross-bridges within glycerinated rabbit psoas fibers (Bowater, R., Webb, M. R., and Ferenczi, M. A. (1989) J. Biol. Chem. 264, 7193-7201.  相似文献   

2.
The extent of oxygen exchange between phosphate and water has been measured for the calcium-regulated magnesium-dependent ATPase activity of chemically skinned fibers from rabbit skeletal muscle. The oxygen exchange was determined for isometrically held fibers by measuring with a mass spectrometer the distribution of 18O atoms in the product inorganic phosphate when ATP hydrolysis was carried out in H2(18)O. The extent of exchange was much greater in relaxed muscle (free Ca2+ less than 10(-8) M) than in calcium-activated muscle (free Ca2+ approximately equal to 3 X 10(-5) M). Activated fibers had an ATPase activity at least 30-fold greater than the relaxed fibers. These results correlate well with the extents of oxygen exchange accompanying magnesium-dependent myosin and unregulated actomyosin ATPase activities, respectively. In relaxed fibers, comparison of the amount of exchange with the ATPase activity suggests that the rate constant for the reformation of myosin-bound ATP from the myosin products complex is about 10 s-1 at 20 degrees C and pH 7.1. In each experiment the distribution of 18O in the Pi formed was incompatible with a single pathway for ATP hydrolysis. In the case of the calcium-activated fibers, the multiple pathways for ATP hydrolysis appeared to be an intrinsic property of the actomyosin ATPase in the fiber. These results indicate that in muscle fibers, as in isolated actomyosin, cleavage of protein-bound ATP is readily reversible and that association of the myosin products complex with actin promotes Pi release.  相似文献   

3.
J A Evans  E Eisenberg 《Biochemistry》1989,28(19):7741-7747
Considerable effort has been devoted to understanding the mechanism of 18O exchange in skinned skeletal and insect muscle fibers. However, a full understanding of the mechanism of 18O exchange in muscle fibers requires an understanding of the mechanism of 18O exchange in the simpler in vitro systems employing myosin subfragment 1 (S-1) and heavy meromyosin (HMM). In the present study, using both S-1 and S-1 covalently cross-linked to actin, we show first that over a wide range of temperature, ionic strength, and actin concentration there is only one pathway of 18O exchange with S-1. This is also the case with HMM except at very low ionic strength and low actin concentration, and even here, the data can be explained if 20% of the HMM is denatured in such a way that it shows no 18O exchange. Our results also show that actin markedly decreases the rate of 18O exchange. If it is assumed that Pi release is rate limiting, the four-state kinetic model of the actomyosin ATPase cannot fit these 18O exchange data. However, if it is assumed that the ATP hydrolysis step is rate limiting and Pi release is very fast, the four-state kinetic model can qualitatively fit these data although the fit is not perfect. A better fit to the 18O exchange data can be obtained with the six-state kinetic model of the actomyosin ATPase, but this fit requires the assumption that, at saturating actin concentration, the rate of Pi rotation is about 9-fold slower than the rate of reversal of the ATP hydrolysis step.  相似文献   

4.
The oxygen exchange during ATP hydrolysis by glycerinated muscle fibers, myofibrils, and synthetic actomyosin filaments was studied from the distribution of the [18O]Pi species produced by the hydrolysis of [gamma-18O]ATP. The products were mixtures of two species, one with a low extent of oxygen exchange and the other with a high extent. The low and high extents of oxygen exchange in these two Pi species were the same as those of the acto-S-1 ATPase reaction through the routes with and without the dissociation of actomyosin, respectively (Yasui, M., Ohe, M., Kajita, A., Arata, T., & Inoue, A. [1988] J. Biochem. 104, 550-559). During isometric contraction of glycerinated muscle fibers at 20 degrees C, the fraction of ATP hydrolysis with low extent of oxygen exchange was 0.83 and 0.70, respectively, in 0 and 120 mM KCl. In myofibrils, the fraction of ATP hydrolysis with a low extent of oxygen exchange was 0.72-0.88 in 0-120 mM KCl at 20 degrees C. Therefore, in glycerinated muscle fibers and myofibrils ATP seems to be mainly hydrolyzed through a route without the dissociation of actomyosin, especially at low ionic strength and at room temperature when the tension development is high. ATP hydrolysis through this route may be coupled with muscle contraction.  相似文献   

5.
Oxygen exchange between (18O4)Pi in the medium and water accompanies ATP hydrolysis catalyzed by the calcium-regulated MgATPase of vertebrate skeletal muscle. Exchange was observed in chemically skinned fibers from rabbit psoas muscle held isometrically and activated by 30 microM free Ca2+. The rate of exchange was approximately proportional to Pi concentration (up to 10 mM) and was characterized by an apparent second order rate constant greater than or equal to 475 M-1 S-1 (pH 7.1, ionic strength 0.2 M, 22 degrees C). Much less exchange occurred in the absence of Ca2+ or when ATP was replaced by ADP. It has been inferred from mechanical experiments that Pi can bind to a force-generating ADP-bound state of actomyosin with resultant suppression of force (Hibberd, M. G., Dantzig, J. A., Trentham, D. R., and Goldman, Y. E. (1985) Science 228, 1317-1319). The oxygen exchange results support this inference by providing direct evidence that Pi in the medium binds at the ATPase catalytic site in activated isometric fibers. The inter-relationship of these two effects involving Pi on mechanochemical coupling in muscle is discussed.  相似文献   

6.
R Bowater  J Sleep 《Biochemistry》1988,27(14):5314-5323
The rate of ATP in equilibrium with Pi exchange, that is, the incorporation of medium Pi into ATP during the net hydrolysis of ATP, has been measured for rabbit psoas muscle fibers, myofibrils, and actomyosin subfragment 1 (acto-S1). The maximum exchange rate in fibers at saturating [Pi] is 0.04 s-1 per myosin head at 8 degrees C, pH 7, and an ionic strength of 0.2 M. The dependence of the rate on Pi concentration can be approximated by a hyperbola with an apparent dissociation constant (Km) of 3 mM. Myofibrils catalyze ATP in equilibrium with Pi exchange with a similar Km but at a slightly lower rate. In contrast, the soluble acto-S1 system, in which ATP hydrolysis is not coupled to tension generation, catalyzes exchange at a rate 500 times lower than that of fibers at low Pi concentration, and the Km for Pi is greater than 50 mM. The difference between the ATP in equilibrium with Pi exchange of fibers and of acto-S1 is discussed in terms of a model in which Pi binds to a force-generating state AM'-ADP and, due to mechanical constraint, the average free energy of this state is higher in the fiber than in acto-S1.  相似文献   

7.
At an intermediate stage in the hydrolysis of magnesium adenosine 5'-phosphate (MgATP) by myosin or actomyosin, there is an exchange of oxygen between water and the P gamma group of enzyme-bound nucleotide. Starting with [P gamma-18O]ATP as substrate, the exchange is revealed in the [18O]Pi species that are ultimately released as product into the reaction medium. An analysis of the distribution of these labeled Pi species, which contain 3, 2, 1, or none of the 18O atoms originally on the P gamma of ATP, is used to probe intermediate stages of the hydrolytic mechanism. In recent years, studies of this kind by several groups have shown that more than one pathway of hydrolysis operates. The work reported here demonstrates that two of these pathways are spurious; one is a "nonexchanging MgATPase" that is present in fresh myosin preparations; the other is an induced slow exchange that develops in myosin during storage (-20 degrees C) and subsequent aging (4 degrees C). However, after correction for these artifacts, two normal pathways for actomyosin hydrolysis remain. These normal pathways differ in the mode of interaction between actin and myosin in the course of hydrolysis; one is the Lymn-Taylor pathway where oxygen exchange occurs at a stage when actin and myosin are dissociated; the other is a pathway in which actin and myosin are associated during oxygen exchange. Each of these two pathways contributes an equal amount of Pi to the product pool. Thus, on average, each myosin head uses each of these pathways half the time. The findings suggest, e.g., that during contraction, myosin can dissociate from the actin filament only during every other cycle of MgATP hydrolysis or that only half the heads, at any one time, can exchange oxygen while free of the actin filament.  相似文献   

8.
Rate of ATP synthesis by dynein   总被引:1,自引:0,他引:1  
The rates of ATP synthesis and release by the dynein ATPase were determined in order to estimate thermodynamic parameters according to the pathway: (Formula: see text). Dynein was incubated with high concentrations of ADP and Pi to drive the net synthesis of ATP, and the rate of ATP production was monitored fluorometrically by production of NADPH through a coupled assay using hexokinase and glucose-6-phosphate dehydrogenase. The turnover number for the rate of release of ATP from 22S dynein was 0.01 s-1 per site at pH 7.0, 28 degrees C, assuming a molecular weight of 750 000 per site. The same method gave a rate of ATP synthesis by myosin subfragment 1 of 3.4 X 10(-4) s-1 at pH 7.0, 28 degrees C. The rate of ATP synthesis at the active site was estimated from the time dependence of medium phosphate-water oxygen exchange. Dynein was incubated with ADP and [18O] Pi, and the rate of loss of the labeled oxygen to water was monitored by 31P NMR. A partition coefficient of 0.31 was determined, which is equal to k-2/(k-2 + k3). Assuming k3 = 8 s-1 [Johnson, K.A. (1983) J. Biol. Chem. 258, 13825-13832], k-2 = 3.5 s-1. From the rates of ATP binding and hydrolysis measured previously (Johnson, 1983), the equilibrium constants for ATP binding and hydrolysis could be calculated: K1 = 5 X 10(7) M-1 and K2 = 14.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
During ATP hydrolysis by Ca2+-activated chemically skinned fibers from the flight muscle of the giant waterbug Lethocerus indicus, there is extensive phosphate-water oxygen exchange. For unstrained fibers the pattern of exchange shows that there is more than one pathway for hydrolysis, due to the ATPase activity of cross-bridges. Multiple pathways are an established property of both vertebrate actomyosin and fibers. The pattern of exchange can be fitted by two pathways: one with low exchange because the step(s) controlling Pi release are rapid, the other with high exchange and slow Pi release. The high-exchange pathway is responsible for most of the increase in ATPase activity on Ca2+ activation. On strain activation, only the high-exchange pathway is present, accounting for all the ATPase increase and responsible for force generation. In fully activated fibers, the cross-bridges which hydrolyze ATP and generate force behave uniformly with respect to oxygen exchange. The exchange pattern shows that the rate of Pi release changes dramatically over a very narrow strain increase. Step(s) controlling Pi release are at least partially rate-limiting for the overall ATPase reaction. The results are discussed in relation to models for strain activation and the identity of force-generating states.  相似文献   

10.
The time course of oxygen-18 exchange between [18O]Pi and normal water, catalyzed by myosin subfragment 1 in the presence of MgADP, was followed using the shift in 31P NMR caused by the presence of oxygen-18 bound to the phosphorus. Essentially all molecules of [18O]Pi that bind to the enzyme undergo complete exchange and are released as [16O4]Pi. Exchange probably occurs by formation of myosin.ATP from a myosin.ADP.Pi complex and is rapid relative to release of Pi from this complex. The kinetics of exchange give a value for the rate constant for binding Pi to myosin.ADP of 0.23 M-1 S-1 (pH 8.0, 22 degrees C). This value is consistent with exchange occurring by reversal of the ATP-ase reaction back to the myosin.ATP complex.  相似文献   

11.
Muscle fiber contraction involves the cyclical interaction of myosin cross-bridges with actin filaments, linked to hydrolysis of ATP that provides the required energy. We show here the relationship between cross-bridge states, force generation, and Pi release during ramp stretches of active mammalian skeletal muscle fibers at 20°C. The results show that force and Pi release respond quickly to the application of stretch: force rises rapidly, whereas the rate of Pi release decreases abruptly and remains low for the duration of the stretch. These measurements show that biochemical change on the millisecond timescale accompanies the mechanical and structural responses in active muscle fibers. A cross-bridge model is used to simulate the effect of stretch on the distribution of actomyosin cross-bridges, force, and Pi release, with explicit inclusion of ATP, ADP, and Pi in the biochemical states and length-dependence of transitions. In the simulation, stretch causes rapid detachment and reattachment of cross-bridges without release of Pi or ATP hydrolysis.  相似文献   

12.
The kinetics of ATP binding and hydrolysis (formation of acid-labile phosphate) by the Tetrahymena 30 S dynein ATPase has been measured by chemical quench flow methods. The amplitude of the ATP-binding transient gave a molecular weight per ATP-binding site of approximately 750,000, suggesting nearly 3 ATP binding sites/2 million Mr dynein molecule (Johnson, K. A., and Wall, J.S. (1983) J. Cell Biol. 96, 669-678). ATP binding occurred at the rate predicted from the apparent second order rate constant of 4.7 X 10(6) M-1 S-1 measured by analysis of the ATP-induced dissociation of the microtubule-dynein complex (Porter, M. E., and Johnson, K. A. (1983) J. Biol. Chem. 258, 6582-6587). Hydrolysis was slower than binding and occurred at a rate of 55 S-1, at 30 and 50 microM ATP. The rate limiting step for steady state turnover (product release) occurred with a rate constant of 8 S-1. These data show that the first two steps of the pathway of coupling ATP hydrolysis to the microtubule-dynein cross-bridge cycle are the same as those described by Lymn and Taylor for actomyosin (Lymn, R. W., and Taylor, E. W. (1971) Biochemistry 10, 4617-4624). Namely, ATP binding induces the very rapid dissociation of dynein from the microtubule and ATP hydrolysis occurs more slowly following dissociation. Moreover, in spite of rather gross structural differences, the kinetic constants for dynein and myosin are quite similar.  相似文献   

13.
Recent studies have revealed that myosin IX is a single-headed processive myosin, yet it is unclear how myosin IX can achieve the processive movement. Here we studied the mechanism of ATP hydrolysis cycle of actomyosin IXb. We found that myosin IXb has a rate-limiting ATP hydrolysis step unlike other known myosins, thus populating the prehydrolysis intermediate (M.ATP). M.ATP has a high affinity for actin, and, unlike other myosins, the dissociation of M.ATP from actin was extremely slow, thus preventing myosin from dissociating away from actin. The ADP dissociation step was 10-fold faster than the overall ATP hydrolysis cycle rate and thus not rate-limiting. We propose the following model for single-headed processive myosin. Upon the formation of the M.ATP intermediate, the tight binding of actomyosin IX at the interface is weakened. However, the head is kept in close proximity to actin due to the tethering role of loop 2/large unique insertion of myosin IX. There is enough freedom for the myosin head to find the next location of the binding site along with the actin filament before complete dissociation from the filament. After ATP hydrolysis, Pi is quickly released to form a strong actin binding form, and a power stroke takes place.  相似文献   

14.
Although there is agreement that actomyosin can hydrolyze ATP without dissociation of the actin from myosin, there is still controversy about the nature of the rate-limiting step in the ATPase cycle. Two models, which differ in their rate-limiting step, can account for the kinetic data. In the four-state model, which has four states containing bound ATP or ADP . Pi, the rate-limiting step is ATP hydrolysis (A . M . ATP in equilibrium A . M . ADP . Pi). In the six-state model, which we previously proposed, the rate-limiting step is a conformational change which occurs before Pi release but after ATP hydrolysis. A difference between these models is that only the four-state model predicts that almost no acto-subfragment 1 (S-1) . ADP . Pi complex will be formed when ATP is mixed with acto . S-1. In the present study, we determined the amount of acto . S-1 . ADP . Pi formed when ATP is mixed with S-1 cross-linked to actin [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Nature (London) 292, 301-306]. The amount of acto . S-1 . ADP . Pi was determined both from intrinsic fluorescence enhancement and from direct measurement of Pi. We found that at mu = 0.013 M, the fluorescence magnitude in the presence of ATP of the cross-linked actin . S-1 preparation was about 50% of the value obtained with S-1, while at mu = 0.053 M the fluorescence magnitude was about 70% of that obtained with S-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Actin mediated release of ATP from a myosin-ATP complex.   总被引:2,自引:0,他引:2  
J A Sleep  R L Hutton 《Biochemistry》1978,17(25):5423-5430
The apparent second-order rate constant, ka-2, of actin binding to a myosin-ATP state (M*.ATP) and releasing ATP to the medium has been determined by two methods. The first was the measurement of the amount of ATP released when actin was added to the intermediate state, M*.ATP; the second was the measurement of oxygen exchange between ATP and HOH. A quantitative treatment of ATP in equilibrium HOH exchange is given to allow extraction of elementary rate constants from the data. Agreement between the two methods was good and at low ionic strength and 23 degrees C, ka-2 is 6 X 10(5) M-1 s-1 which is about one-third the value of the apparent second-order rate constant, ka4, of actin binding to the myosin product state (M**.ADP.Pi). The determination of ka-2 allows a lower limit of 6 s-1 to be placed upon the first-order rate of ATP release from AM.ATP. This is to be compared with a value of less than or equal to 1.5 X 10(-4) s-1 for the equivalent steps of the myosin scheme; thus actin enhances the rate by a factor of 4 X 10(4) or more. A greater proportion of the bound ATP is released to the medium as ATP with increasing actin concentration. This reflects the contribution to rate limitation at saturating actin concentration of steps between myosin states dissociated from actin.  相似文献   

16.
Chemomechanical transduction was studied in single fibers isolated from human skeletal muscle containing different myosin isoforms. Permeabilized fibers were activated by laser-pulse photolytic release of 1.5 mM ATP from p(3)-1-(2-nitrophenyl)ethylester of ATP. The ATP hydrolysis rate in the muscle fibers was determined with a fluorescently labeled phosphate-binding protein. The effects of varying load and shortening velocity during contraction were investigated. The myosin isoform composition was determined in each fiber by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. At 12 degrees C large variations (three- to fourfold) were found between slow and fast (2A and 2A-2B) fibers in their maximum shortening velocity, peak power output, velocity at which peak power is produced, isometric ATPase activity, and tension cost. Isometric tension was similar in all fiber groups. The ATP consumption rate increased during shortening in proportion to shortening velocity. At 12 degrees C the maximum efficiency was similar (0.21-0.27) for all fiber types and was reached at a higher speed of shortening for the faster fibers. In all fibers, peak efficiency increased to approximately 0.4 when the temperature was raised from 12 degrees C to 20 degrees C. The results were simulated with a kinetic scheme describing the ATPase cycle, in which the rate constant controlling ADP release is sensitive to the load on the muscle. The main difference between slow and fast fibers was reproduced by increasing the rate constant for the hydrolysis step, which was rate limiting at low loads. Simulation of the effect of increasing temperature required an increase in the force per cross-bridge and an acceleration of the rate constants in the reaction pathway.  相似文献   

17.
The change in the distribution of the phosphate species containing 0 to 4 18O oxygens per Pi was investigated during medium Pi equilibrium HOH exchange catalyzed by myosin subfragment 1. At 25 degrees C, a Pi molecule once bound loses an average of 3.9 of its original 4 oxygens prior to release which means that at least 100 reversals of the exchange reaction must have occurred. At 0 degrees C, only 3.4 of the 4 oxygens are lost prior to release indicating an average of 17 reversals. Distribution patterns are consistent with equivalent participation in the exchange reactions of all 4 oxygens of bound Pi. The intermediate exchange of Pi oxygens during hydrolysis of 18O-labeled ATP by myosin has also been investigated. The distribution of the product Pi species shows that there is an ATPase component in myosin preparations which hydrolyzes ATP without intermediate exchange. Presence of this component, which is likely a contaminating ATPase, provides a simple explanation of the apparent nonequivalence of phosphate oxygens which has been observed. When correction is made for this contaminant, characteristics of the myosin intermediate Pi equilibrium HOH exchange are similar to those of myosin subfragment 1 medium exchange, and intermediate exchange data are in much closer agreement with other kinetic measurements.  相似文献   

18.
M P Dale  D D Hackney 《Biochemistry》1987,26(25):8365-8372
A method for analysis of positional isotope exchange (PIX) during ATP in equilibrium with HOH oxygen exchange is presented that uses a two-step degradation of ATP resulting in cleavage of the beta P-O gamma P bond. This cleavage yields Pi derived from the gamma-phosphoryl of ATP that contains all four of the gamma oxygens. Both PIX between the beta,gamma-bridge and beta-nonbridge positions and washout of the gamma-nonbridge oxygens can be simultaneously followed by using ATP labeled with 17O at the beta-nonbridge positions and 18O at the beta,gamma-bridge and gamma-nonbridge positions. Application of this method to ATP in equilibrium with HOH exchange during single turnovers of myosin indicates that the bulk of the ATP undergoes rapid washout of gamma-nonbridge oxygens in the virtual absence of PIX. At 25 degrees C with subfragment 1 the scrambling rate is at the limit of detectability of approximately 0.001 s-1, which is 50-fold slower than the steady-state rate. This corresponds to a probability of scrambling for the beta-oxygens of bound ADP of 1 in 10,000 for each cycle of reversible hydrolysis of bound ATP. A fraction of the ATP, however, does not undergo rapid washout. With myosin and stoichiometric ATP at 0 degrees C, this fraction corresponds to 10% of the ATP remaining at 36 s, or 2% of the initial ATP, and an equivalent level of ATP is found that does not bind irreversibly to myosin in a cold chase experiment. A significant level of apparent PIX is observed with subfragment 1 in the fraction that resists washout, and this apparent PIX is shown to be due to contaminant adenylate kinase activity. This apparent PIX due to adenylate kinase provides a possible explanation for the PIX observed by Geeves et al. [Geeves, M. A., Webb, M. R., Midelfort, C. F., & Trentham, D. R. (1980) Biochemistry 19, 4748-4754] with subfragment 1.  相似文献   

19.
J J Sines  D D Hackney 《Biochemistry》1986,25(20):6144-6149
The synthesis of ATP from highly enriched [18O]Pi by submitochondrial particles driven by succinate oxidation produces distributions of 18O-labeled ATP species that deviate from the distributions predicted by a simple model for the exchange. Control experiments indicate no change in isotopic distribution when [18O]ATP is synthesized from [18O]ADP by adenylate kinase, which is bound to the submitochondrial particles. The observed deviations are in the opposite direction from that produced by heterogeneity due to multiple pathways for ATP synthesis. Two types of complex models can account for the observed deviations. One model has nonequivalence of the Pi oxygens during the exchange reaction, due to incomplete randomization of the Pi oxygens during the reversible cycles of hydrolysis and synthesis of bound ATP. The other model assumes that, during each turnover, a slow transition must occur between a high-exchange and a low-exchange pathway.  相似文献   

20.
To understand mammalian skeletal myosin isoform diversity, pure myosin isoforms of the four major skeletal muscle myosin types (myosin heavy chains I, IIA, IIX, and IIB) were extracted from single rat muscle fibers. The extracted myosin (1-2 microg/15-mm length) was sufficient to define the actomyosin dissociation reaction in flash photolysis using caged-ATP (Weiss, S., Chizhov, I., and Geeves, M. A. (2000) J. Muscle Res. Cell Motil. 21, 423-432). The ADP inhibition of the dissociation reaction was also studied to give the ADP affinity for actomyosin (K(AD)). The apparent second order rate constant of actomyosin dissociation gets faster (K(1)k(+2) = 0.17 -0.26 microm(-1) x s(-1)), whereas the affinity for ADP is weakened (250-930 microm) in the isoform order I, IIA, IIX, IIB. Both sets of values correlate well with the measured maximum shortening velocity (V(0)) of the parent fibers. If the value of K(AD) is controlled largely by the rate constant of ADP release (k(-AD)), then the estimated value of k(-AD) is sufficiently low to limit V(0). In contrast, [ATP]K(1)k(+2) at a physiological concentration of 5 mm ATP would be 2.5-6 times faster than k(-AD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号