首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cytokines are key factors in the cross talk between the immune system and other systems including hepatic, nervous, cardiac and cutaneous systems, leading to an adaptive and integrated response of the organism to stress. They are also involved in the regulation of many processes, including hematopoiesis, the immune response and inflammation. IL-10 is one of the most important anti-inflammatory cytokines. Five cytokines structurally related to IL-10 have been described and presently form this family of cytokines: IL-19, IL-20, IL-22, IL-24 and IL-26. In contrast to IL-10, these cytokines display pro-inflammatory activities in different tissues, including skin. Indeed, some of them induce an inflammatory keratinocyte gene expression profile and an epidermis histology resembling psoriatic lesions. In this review, we discuss recent knowledge about the effects of cytokines of the IL-10 family on keratinocytes and their potential role in psoriasis, a cutaneous inflammatory disease.  相似文献   

2.
The trypsin-like serine protease marapsin is a member of the large protease gene cluster at human chromosome 16p13.3, which also contains the structurally related proteases testisin, tryptase epsilon, tryptase gamma, and EOS. To gain insight into the biological functions of marapsin, we undertook a detailed gene expression analysis. It showed that marapsin expression was restricted to tissues containing stratified squamous epithelia and was absent or only weakly expressed in all other tissues, including the pancreas. Marapsin was constitutively expressed in nonkeratinizing stratified squamous epithelia of human esophagus, tonsil, cervix, larynx, and cornea. In the keratinizing stratified squamous epidermis of skin, however, its expression was induced only during epidermal hyperproliferation, such as in psoriasis and in murine wound healing. In fact, marapsin was the second most strongly up-regulated protease in psoriatic lesions, where expression was localized to the upper region of the hyperplastic epidermis. Similarly, in the hyperproliferative epithelium of regenerating murine skin wounds, marapsin localized to the suprabasal layers, where keratinocytes undergo squamous differentiation. The transient up-regulation of marapsin, which closely correlated with re-epithelialization, was virtually absent in a genetic mouse model of delayed wound closure. These results suggested a function during the process of re-epithelialization. Furthermore, in reconstituted human epidermis, a model system of epidermal differentiation, members of the IL-20 subfamily of cytokines, such as IL-22, induced marapsin expression. Consistent with a physiologic role in marapsin regulation, IL-22 was also strongly expressed in re-epithelializing skin wounds. Marapsin's restricted expression, localization, and cytokine-inducible expression suggest a role in the terminal differentiation of keratinocytes in hyperproliferating squamous epithelia.  相似文献   

3.
Cytokines that signal through Class II receptors form a distinct family that includes the interferons and interleukin 10 (IL-10). Recent identification of several IL-10 homologs has defined a cytokine subfamily that includes AK155, IL-19, IL-20, IL-22, and IL-24. Within this subfamily, IL-19, IL-20, and IL-24 exhibit substantial sharing of receptor complexes; all three are capable of signaling through IL-20RA/IL-20RB, and IL-20 and IL-24 both can also use IL-22R/IL-20RB. However, the biological effects of these three cytokines appear quite distinct: immune activity with IL-19, skin biology with IL-20, and tumor apoptosis with IL-24. To more fully elucidate their interactions with the receptor complexes, we have performed a series of in vitro assays. Reporter, proliferation, and direct STAT activation assays using cell lines expressing transfected receptors revealed differences between the receptor complexes. IL-19 and IL-24 also exhibited growth inhibition on a cell line endogenously expressing all three receptor subunits, an effect that was seen at cytokine levels two orders of magnitude above those required for STAT activation or proliferation. These results demonstrate that, although this subclass exhibits receptor complex redundancy, there are differences in ligand/receptor interactions and in signal transduction that may lead to specificity and a distinct biology for each cytokine.  相似文献   

4.
Keratinocyte differentiation program leading to an organized epidermis plays a key role in maintaining the first line of defense of the skin. Epidermal integrity is regulated by a tight communication between keratinocytes and leucocytes, particularly under cytokine control. Imbalance of the cytokine network leads to inflammatory diseases such as psoriasis. Our attempt to model skin inflammation showed that the combination of IL-17A, IL-22, IL-1α, OSM and TNFα (Mix M5) synergistically increases chemokine and antimicrobial-peptide expression, recapitulating some features of psoriasis. Other characteristics of psoriasis are acanthosis and down-regulation of keratinocyte differentiation markers. Our aim was to characterize the specific roles of these cytokines on keratinocyte differentiation, and to compare with psoriatic lesion features. All cytokines decrease keratinocyte differentiation markers, but IL-22 and OSM were the most powerful, and the M5 strongly synergized the effects. In addition, IL-22 and OSM induced epidermal hyperplasia in vitro and M5 induced epidermal thickening and decreased differentiation marker expression in a mouse model, as observed in human psoriatic skin lesions. This study highlights the precise role of cytokines in the skin inflammatory response. IL-22 and OSM more specifically drive epidermal hyperplasia and differentiation loss while IL-1α, IL-17A and TNFα were more involved in the activation of innate immunity.  相似文献   

5.
The anti-inflammatory and immunosuppressive activities of IL-10 have been extensively studied during the last 10 years. More recently a series of new cytokines, structurally related to IL-10, were described. This family includes mda-7, IL-19, IL-20, IL-TIF/IL-22, and AK155. Most of the biological functions of these cytokines remain to be unraveled but new data are coming out steadily. Although none of these "IL-10 homologs" mimics IL-10 activities, they are likely to be involved in inflammatory processes as well. mda-7, IL-19 and IL-20 form a subfamily within IL-10 homologs, based on conserved amino acid sequences, and on the use of shared receptor complexes. Functional studies have stressed the potential suppressing activity of mda-7 on tumor growth. As for IL-20, its overexpression in transgenic mice led to skin abnormalities, reminiscent of psoriatic lesions in humans. IL-TIF/IL-22 is a Th1 cytokine, and was shown to upregulate the acute phase reactant production by liver cells. Finally, for AK155, originally described as a gene induced upon T cell transformation by Herpes-virus saimiri, functional data are still lacking to determine its biological activities.  相似文献   

6.
Keratinocytes (KC) are important source of and targets for several cytokines. Although KC express IL-15 mRNA, the functional effects of IL-15 on these epithelial cells remain to be dissected. Investigating primary human foreskin KC and HaCaT cells, we show here by semiquantitative RT-PCR and flow cytometric analysis that both translate IL-15 and IL-15R mRNA and express IL-15 and IL-15Ralpha protein on the cell surface, suggesting that human KC can employ IL-15 for juxtacrine signaling. While IL-15 exerted no significant effect on KC proliferation and IL-6 or IL-8 secretion, IL-15 inhibited both anti-Fas and methylcellulose-induced KC apoptosis in vitro. This is in line with the recognized potent anti-apoptotic effects of IL-15. IL-2, whose receptor shares two components with the IL-15R, failed to inhibit KC apoptosis. Together with the role of IL-15 in sustaining chronic immune reactions, this invited the question of whether a reduction of KC apoptosis by IL-15 may be involved in the pathogenesis of psoriasis, a chronic hyperproliferative inflammatory skin disease characterized by abnormally low KC apoptosis in the epidermis. Remarkably, compared with nonlesional psoriatic skin and skin of healthy volunteers, lesional psoriatic epidermis showed high IL-15 protein expression in the epidermis and enhanced binding activity for IL-15. Therefore, antagonizing the inhibitory effects of IL-15 on KC apoptosis deserves exploration as a novel therapeutic strategy in psoriasis management.  相似文献   

7.
8.
Keratinocytes contribute to cutaneous immune responses through the expression of cytokines. We investigated whether human keratinocytes can express IL-23, a newly defined IFN-gamma-inducing cytokine composed of a unique p19 subunit and a p40 subunit shared with IL-12. Cultured keratinocytes from normal and lesional psoriatic skin were found to express constitutively mRNA for both subunits of IL-23. Low but significant levels of the heterodimeric IL-23 protein could be detected in cell lysates and supernatants from stimulated keratinocytes by immunoblotting and ELISA. Functional analysis showed that these low levels of keratinocyte-derived IL-23 were sufficient to enhance the IFN-gamma production by memory T cells. Immunostaining of skin sections confirmed expression of both subunits of IL-23 by keratinocytes in situ and also revealed expression of this cytokine in the dermal compartment. IL-23 expression was significantly higher in psoriatic lesional skin, compared with normal and psoriatic nonlesional skin. The immunostained preparations of cultured cells and IL-23 levels in culture supernatants did not show any difference between normal and psoriatic keratinocytes indicating no intrinsic aberration of IL-23 expression in keratinocytes from psoriatic skin. Double staining of cytospin preparations demonstrated that IL-23 p19 is also expressed by epidermal Langerhans cells, dermal dendritic cells, and macrophages. Psoriasis is a chronic inflammatory skin disease mediated by IFN-gamma-expressing type 1 memory T cells. As IL-23 is important to activate memory T cells to produce IFN-gamma, its augmented expression of IL-23 by keratinocytes and cutaneous APC may contribute to the perpetuation of the inflammation process in this disease.  相似文献   

9.
10.
Psoriasis is a chronic, inflammatory skin disease with a high incidence and recurrence; however, its exact pathogenesis and aetiology remain unclear. This study aimed to analyse the effect of the upstream negative regulator RAS-association domain family 1A (RASSF1A) on Yes-associated protein (YAP) in psoriasis. Skin lesions of 22 patients with psoriasis and 19 healthy controls were used. Human epidermal keratinocytes stimulated by M5 (IL-1α, IL-17, IL-22, TNF-α and oncostatin M) were used to establish a psoriatic cell model. BALB/c mice treated with topical imiquimod were used to establish a psoriatic mouse model. As the methylation level of RASSF1A increased, its expression in psoriatic patients and mice model decreased. Addition of the methylation inhibitor 5-Aza-CdR or RASSF1A-overexpressing lentivirus vector increased RASSF1A and reduced YAP expression; meanwhile improved skin lesions, reduced cell proliferation, induced cell cycle arrest in the G0/G1 phase, increased apoptosis, reduced inflammatory cytokines and activities of ERK, STAT3 and NF-κB signalling pathways. The results indicated that RASSF1A could play a role in the treatment of psoriasis by inhibiting YAP expression. Based on these findings, targeted drugs that can inhibit the methylation or increase the expression of RASSF1A may be useful for treating psoriasis.  相似文献   

11.
12.
IL-22 belongs to a family of cytokines structurally related to IL-10, including IL-19, IL-20, IL-24, and IL-26. In contrast to IL-10, IL-22 has proinflammatory activities. IL-22 signals through a class II cytokine receptor composed of an IL-22-binding chain, IL-22RA1, and the IL-10RB subunit, which is shared with the IL-10R. In the present study, we show that short-term cultured human epidermal keratinocytes express a functional IL-22R but no IL-10R. Accordingly, IL-22 but not IL-10 induces STAT3 activation in keratinocytes. Using a cDNA array screening approach, real-time RT-PCR, and Western blot analysis, we demonstrate that IL-22 up-regulates, in a dose-dependent manner, the expression of S100A7, S100A8, S100A9, a group of proinflammatory molecules belonging to the S100 family of calcium-binding proteins, as well as the matrix metalloproteinase 3, the platelet-derived growth factor A, and the CXCL5 chemokine. In addition, IL-22 induces keratinocyte migration in an in vitro injury model and down-regulates the expression of at least seven genes associated with keratinocyte differentiation. Finally, we show that IL-22 strongly induces hyperplasia of reconstituted human epidermis. Taken together, these results suggest that IL-22 plays an important role in skin inflammatory processes and wound healing.  相似文献   

13.
Liver regeneration after partial hepatectomy is a process with various types of cells involved. The role of Kupffer cells (KCs) in liver regeneration is still controversial. In this study we isolated KCs from regenerating liver and conducted cell-specific microarray analysis. The results demonstrated that the controversial role of KCs in liver regeneration could be explained with the expression patterns of TGF-α, IL-6, TNF, and possibly IL-18 during liver regeneration. IL-18 may play an important role in negative regulation of liver regeneration. The functional profiles of gene expression in KCs also indicated that KC signaling might play a negative role in cell proliferation: signaling genes were down regulated before cell division. Immune response genes in KCs were also down regulated during liver regeneration, demonstrating similar expression profiles to that of hepatocytes. The expression patterns of key genes in these functional categories were consistent with the temporal functional profiles.  相似文献   

14.
Psoriasis is a chronic genetically determined, erythemato-squamous disease associated with many comorbidities. Evidence from clinical studies and experimental models support the concept that psoriasis is a T?cell-mediated inflammatory skin disease and T?helper (Th) cells -?Th1, Th17 and Th22?- play an important role in the pathogenesis. Th1 cytokines IFNγ, IL-2, as well as Th17 cytokines IL-17A, IL-17F, IL-22, IL-26, and TNFα (Th1 and Th17 cytokine) are increased in serum and lesional skin. IL-22 produced by Th17 and new subset of T helper cells, Th22, is also increased within psoriatic lesions and in the serum. Other recently recognized cytokines of significant importance in psoriasis are IL-23, IL-20 and IL-15. The IL-23/Th17 pathway plays a dominant role in psoriasis pathogenesis. Currently due to enormous methodological progress, more and more clinical and histopathological psoriatic features could be explained by particular cytokine imbalance, which still is one of the most fascinating dermatological research fields stimulating new and new generations of researchers.  相似文献   

15.

Background

SLURP1 is the causal gene for Mal de Meleda (MDM), an autosomal recessive skin disorder characterized by diffuse palmoplantar keratoderma and transgressive keratosis. Moreover, although SLURP1 likely serves as an important proliferation/differentiation factor in keratinocytes, the possible relation between SLURP1 and other skin diseases, such as psoriasis and atopic dermatitis, has not been studied, and the pathophysiological control of SLURP1 expression in keratinocytes is largely unknown.

Objectives

Our aim was to examine the involvement of SLURP1 in the pathophysiology of psoriasis using an imiquimod (IMQ)-induced psoriasis model mice and normal human epidermal keratinocytes (NHEKs).

Results

SLURP1 expression was up-regulated in the skin of IMQ-induced psoriasis model mice. In NHEKs stimulated with the inflammatory cytokines IL-17, IL-22 and TNF-α, which are reportedly expressed in psoriatic lesions, SLURP1 mRNA expression was significantly up-regulated by IL-22 but not the other two cytokines. The stimulatory effect of IL-22 was completely suppressed in NHEKs treated with a STAT3 inhibitor or transfected with siRNA targeting STAT3. Because IL-22 induces production of antimicrobial proteins in epithelial cells, the antibacterial activity of SLURP1 was assessed against Staphylococcus aureus (S. aureus), which is known to be associated with disease severity in psoriasis. SLURP1 significantly suppressed the growth of S. aureus.

Conclusions

These results indicate SLURP1 participates in pathophysiology of psoriasis by regulating keratinocyte proliferation and differentiation, and by suppressing the growth of S. aureus.  相似文献   

16.
Hepatitis B virus infection is still a major global health problem, despite decades of research. Interleukin (IL)-22 induces acute phase reactants and chemokines, favors anti-microbial defence and protects tissues from damage. IL-22 is important in chronic skin inflammation, but its role in chronic hepatitis B (CHB) is unclear. This study explores the association between intra-hepatic IL-22 expression, its relevant associated cytokines and the severity of liver inflammation/fibrosis in CHB patients. IL-22, IL-17, IL-10, IL-6, non-ELR-CXC chemokines (CXCL-9, CXCL-10, CXCL-11), fibroblast growth factors and Kupffer cell (KC) numbers were measured in patients with CHB (n=65), acute hepatitis B (AHB; n=4), chronic hepatitis C (CHC; n=14) and non-viral hepatitis (n=23), using immunohistochemistry. Expression of IL-22, IL-17, IL-10, IL-6, non-ELR-CXC chemokines and number of KCs in liver tissues were substantially higher in AHB patients than others. In CHB patients, the expression of IL-22, IL-6, CXCL-9 and CXCL-10 were significantly higher with alanine aminotransferase (ALT) levels ≤ twice the upper limit of normal (ULN), compared with those with ALT levels >twice the ULN, whereas IL-10 and IL-17 showed a reverse pattern. IL-22 was inversely (P<0.01), but IL-17 was positively (P<0.05), correlated with the histological activity index) in these patients, and a significant negative correlation between the fibrosis stage and IL-22 or non-ELR-CXC chemokines was observed. Furthermore, immunofluorescent labeling demonstrated a close spatial association of IL-22, CXCL-9, -10 or -11 in the CHB liver. We speculate that IL-22 and non-ELR-CXC chemokines synergistically may provide protection in liver inflammation/fibrosis during CHB infection.  相似文献   

17.
18.
Bautista AP  Wang E 《Life sciences》2002,71(4):371-382
Glycoprotein 120 from HIV-1, HIV-2 and SIV is known to stimulate secretion of chemokines by mononuclear cells. Thus, this work tests the hypothesis that acute ethanol intoxication suppresses HIV-1 gp120-induced chemokine production by murine Kupffer cells and splenocytes. Male Balb/c mice were given ethanol (1.70 g/Kg) by intragastric gavage in 0.1 ml volume of saline. Five minutes after ethanol administration, mice received an intravenous injection of HIV-1 gp120 (5 microg/Kg). After 24 hr, serum samples, splenocytes and Kupffer cells were obtained. Isolated cells were cultured in DMEM for 24 hr to determine production of chemokines and cytokines in vitro. Chemokines (MIP-2, KC, RANTES, MIP-1 alpha and MCP-1) and cytokines (IL-1 beta, TNF alpha, IL-10, gamma-IFN) were measured by ELISA. M-RNA abundance of these mediators was determined by RT-PCR. Results show that HIV-1 gp120 treatment was associated with significant elevations in serum KC and RANTES. No changes were observed with regard to other chemokines and cytokines. Oral administration of ethanol significantly suppressed HIV-1gp120-induced KC and RANTES release. KC and RANTES-mRNA expression and protein release by splenocytes and Kupffer cells were up-regulated by HIV-1 gp120. Such up-regulation was attenuated by ethanol treatment. These data show that acute ethanol administration attenuates HIV-1 gp120-induced chemokine release in vivo by isolated splenocytes and Kupffer cells. Through this mechanism, previous in vivo ethanol use may compromise the ability of HIV-1 gp120 to induce chemokine-mediated inhibition of HIV-1 entry into target cells.  相似文献   

19.
Interleukin-19 (IL-19) is a novel cytokine that was initially identified during a sequence data base search aimed at finding potential IL-10 homologs. IL-19 shares a receptor complex with IL-20, indicating that the biological activities of these two cytokines overlap and that both may play an important role in regulating development and proper functioning of the skin. We determined the crystal structure of human recombinant IL-19 and refined it at 1.95-A resolution to an R-factor of 0.157. Unlike IL-10, which forms an intercalated dimer, the molecule of IL-19 is a monomer made of seven amphipathic helices, A-G, creating a unique helical bundle. On the basis of the observed structure, we propose that IL-19, IL-20, and other putative members of the proposed IL-10 family together form a distinct subfamily of helical cytokines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号