首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carolina bays are depression wetlands of high conservation value that occur across the Southeastern Coastal Plain of the United States. Venus flytrap (Dionaea muscipula) is one rare carnivorous plant that grows in open habitats on the rims of Carolina bays. Without frequent burning, vegetation on bay rims becomes dominated by evergreen shrubs and Venus flytrap populations decline. This project examined the utility of mechanical mowing, soil clearing, transplanting, and seeding as an approach to restoring populations of Venus flytraps when fire is precluded. Mowing of patches on bay rims produced open sites with little ground‐layer vegetation. After two growing seasons, adult Venus flytraps transplanted to mowed patches showed high survivorship and relatively high leaf number/plant. Suppressed Venus flytraps existing on‐site quickly initiated growth in response to mowing. These volunteers and the transplants had higher flowering percentages than plants in reference populations. Seeds of Venus flytraps were scattered in mowed and cleared plots. Seedling establishment was low, but seedlings persisted into the second growing season. Mowing created suitable habitat for growth and flowering of adult Venus flytraps and facilitated establishment of two other carnivorous species, Sundew (Drosera capillaris) and Bladderwort (Utricularia subulata). But, mowing and clearing also facilitated invasion by four species of grasses and rushes; evergreen shrubs resprouted quickly after mowing. Maintaining persistent openings by mowing the rims of Carolina bays will be an ongoing challenge due to availability of potential invaders and rapid regrowth of shrubs.  相似文献   

2.
Glass microelectrodes were inserted into Dionaea muscipula (Venus flytrap) lobes and the action potentials (APs) were recorded in response to a sudden temperature drop or a direct current (DC) application. The effect of potassium channel inhibitor, tetraethylammonium ion, was the lengthening of the depolarization phase of AP. APs were also affected by the anion channel inhibitor, anthracene-9-carboxylic acid, that made them slower and smaller. Neomycin, which disturbs inositol triphosphate-dependent Ca2+ release, caused the visible inhibition of AP, too. Ruthenium red, which blocks cyclic ADP-ribose-dependent Ca2+ release, totally inhibited DC-triggered APs and induced the decrease in the amplitudes of cold-evoked APs. Lanthanum ions significantly inhibited both cold- and DC-induced membrane potential changes. It was concluded that during excitation Dionaea muscipula relied upon the calcium influxes from both the extra- and intracellular compartments.  相似文献   

3.
Extracts from plantlets of different species of the genus Drosera, grown as in vitro cultures, were evaluated for the level of phenolic secondary metabolites from the group of naphthoquinones and flavonols. The profiles of natural products in the extracts obtained from different species were monitored by HPLC with UV detection at 260 and 330 nm. On the basis of the data obtained, Drosera binata, the species with the highest amount of plumbagin, was selected for further studies. The most effective method of extraction of quinones was established and the composition of phenolic secondary metabolites in the tissues was determined. For the identification of phenolic compounds, HPLC-UV and HPLC-ESI/MS were applied.  相似文献   

4.

Background and Aims

The carnivorous plant Venus flytrap (Dionaea muscipula) produces a rosette of leaves: each leaf is divided into a lower part called the lamina and an upper part, the trap, with sensory trigger hairs on the adaxial surface. The trap catches prey by very rapid closure, within a fraction of a second of the trigger hairs being touched twice. Generation of action potentials plays an important role in closure. Because electrical signals are involved in reduction of the photosynthetic rate in different plant species, we hypothesized that trap closure and subsequent movement of prey in the trap will result in transient downregulation of photosynthesis, thus representing the energetic costs of carnivory associated with an active trapping mechanism, which has not been previously described.

Methods

Traps were enclosed in a gas exchange cuvette and the trigger hairs irritated with thin wire, thus simulating insect capture and retention. Respiration rate was measured in darkness (RD). In the light, net photosynthetic rate (AN), stomatal conductance (gs) and intercellular CO2 concentration (ci) were measured, combined with chlorophyll fluorescence imaging. Responses were monitored in the lamina and trap separately.

Key Results

Irritation of trigger hairs resulted in decreased AN and increased RD, not only immediately after trap closure but also during the subsequent period when prey retention was simulated in the closed trap. Stomatal conductance remained stable, indicating no stomatal limitation of AN, so ci increased. At the same time, the effective quantum yield of photosystem II (ΦPSII) decreased transiently. The response was confined mainly to the digestive zone of the trap and was not observed in the lamina. Stopping mechanical irritation resulted in recovery of AN, RD and ΦPSII.

Conclusions

We put forward the first experimental evidence for energetic demands and carbon costs during insect trapping and retention in carnivorous plants, providing a new insight into the cost/benefit model of carnivory.  相似文献   

5.
  • Amino acids represent an important component in the diet of the Venus flytrap (Dionaea muscipula), and supply plants with much needed nitrogen resources upon capture of insect prey. Little is known about the significance of prey‐derived carbon backbones of amino acids for the success of Dionaea's carnivorous life‐style.
  • The present study aimed at characterizing the metabolic fate of 15N and 13C in amino acids acquired from double‐labeled insect powder. We tracked changes in plant amino acid pools and their δ13C‐ and δ15N‐signatures over a period of five weeks after feeding, as affected by contrasting feeding intensity and tissue type (i.e., fed and non‐fed traps and attached petioles of Dionaea).
  • Isotope signatures (i.e., δ13C and δ15N) of plant amino acid pools were strongly correlated, explaining 60% of observed variation. Residual variation was related to contrasting effects of tissue type, feeding intensity and elapsed time since feeding. Synthesis of nitrogen‐rich transport compounds (i.e., amides) during peak time of prey digestion increased 15N‐ relative to 13C‐ abundances in amino acid pools. After completion of prey digestion, 13C in amino acid pools was progressively exchanged for newly fixed 12C. The latter process was most evident for non‐fed traps and attached petioles of plants that had received ample insect powder.
  • We argue that prey‐derived amino acids contribute to respiratory energy gain and loss of 13CO2 during conversion into transport compounds (i.e., 2 days after feeding), and that amino‐nitrogen helps boost photosynthetic carbon gain later on (i.e., 5 weeks after feeding).
  相似文献   

6.
In vitro cultured plants from Oldenlandia affinis were established from seeds and grown on a hormone-free medium. In vitro plants produced the cyclic peptide kalata B1 in concentrations of 0.67 mg g−1 dry weight after growth of 30 days. This was approximately 50% of the concentration analysed in green house plants (shoot tips), where different concentrations have been determined in leaves (1.82 mg g−1), shoot tips (1.36 mg g−1), stems (0.36 mg g−1), and in flowers (0.16 mg g−1). Callus and cell suspension cultures could be initiated from aseptic root, stem and leaf explants of O. affinis seedlings and plants. Different light intensities were shown to affect culture growth as well as chlorophyll synthesis. The friable callus was then used for the establishment of a cell suspension culture. Fresh and dry weight measurements showed that growth was optimal on MS medium supplemented with 0.4 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-d). Leaf suspensions cultured on this medium showed a 4-fold increase of biomass by the first week of incubation. No quantifiable amounts of kalata B1 were produced under these conditions. Morphological differentiation seems to be essential for cyclic peptide production. Therefore, several undifferentiated as well as organised cell lines of O. affinis have been developed. These cell lines will constitute a worthwhile starting point for the optimisation of kalata B1 synthesis in liquid media to the objective of producing cyclic peptides under controlled and defined conditions in bioreactors.  相似文献   

7.
The Venus flytrap is the most famous carnivorous plant. The electrical stimulus between a midrib and a lobe closes the Venus flytrap upper leaf in 0.3 s without mechanical stimulation of trigger hairs. Here we present results for direct measurements of the closing force of the trap of Dionaea muscipula Ellis after mechanical or electrical stimulation of the trap using the piezoelectric thin film or Fuji Prescale indicating sensor film. The closing force was 0.14 N and the corresponding pressure between rims of two lobes was 38 kPa. We evaluated theoretically using the Hydroelastic Curvature Model and compared with experimental data velocity, acceleration and kinetic energy from the time dependencies of distance between rims of lobes during the trap closing. The Charge Stimulation Method was used for trap electrostimulation between the midrib and lobes. From the dependence of voltage between two Ag/AgCl electrodes in the midrib and one of the lobes, we estimated electrical charge, current, resistance, electrical energy and electrical power dependencies on time during electrostimulation of the trap.  相似文献   

8.
The rapid trap closure of Dionaea muscinula Ellis has been explained by either a loss of turgor pressure of the upper epidermis, which should thus become flexible, or by a sudden acid-induced wall loosening of the motor cells. According to our experiments both explanations are doubtful. Objections against the turgor mechanism come from the determination by extracellular measurements from the upper epidermis of action-potential amplitudes before and after trap closure. Neither time course nor amplitude of the action potentials are altered by trap closure. In contrast a rise in the apoplastic concentration of K+ or Na+, which are the only ions present in the trap in osmotically significant concentrations, from 1 to 10 mM reduces the action-potential amplitudes by 25% and 15%, respectively. Furthermore, after trap closure the upper epidermal cells retain a considerable cell sap osmolality of 0.41 mol·kg-1 which equals that of the mesophyll cells as determined by incipient plasmolysis. A sudden cell-wall acidification causing movement is improbable since an acidification of the apoplast from pH 6 to pH 4 reduces action-potential amplitudes by 33% whereas the amplitudes measured extracellylarly from the mesophyll and lower epidermis remain unchanged by trap closure. In addition, buffering the apoplast at pH 6 does not prevent movement in traps which have been incised several times from the margin to the midrib to facilitate buffer diffusion into the mesophyll. Even an alkalinization of cell walls of plasmolysed leaf segments to pH 9 does not prevent considerable extensions of the mesophyll and subsequent movement of the specimens during deplasmolysis.These experiments make it very likely that the mesophyll cells are already extensible but are kept compressed in the open trap, thus developing tissue tension. The mechanism which prevents their extension as long as the trap is open can so far only be explained for traps which have been paralysed by a long-term incubation in 1 mM La3+. Leaf strips taken from stimulated, closed traps, comprising the lower epidermis and some mesophyll, prove to be highly extensible if they are stretched perpendicular to the midrib on a constant-load extensiometer. By contrast, strips taken from the lower side of paralysed traps are as rigid as those from the upper side of both stimulated and paralysed traps. From observations of semithin cross sections in a polarizing microscope, it is concluded that the extensibilities of these tissue strips are mainly determined by the cell walls of the upper epidermis plus a layer of adjacent mesophyll and by the lower epidermis, respectively, since these are the only cell walls with a preferential microfibril orientation in the direction of the applied stress.Abbreviations E m membrane potential - E s surface potential - Mes 2-(N-morpholino)ethanesulfonic acid - Tris 2-amino-2(hydroxymethyl)-1,3-propanediol  相似文献   

9.
In vitro culture of Venus fly-trap (Dionaea muscipula) was initiated using flower stalk explants. Activated charcoal was required for bud initiation, but omitted in the subculture of regenerated plantlets. Regenerated plants were subsequently used as explant source for investigations concerning effects of source of tissue, etiolation, orientation and illumination of leaf explants on plant regeneration. Etiolation of source plantlets increased the rate of regeneration from explants and decreased explant failure. Generally, adventitious buds developed at the adaxial side and proximal end of an explant. However, when explants were incubated in the dark, 20–30% of bud initiation occurred at the distal end. The site of shoot regeneration on a leaf explant was affected by both illumination and orientation of explants. Placing an explant adaxial side up resulted in the highest rate of regeneration. The most effective condition for plantlet regeneration was found with etiolated petioles incubated with the adaxial side facing the light. Received: 18 March 1998 / Revision received: 12 August 1998 / Accepted: 7 September 1998  相似文献   

10.
Martin Thum 《Oecologia》1989,81(3):397-400
Summary Earlier feeding experiments with Drosera in the field using adult Drosophila melanogaster as prey had shown that D. intermedia reacts three times as strong with respect to biomass production as the sympatric species D. rotundifolia. The present study shows that in D. rotundifolia only 29% of added flies remain on the leaves for more than 24 h, but 95% in D. intermedia. Opportunistic predators, mostly ants, are likely to be responsible for this difference. Ants were often observed robbing food from the leaves of D. rotundifolia, and showed a much higher activity in the microhabitat of this species. In both species of Drosera larger individuals were better than smaller ones in retaining added flies. The activity of ants significantly increased with air temperature and the duration of sunshine. The advantage of plundering seems to be more important for the ants than the danger of being caught. The prey collected from Drosera may be an important source of food for bog-dwelling ants.  相似文献   

11.
The rapid clonal multiplication of two species of South African Drosera is described. Levels of plumbagin, (5-hydroxy-2-methyl-1,4-naphthoquinone) from in vivo and in vitro grown plants are compared to those present in Plumbago roots. P. auriculata Lam. roots contained more than twice as much plumbagin as in vivo grown D. capensis L. plants which in turn contained more than twice as much as comparable plants of D. natalensis Diels. It is concluded that the extraction of plumbagin from Drosera plants is not commercially feasible.  相似文献   

12.
13.
Summary Shoots of “San Castrese” and “Portici” apricots (Prunus armeniaca L.) free of cultivable bacteria, shoots of the same origin exhibiting bacterial contamination after repeated subcultures, and contaminated shoots treated with cefotaxime were compared for gas exchange, proliferation rate, and fresh and dry weight. Cultures of San Castrese contaminated byBacillus circulans andSphingomonas paucimobilis, and of Portici contaminated withStaphylococcus hominis andMicrococcus kristinae, including those treated with cefotaxime, showed comparable shoot weights and lower proliferation rates than healthy cultures. Bacteria, even if not visible until the end of subculture, markedly influenced the gaseous composition of the jar headspace. Healthy cultures clearly showed photosynthetic activity at 60 μM·m−2·s−1 photosynthetically active radiation; in contrast, oxygen quickly decreased and carbon dioxide increased in contaminated cultures, including those treated with cefotaxime, in which bacteria became visible in the culture medium only after repeated subcultures.  相似文献   

14.
Unrooted strawberry cv. `Akihime' shoots with three leaves obtained from standard mixotrophic cultures were cultured in the ``Culture Pack'-rockwool system with sugar-free MS medium under CO2-enriched condition. To examine the effect of superbright red and blue light-emitting diodes (LEDs) on in vitro growth of plantlets, these cultures were placed in an incubator, ``LED PACK', with either red LEDs, red LEDs1blue LEDs or blue LEDs light source. To clarify the optimum blue and red LED ratio, cultures were placed in ``LED PACK 3' under LED light source with either 100, 90, 80, or 70% red + 0, 10, 20, 30% blue, respectively, and also under standard heterotrophic conditions. To determine the effects of irradiation level, cultures were grown under 90% red LEDs + 10% blue LEDs at 45, 60 or 75 mol m–2 s–1 . Plantlet growth was best at 70% red + 30% blue LEDs. The optimal light intensity was 60 mol m–2 s–1. Growth after transfer to soil was also best after in vitro culture with plantlets produced were 70% red LEDs + 30% blue LEDs.  相似文献   

15.
In vitro regeneration of wild groundnut species from Section Extranervosae (Arachis villosulicarpa, A. macedoi, A. retusa, A. burchellii, A. pietrarellii, A. prostrata, A. aff. prostrata and a new species) was examined for the purpose of germplasm renewal and conservation. Seeds of different ages, stored at the seed bank of CENARGEN/EMBRAPA were either inoculated on culture medium or used as a source of embryo axis and cotyledon explants. Whole seeds failed to germinate on MS either without growth regulators (MS0) or supplemented with 10 M TDZ. Embryo axes cultured on MS0 produced only single plants. In the presence of 8.8 M BAP these explants showed multi-shoot formation. Cotyledons cultured on MS supplemented with 110 M BAP developed adventitious shoots through direct organogenesis. Plant regeneration was obtained from A. villosulicarpa, A. macedoi, A. retusa, A. burchellii and A. pietrarellii both from embryo axes and cotyledons. Explants from A. prostrata and A. aff. prostrata did not produce regenerants. Rooting of shoots was induced in the presence of 5.4 M NAA. Primary plants derived from these explants were further multiplied by culturing nodal segments on MS medium plus 2.7 M NAA.  相似文献   

16.
Two Vitis species were cultured in vitro under photoautrophic (sucrose-free culture medium) and photomixotrophic (sucrose 15 g l-1) conditions during the period following microcutting rooting (day 34 to day 120). Several parameters were measured at the end of the culture: growth, plant dry weight, carbohydrate uptake from the medium and rates of photosynthesis and dark respiration. The two species behaved very differently. Under photoautotrophic conditions, dark respiration, net photosynthesis and daily CO2 fixation were higher in Vitis vinifera than in Vitis rupestris. Culture under mixotrophic conditions caused increase in growth, respiration and photosynthesis in Vitis rupestris. In contrast, photosynthesis decreased in Vitis vinifera under the same conditions.  相似文献   

17.
Yu AC  Lau AM  Fu AW  Lau LT  Lam PY  Chen XQ  Xu ZY 《Neurochemical research》2002,27(12):1663-1668
A very large body of evidence from in vivo studies has been accumulated on a link between the change of energy and cell survival/apoptosis. Using an in vitro ischemia model, we have previously shown that ischemia could induce apoptosis in astrocytes. In this study, we utilized the same in vitro model to investigate changes in ATP and ADP levels in cultured astrocytes and attempted to demonstrate an energy-cell death linkage. Astrocytes remained unaltered after 2 hr of ischemia but were moderately or severely damaged after 4 or 6-8 hr, respectively. The astrocytes that survived various lengths of in vitro ischemic incubation retained their ability to produce ATP after ischemia. Both ATP and ADP levels were increased in astrocytes that remained alive under in vitro ischemia for over 6 hr. The largest decline in the percent of viable astrocytes during ischemia corresponded well to the reduction in ATP and ADP levels in these cultures.  相似文献   

18.
Summary Random amplified polymorphic DNA (RAPD) markers were used to verify the clonal fidelity of two micropropagated Drosera species, D. anglica and D. binata, which were regenerated by adventitious budding from leaf explants and shoot tips, respectively. Twenty arbitrary decamers were used to screen 15 randomly selected plantlets of each species. No genetic variation was detected among D. binata regenerants, whereas a 0.08% polymorphism frequency was estimated for D. anglica plantlets. These results indicate that the regeneration of plants through shoot-tip culture is a low-risk method for generating genetic variability, whereas material regenerated through leaf explants requires further verification.  相似文献   

19.
Unlike C-3 plants, cacti possess a crassulacean acid metabolism (CAM) physiology that can alter the pattern of carbon uptake and affect plant growth under artificial environmental conditions, especially in tissue culture. In vitro-derived plantlets of Coryphantha minima grew 7-fold larger than plants cultured under similar ex vitro conditions. Growth regulators incorporated into the culture media during shoot proliferation stage of micropropagation had a strong influence on this increased growth. Other important factors that contributed to increased growth under in vitro conditions were high relative humidity and sugar in the culture medium. An analysis of gas exchange and daily fluctuations of malic acid levels revealed an increase in net photosynthetic rate, in terms of carbon assimilation, by in vitro plants compared with that of ex vitro plants. This stimulated photosynthesis in the presence of an external carbon source was unexpected but apparently true for cacti exhibiting CAM physiology. Unlike CAM plants grown in ex vitro conditions, net CO2 uptake by in vitro-cultured cacti occurred continuously in the light as well as the dark. Once regenerated, cacti were transferred to ex vitro conditions where the normal CAM pathway resumed with a concomitant reduction in growth and CO2 uptake. These results showed that growth of cacti can be considerably accelerated by in vitro culture. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Summary In vitro recalcitrance is the inability of plant cells, tissues and organs to respond to tissue culture manipulations. With respect to plant regeneration, recalcitrance can be a major limiting factor for the biotechnological exploitation of economically important plant species and it can also impair the wider application of in vitro conservation techniques. This first paper introduces a compilation of Symposium papers, collectively entitled “Do we understand in vitro plant recalcitrance?”, presented at the 1999 Congress of the Society for In Vitro Biology. The Symposium reviewed recalcitrance in the context of genetic predeterminism, molecular markers and gene expression patterns, whole and explant physiology, stress physiology, habituation, neoplastic progression and plant cancer. The symposium contributors present fundamental and applied investigative approaches which have the potential to enhance our current understanding of in vitro recalcitrance and to assist in overcoming the problems associated with nonresponsive plant cultures. This introductory paper presents the general concept of recalcitrance in relation to whole-plant and explant physiology and considers basic aspects of tissue culture manipulations in the context of recalcitrance problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号