首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse spleen cells were depleted of antigen-specific B cells (ASC) by rosetting with glutaraldehyde-fixed RBC coupled with specific antigen. Removal of the rosetted cells by density gradient centrifugation resulted in the depletion of more than 99% of all the ASC. Depletion was shown by the failure of rosette-depleted, primed spleen cells to generate antigen-specific antibody-producing cells. Functional assays showed that neither macrophages or helper T cells were removed. In comparison to other procedures used to deplete of ASC, rosetting with antigen-coupled RBC has advantages in terms of recovery, simplicity of the procedure, and efficiency of ASC depletion.  相似文献   

2.
The mitogenic responses of separated rabbit lymphocyte populations functionally analogous to mouse T and B cells have been tested in vitro. Purified T cells were prepared by passage over nylon wool (NW) and purified B cells prepared by treatment with antithymocyte serum and complement (ATS + C). ATS + C kills 70% of peripheral blood lymphocytes (PBL's) and 50% of the spleen cells while passage over NW yields 40% of the applied PBL's and 5–23% of the applied spleen cells. NW-purified T cells from the spleen or PBL's respond fully to concanavalin A (Con A) but have a reduced response to phytohemaglutinin (PHA) and little or no response to goat anti-rabbit immunoglobulin (anti-Ig). PBL's that survive ATS + C (B cells) are stimulated by anti-Ig but not by Con A or PHA. B cells purified from spleen do not respond to Con A or PHA but will respond to anti-Ig under appropriate conditions. A full spleen B-cell response to anti-Ig required removal of Ig produced by the cultures that blocked anti-Ig stimulation. It is concluded that, for rabbit lymphocytes, Con A and PHA are primarily T-cell mitogens and that anti-Ig is primarily a B-cell mitogen. However, the mitogen response of unfractionated PBL or spleen cell populations indicates an overlap in reactivity. This could be due to cells sharing T and B properties, alteration of cell populations by the fractionation procedures used, or recruitment of one population in the presence of a mitogenic response of the other population.  相似文献   

3.
We report experiments attempting to optimize the proliferative response of human B cells to rabbit anti-immunoglobulin antibody (RAHIg)-linked beads (anti-Ig beads). By choosing polyacrylamide beads of small size (3 micron) and coupling anti-Ig to them at high concentrations, beads were obtained which were both B-cell specific and more highly mitogenic than other than anti-Ig reagents and B-cell mitogens (SAC, protein A). Using these beads to activate B cells, the augmentation of the anti-Ig-induced proliferative response by added T-cell-derived growth factors was largely eliminated at high cell densities although the effect of these factors was still evident at low cell densities. However, when cultures were performed in round-bottom vessels which crowded the B cells together, the response to anti-Ig beads was independent of T-cell factors even at low B-cell densities, suggesting that normal B cells triggered by anti-Ig beads are able to maintain their own proliferation. In contrast to the proliferative response, even with the most potent anti-Ig bead preparations, no differentiation (Ig production or expression of terminal differentiation markers) was evident unless T-cell help was provided.  相似文献   

4.
Overnight exposure of adult splenic B cells to anti-Ig, a surrogate for antigen/tolerogen, can result in a hyporesponsive state in terms of antibody synthesis. Since B cells treated with either intact of F(ab')2 fragments of anti-Ig will exit the G0 phase of the cell cycle and enter G1 or S, respectively, we examined which steps in B-cell activation were required for this form of hyporesponsiveness. We found that B-cell hyporesponsiveness could be induced under conditions leading to either abortive or productive B-cell cycle progression, depending on the immunogenic challenge employed. Thus, PMA + ionomycin, concanavalin A, PMA alone, or ionomycin alone induced hyporesponsiveness. Each of these reagents is able to drive B-cell exit from G0 into G1 and cause class II hyperexpression. We next examined the effect of cyclosporin A (CSA), a reagent that blocks anti-Ig but not by PMA-induced class II hyperexpression. Interestingly, CSA only interfered with the induction of B-cell hyporesponsiveness with anti-Ig. These results suggest that upregulation of MHC class II may be coincident with a CSA-sensitive tolerance pathway in B cells stimulated by anti-Ig. Finally, IL-4 pretreatment was found to ablate hyporesponsiveness induced by either intact anti-Ig or PMA. These results parallel the Fc-dependent induction of hyporesponsiveness reported earlier (G. Warner and D. W. Scott, J. Immunol. 146, 2185, 1991). We propose that crosslinking of surface Ig, leading to cell cycle progression out of G0 as well as class II hyperexpression, in the absence of a cognate T cell signal, leads to B-cell hyporesponsiveness.  相似文献   

5.
The possibility that the failure of anti-mouse immunoglobulin (Ig) antibody to induce antibody synthesis by B cells might be due to reversible receptor blockade was investigated. Murine spleen cells were cultured for 3 days in the presence of minute quantities of intact of (Fab') fragments of rabbit anti-mouse Ig antibody. Thereafter, the cells were washed and either trypsin treated or not before reculturing for 18 hr. Only cells that had been trypsinized after culturing with either intact or fragments of anti-Ig gave a vigorous polyclonal antibody response. This response was extremely T dependent, since T cells or culture supernatants from Con A-activated T cells were required for the B cell response. Moreover, anti-delta was much more effective than anti-mu in inducing antibody synthesis. Finally, the use of three different anti-idiotypic antisera rather than anti-Ig reagents selectively activated the specific idiotype in each instance. The findings demonstrate that anti-Ig reagents can potentiate the response of B cells to signals delivered by T cells.  相似文献   

6.
The effects of F(ab')2 fragments of affinity-purified rabbit anti-human mu chain antibody (RaHmu) and rabbit anti-human delta chain antibody (RaHdelta) on spontaneous and mitogen-stimulated immunoglobulin (Ig) secretion by normal human spleen cells were studied. IgM and IgG secretion by human spleen cells cultured in vitro was measured by incubating the cells with 3H-amino acids precipitating the secreted labeled Ig with anti-Ig, and analyzing the precipitates by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Both RaHmu and RaHdelta suppressed spontaneous and LPS-induced IgM and IgG secretion as well as PWM-stimulated IgG secretion. In different experiments, RaHmu and RaHdelta either suppressed or augmented PWM-induced IgM secretion. The anti-Ig induced augmentation of PWM-triggered IgM secretion was most apparent when spleen cells were cultured at lower cell densities or when lower concentrations of anti-Ig were employed. These date indicate that perturbation of B cell surface immunoglobulin receptors with specific anti-Ig antibody can alter markedly the ability of these cells to differentiate into antibody-secreting cells.  相似文献   

7.
Spleen cells from adult agammaglobulinemic (bursectomized) chickens taken 1 to 3 weeks after an injection of histocompatible bursa cells can inhibit the adoptive antibody response to B. abortus of normal spleen or bursa cells in irradiated recipients. Spleen cells from Aγ chickens not injected with bursa cells generally do not. Moreover, bursectomized chickens which have been reconstituted with spleen cells within the first week after hatching do not respond with suppressor cell formation upon bursa cell injection. This apparent “autoimmunization” with bursa cells induces suppressor T cells which are only minimally sensitive to treatment with mitomycin C or to 5000 R γ irradiation. The suppressor activity is neither induced nor potentiated by concanavalin A in vivo. It is much stronger in spleen than in thymus cells and appears to be macrophage independent and to require intact cells. The cell component which stimulates the suppressor activity is more pronounced on bursa than on spleen cells, and is at most present to a very limited extent on bone marrow, thymus, or peritoneal exudate cells. It is better represented in comparable cell numbers of Day 17 than of Day 14 embryonic bursa. The inducing cell component is present in the membrane fraction of disrupted bursa cells. Immunization with bursa cells from B locus histoincompatible chickens leads to suppressor activity against histocompatible bursa cells. Although the removal of Ig-bearing cells from bursa greatly diminishes its immunizing capacity, injection of serum IgM and IgG does not induce suppressor cells. It is suggested that tolerance to a B-cell antigen is lacking in adult Aγ chickens, resulting in an autoimmune response upon exposure to B cells. The B-cell antigen may be a cell surface-specific form of Ig, a complex of Ig and a membrane component, or a differentiation antigen which appears simultaneously with Ig during ontogeny.  相似文献   

8.
Previous reports of the response of B lymphocytes to soluble anti-immunoglobulin (anti-Ig) antibodies have yielded conflicting data. While most studies show activation of B cells, others have shown inhibitory effects. In the assay reported in this report, we were able to obtain widely diverse responses of human B-cell populations to anti-Ig antibody. An explanation of this variability was established by resort to an animal (murine) model. Mice maintained in a pathogen-free environment failed to respond or responded only weakly to anti-Ig antibody. Mice which had previously received heavy antigenic stimulation, but at the time of the experiment were not undergoing any known challenge, showed a marked positive response. Mice deliberately challenged with lipopolysaccharide (LPS) 24 hr prior to anti-Ig antibody exposure showed a high background mitogenesis in control cultures, which was inhibited by anti-Ig antibody. This preliminary study suggests that response to anti-Ig antibody differs in each phase of B-cell differentiation. In future studies it is hoped that this variability in response can be used to characterize different subsets of B-cell differentiation separated by physical or phenotypic parameters.  相似文献   

9.
Stimulation of synthesis of immunoglobulin (Ig) in vitro by Con A and anti-Ig in cultures of rabbit lymphoid cells has been analyzed qualitatively using an assay that measures the incorporation of [3H]leucine into newly synthesized proteins, followed by the specific absorption of tritiated immunoglobulin by staphylococcal protein A. Whereas Con A stimulates Ig production by spleen cells only if T lymphocytes are present, anti-immunoglobulin serum enhances Ig synthesis in the absence of T lymphocytes. In contrast, neither Con A nor anti-immunoglobulin serum stimulates peripheral blood lymphocytes to produce enhanced levels of Ig. It is concluded that both Con A and anti-immunoglobulin serum do not activate resting B cells but drive differentiation of B cells which are already synthesizing Ig. Anti-Ig acts directly whereas stimulation of B-cell Ig synthesis by Con A occurs indirectly through stimulation of T cells.  相似文献   

10.
Comparison of the effect of goat anti-rabbit Ig (GARIg) and its monovalent fragment (Fab-GARIg) demonstrates that surface Ig (sIg) crosslinking is not necessary to effect G0 to G1 transition in rabbit peripheral blood B cells but is required for induction of DNA synthesis. Five micrograms per milliliter or more of GARIg is sufficient to induce DNA synthesis but up to 50 micrograms/ml of Fab-GARIg is not. However, the monovalent reagent induces microscopically observable cytoplasmic and nuclear changes (blast transformation) in a dose-dependent manner. These differ qualitatively and quantitatively from the morphological changes seen with comparable doses of GARIg; Fab anti-Ig produces "small blasts" whereas complete GARIg induces large blasts. The monovalent reagent, in a wide range of concentrations, is as effective as the complete antibody in modulating sIg from rabbit B cells. Fab-GARIg treatment modulates sIg in a biphasic manner. It clears the high-density sIg within 5 min, whereas the remaining low-density receptors disappear after 4 hr. Cytosolic protein kinase C levels decline equally after treatment with either Fab-GARIg or whole anti-Ig. RNA synthesis, as measured by [3H]uridine incorporation, increases for the first 12 hr in cells activated with either reagent. It declines to basal levels in Fab-GARIg stimulated cells, but a continuous increase occurs in cells stimulated with 5 and 50 micrograms/ml of complete antibody. Simultaneous addition of 50 micrograms/ml Fab-GARIg with 5 microgram/ml of GARIg causes greater RNA synthesis for 12 hr after stimulation than is caused by GARIg alone. After 12 hr the monovalent reagent has an inhibitory effect on RNA synthesis. Fluorescence-activated cell sorter analysis of acridine orange-stained cells shows that Fab anti-Ig-stimulated cells have higher RNA content than resting cells, but lower than GARIg-activated cells. These findings suggest that rabbit B cells can be activated from the G0 stage of cell cycle to G1 by monovalent anti-Ig reagents but further cell cycle progression requires maintenance signals provided by receptor crosslinking. The implications of these results for B cell activation signalling are discussed in the context of the floating receptor model.  相似文献   

11.
In culture, human blood B cells regenerated surface IgM and IgD after their removal by a brief treatment with pronase. In contrast, surface Ig was poorly reexpressed after interaction with specific antibody. Both classes of surface Ig were suppressed after treatment with antibody specific for only one. B lymphocytes from spleen and tonsils regenerated surface Ig after treatment with either pronase or anti-Ig. We suggest that the particular sensitivity of circulating B cells to anti-Ig-surface Ig interaction may be reflection of their state of maturation.  相似文献   

12.
《Cellular immunology》1985,96(1):71-82
To investigate the role of Ia and immunoglobulin (Ig) molecules of B cells in alloantigen-specific and nominal antigen-specific T-cell activations, the ability of B cells to stimulate Ig allotype-specific T cells was examined. T15-primed B10.BR T cells responded to MOPC 315 (IgA myeloma protein derived from BALB/c) as well as T15 but not to MOPC31c (IgG, myeloma protein). These T cells were stimulated by papain-digested Fc fragment of T15. Thus, T15-primed B10.BR T cells were shown to be specific for Ig allotype of T15, that is, Igh-2a. T15-specific B10.BR T cells were selected by 10-day cultures with T15 in vitro. They responded to BALB.K spleen cells without addition of soluble T15 antigen to the assay culture. Stimulator cells in this mixed lymphocyte reaction (MLR)-like response between T15-specific B10.BR T cells and BALB.K spleen cells were Thy-1, Ia+ cells and these responses were blocked by anti-Iaκ antibodies. Furthermore, Sephadex G-10-passed BALB.K B cells stimulated the proliferation of T15-specific B10.BR T cells, while they failed to stimulate allogeneic BALB/c spleen cells. The stimulating ability of B cells in this MLR-like response of T15-specific B10.BR T cells was shown to be genetically restricted, namely, both H-2 and non-H-2 genes are involved in the manifestation of the stimulating ability. This system will provide a useful model for studying the role of B-cell surface Ig and Ia molecules in the activation of antigen-specific T cells and alloreactive T cells.  相似文献   

13.
Streptococcal pyrogenic exotoxin (SPE), a toxic protein, secreted by Group A streptococci modifies antibody responses in two ways. It suppresses the early peak plaque-forming cell (PFC) and serum antibody responses to sheep erythrocytes (SE) and it engenders a late burst of PFC detected at 12–14 days. We have termed the late phase a deregulated response. This effect has been observed in rabbits and NIH (+/+ and +/nu) mice. NIH athymic nude (nu/nu) mice exhibit the early suppressed response but do not show the late phase. In reconstruction experiments to delineate the responsible target site of SPE we have conferred upon the nude or nude spleen cells in vitro, +/nu PFC responsiveness to SE by transfer of +/nu spleen cells in vivo or by supplementation with +/nu spleen cells in Marbrook cultures. When this is done, complementation of nude PFC responses and their ability to exhibit a deregulated response after SPE treatment is conferred coordinately. Pretreatment of donor cells with a B-cell inhibitory dose of X-ray or with a B-cell inhibitory dose of anti-Ig serum + C′ does not inhibit complementation of nude cells to +/nu responsiveness. Moreover, such donor suspensions when treated with SPE retain the ability to complement and to confer upon nude cells the ability to exhibit the late burst of PFC (a deregulated response). A similar pretreatment of the donor cell suspension with an anti-T-cell serum and C′, however, markedly inhibits both the adoptive complementation and the deregulation of the nude mouse PFC response. Thus, it is demonstrated that the target cell affected in this way by SPE is a T-cell. We presume from this evidence that SPE inhibits a T-cell which is involved in the regulation of antibody formation.  相似文献   

14.
We have developed a simple and adaptable, polyclonal model for B cell nonresponsiveness that is based on the inhibitory activity of anti-Ig as a surrogate for Ag. In our system the induction phase (treatment with anti-Ig) is separated from the challenge phase (Ag or mitogen), so that the critical events in each phase can be evaluated. Our results show that T cell-depleted B cells precultured for 18 to 24 h with rabbit anti-Ig reagents are rendered unresponsive to challenge with either Ag, fluorescein coupled to Brucella abortus (FL-BA), or mitogen (LPS). This state of nonresponsiveness (anergy) is reflected by an inhibition of a prototype response to the fluorescein hapten, as well as total Ig and IgG synthesis, but no reduction in proliferation to LPS. Interestingly, mitogen-induced polyclonal antibody formation was consistently reduced by 90% by treatment with either F(ab')2 or intact IgG anti-Ig. In contrast, the Ag-driven (FL-BA) response of pretreated B cells was inhibited by only 50 to 70%. Moreover, the latter effect usually required pretreatment with intact IgG anti-Ig, a result that suggests the importance of an Fc-dependent negative signal affecting the B cell's response to FL-BA. Furthermore, pretreatment and coculture of B cells with IL-4 blocked the Fc-dependent inhibition of the FL-BA responsiveness. These results, as well as kinetics experiments establishing a 4-h latent period, suggest that simple blocking of surface Ig receptor on target B cells is not responsible for the induction of anergy. Pretreated B cells displayed unique phenotypic changes after treatment with anti-Ig, including a diminution of Thy-1 expression in response to LPS + IL-4, as well as a reduction in membrane IgM and J11d expression (i.e., they were IgMlo, IgDmed, and J11dlo, as recently reported for anergic B cells in transgenic mice). These results suggest that B cell anergy can be induced in mature B cells by both Fc-dependent and Fc-independent processes that lead to unique phenotypic changes and may reflect egress from G0 in the absence of T cell help. The significance of these changes to tolerance mechanisms is discussed.  相似文献   

15.
Injection of BALB/c mice with an affinity-purified goat antibody to mouse IgD (GaM delta) stimulates T cell-independent B cell activation as well as later T cell activation. Activated T cells then induce polyclonal differentiation of B cells into IgG1-secreting cells, which results in an approximately 100-fold increase in serum IgG1 level. It is not known whether the same B cells that are initially activated by GaM delta are the progenitors of the IgG1-secreting cells. To investigate this issue a system was developed in which CB20 mice, which are congenic to BALB/c mice but express Ig of the beta allotype rather than the BALB/c alpha allotype, were injected with GaM delta and simultaneously or subsequently also received BALB/c B cells. The IgG1 response generated by the donor BALB/c B cells was quantitated by an assay specific for IgG1 of the alpha allotype. Our experiments with this system indicate that: 1) BALB/c B cells transferred 2 days after CB20 mice were injected with GaM delta generate a much larger IgG1 response than do BALB/c B cells transferred simultaneously with GaM delta antibody; 2) B cells that express membrane IgD generate the great majority of this response; 3) differences in the magnitudes of the responses of BALB/c B cells transferred at different times after CB20 mice were injected with GaM delta antibody cannot be explained by differences in homing of the donor B cells to the host spleen or by short survival of donor BALB/c B cells after their transfer; and 4) the response made by donor BALB/c B cells transferred 2 days after CB20 mice were injected with GaM delta is proportionate to donor cell representation in the host spleen 1 day after their transfer, whereas the response made by donor cells transferred simultaneously with GaM delta is disproportionately small. These observations suggest that most of the IgG1 antibody made by GaM delta-injected mice is generated by newly produced, mIgD+ B cells that appear approximately 2 days after GaM delta injection, rather than by those B cells that are present in the spleen at the time of GaM delta injection, and support the view that signals that induce B cell secretion of Ig require an interaction with at least partially activated Th cells.  相似文献   

16.
Spleen cells of two rat strains, Lewis and Brown Norway (BN), have been activated by lectins and by antibodies specific for immunoglobulin isotypes embedded in their cell membranes. Optimal concentrations of antibodies specific for mu, gamma, or delta-chains of rat augments in vitro incorporation of 3H-TdR 5 to 18-fold in Lewis B lymphocytes and 1.5 to 4-fold in BN B lymphocytes. In addition, F(ab')2 fragments of anti-Ig reagents induced Lewis splenic B cells but not BN B cells to incorporate 3H-TdR. Responses to LPS and dextran sulfate, B lymphocyte mitogens, measured by radioactive uptake, were five to 10 times greater in Lewis B cell populations than in BN B cell populations. Density of surface Ig isotypes and capping kinetics were similar in the two rat strains, although the percentage of T cells, T cell subsets, B cells, and Ia+ B cells differed in the spleens of these strains of rats. Both T lymphocytes and macrophages were needed in culture to effect an optimal response. IL-2 restored the response in B cell cultures depleted of T cells and macrophages, and enhanced 3H-TdR uptake in whole spleen cells of Lewis but not BN rats. The strain-dependent responsiveness of B cells to specific anti-Ig reagents or B cell mitogens appears to be associated with inherent (genetic) defects in T cells and B cells or defects in T cell to B cell cooperation in BN rats.  相似文献   

17.
Adjuvanticity of nystatin, one of the polyenic antifungal antibiotics having as its primary target the membrane sterol of eukaryotic cells, was investigated by examining its effect on several functions of mouse spleen cells relevant to immunological phenomena in vitro. Nystatin was found to stimulate significantly DNA synthesis in thymus-independent (B) cells but not in thymus-dependent (T) cells. Like the other B-cell mitogens such as bacterial lipopolysaccharide (LPS), nystatin elicited nonspecifically polyclonal antibody synthesis in mouse spleen cell cultures, and also restored antibody response of T cell-deficient spleen cells of congenitally athymic nude mice to heterologous erythrocytes (RBC; thymus-dependent antigen). Thus, nystatin and LPS appeared to cause similar changes in the functions of spleen cells relevant to immunological events. However, antagonism but no additive effect in the adjuvanticity was revealed between the two adjuvants. As an interesting finding, the polyclonal generation of anti-RBC antibody-forming cells (AFC) in the spleen cell cultures by stimulation with B-cell mitogen, i.e., either nystatin or LPS, was not inhibited at all by inclusion of any anti-RBC antiserum, whereas, as is well known, the generation of AFC by stimulation with the antigen was specifically suppressed by the corresponding antiserum, indicating a difference in the genesis between the mitogen-induced AFC and the antigen-induced AFC.  相似文献   

18.
The 24-hr culture supernatant of Con A-activated spleen cells (SN) contains helper factors that enable maturation to high-rate polyclonal Ig secretion and enhance proliferation in cultures of mouse B cells activated with the F(ab')2 fragment of class-specific rabbit antimouse IgM antibody (anti-Ig). When interleukin 2 (IL 2), also called T cell growth factor, is removed from SN by absorption with an IL 2-dependent cell line at either 4 degrees C or 37 degrees C, all the helper activity for anti-Ig-activated B cells is also removed. Partial removal of IL 2 results in partial removal of helper activity for B cells. However, the IL 2-depleted SN appears to contain another helper factor, TRF, that enables anti-Ig-activated B cell cultures to mature to high-rate Ig secretion. This TRF activity is revealed by adding purified human IL 2 or an IL 2-containing supernatant of a cloned, lectin-activated T cell hybridoma line (FS6-14.13) to Il 2-depleted SN, which restores the polyclonal antibody response to anti-Ig. The hybridoma supernatant by itself supports proliferation of anti-Ig-activated B cell cultures, as measured by an increase in cell number, but not maturation to Ig secretion. This proliferative response is likewise IL 2 dependent, although purified IL 2 with anti-Ig is not sufficient. These experiments define separable combinations of factors acting on anti-Ig-activated B cell cultures, one of which (SN) results in both proliferation and maturation to high-rate Ig secretion, whereas the other (hybridoma supernatant) results in proliferation only. IL 2 appears to be an essential component of both combinations, although the target cell for IL 2 action in this system remains to be determined.  相似文献   

19.
Purified populations of B cells expressing the Ly-1 and/or Mac-1 surface Ag were isolated from normal unmanipulated mice by cell sorting. The number of lymphocytes in each population secreting antibodies reactive with DNA, bromelain-treated mouse RBC, phosphorylcholine and TNP-keyhole limpet hemocyanin was quantitated by ELISA spot assay. The proportion of B cells secreting Ig in vivo and the repertoire of antibodies they produced varied as a function of B cell phenotype and location. Among peritoneal lymphocytes, those that were Ly-1+ or Ly-1- Mac-1+ secreted Ig 10 times more frequently that Mac-1- Ly-1- B cells from the same location. In addition, the former populations expressed repertoires that were significantly skewed toward the production of antibodies reactive with bromelain-treated mouse RBC (p less than 0.001). In contrast, splenic B cells expressing the Ly-1 surface Ag did not differ significantly from splenic Ly-1- B cells in their expressed repertoire or frequency of Ig production. B cells isolated from the spleen and peritoneum tended to differ in antibody specificity from bone marrow and lymph node-derived lymphocytes. For example, B cells from the spleen secreted anti-DNA antibodies two to four times more frequently than B cells from other organs. These results demonstrate that phenotype and microenvironment influence the repertoire of antibodies expressed by B cells in vivo.  相似文献   

20.
The experiments in this paper demonstrate that monoclonal anti-Lyb2.1 antibody enhances the proliferative response of anti-immunoglobulin (anti-Ig)-stimulated but not of dextran sulfate-stimulated B cells. The magnitude of this enhanced B-cell proliferation is comparable to that induced by BSF-1 on anti-Ig-stimulated cells. The ability of this antibody to enhance B-cell proliferation does not result from its ability to neutralize the suppressive effects on B-cell activation that is mediated by the Fc fragment of anti-Ig antibody as it is equally as effective in enhancing B-cell proliferative responses stimulated by F(ab')2 fragments of anti-Ig. BSF-1 and Anti-Lyb2.1 appear to stimulate nonoverlapping pathways leading to B-cell activation since the enhanced responses induced by the combination of BSF-1 and anti-Lyb2.1 on anti-Ig-stimulated cells are additive even when maximum quantities of these activators are employed. There is also a marked difference in their activity on T cells; while BSF-1 can enhance T-cell proliferation in synergy with phorbol ester, anti-Lyb2.1 is ineffective in this regard. These data, while consistent with the suggestion that the Lyb2 surface determinant on B cells may be involved in B-cell activation, indicate that it is distinct from the receptors for BSF-1 or BCGF-II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号