首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Reproductive biology》2022,22(1):100595
Leydig cells are responsible for testosterone production in male testis upon stimulation by luteinizing hormone. Inflammation and oxidative stress related Leydig cell dysfunction is one of the major causes of male infertility. Cytoglobin (CYGB) and Neuroglobin (NGB) are two globin family member proteins which protect cells against oxidative stress.In the current study, we established a Lipopolysaccharide (LPS)-induced inflammation model in TM3 Leydig cell culture to study the function of CYGB and NGB proteins under inflammatory conditions. CYGB and NGB were downregulated using siRNA and shRNA based experimental strategies. Overexpression was conducted using lentiviral pLenti-III-CYGB-2A-GFP, and pLenti-III-NGB-2A-GFP vector systems. As testicular macrophages regulate immune function upon inflammation and steroidogenesis of Leydig cells, we generated direct/indirect co-culture systems of TM3 and mouse macrophage (RAW264.7) cells ex vivo.Downregulation of CYGB and NGB induced nitride oxide (NO) release, blocked cell cycle progression, reduced testosterone production and increased inflammatory and apoptotic pathway gene expression in the presence and absence of LPS. On the other hand, CYGB and NGB overexpression reduced TNFα and COX-2 protein expressions and increased the expression of testosterone biogenesis pathway genes upon LPS stimulation. In addition, CYGB and NGB overexpression upregulated testosterone production. The present study successfully established an inflammatory interaction model of TM3 and RAW264.7 cells. Suppression of CYGB and NGB in TM3 cells changed macrophage morphology, enhanced macrophage cell number and NO release in co-culture experiments upon LPS exposure.In summary, these results demonstrate that globin family members might control LPS induced inflammation by regulating apoptotic mechanisms and macrophage response.  相似文献   

2.
Banerjee A  Anjum S  Verma R  Krishna A 《Steroids》2012,77(6):609-620
The aim of present study was to investigate the changes in the testicular expression of aromatase, ER alpha, ER beta and iNOS protein and correlate these with serum testosterone and nitric oxide levels, to elucidate the role of estrogen and nitric oxide in the testis during aging. This study showed localization of aromatase and ER alpha mainly in the Leydig cell and showed close correlation of testicular aromatase level with circulating testosterone level suggesting that estrogen may be modulating testicular steroidogenesis. Localization ER alpha mainly in the mitotically active germ cell suggest possible role of estrogen in germ cell proliferation. This study showed basal level of nitric oxide during reproductively active period, whereas increased serum nitric oxide coincides with decreased testicular activity in old age. This study showed inverse correlation between aromatase and NO level. Treatment with either SNP or L-NAME on testicular steroidogenic factor (3-beta HSD/ StAR) or germ cell survival factor (Bcl2) showed that increased NO causes decreased steroidogenesis and increased germ cell apoptosis. In conclusion this study suggest that estrogen modulate steroidogenesis and germ cell survival in reproductively active period whereas in old age decreased estrogen concentration causes increased nitric oxide which in turn decreases testicular steroidogenesis and germ cell apoptosis.  相似文献   

3.
Immobilization stress (IMO) induces a rapid increase in glucocorticoid secretion [in rodents, corticosterone CORT)] and this is associated with decreased circulating testosterone (T) levels. Nitric oxide (NO), a reactive free radical and neurotransmitter, has been reported to be produced at higher rates in tissues such as brain during stress. The biosynthesis of T is also known to be dramatically suppressed by NO. Specifically, the inducible isoform of nitric oxide synthase (iNOS) was directly implicated in this suppression. To assess the respective roles of CORT and NO in stress-mediated inhibition of T production, adult wild-type (WT) and inducible nitric oxide synthase knockout (iNOS(-/-)) male mice were evaluated. Animals of each genotype were assigned to either basal control or 3-h IMO groups. Basal plasma and testicular T levels were equivalent in both genotypes, whereas testicular weights of mutant mice were significantly higher compared with WT animals. Exposure to 3-h IMO increased plasma CORT and decreased T concentrations in mice of both genotypes. Testicular T levels were also affected by stress in WT and mutant males, being sharply reduced in both genotypes. However, the concentrations of nitrite and nitrate, the stable metabolites of NO measured in testicular extracts, did not differ between control and stressed WT and iNOS(-/-) mice. These results support the hypothesis that CORT, but not NO, is a plausible candidate to mediate rapid stress-induced suppression of Leydig cell steroidogenesis.  相似文献   

4.
The effects of single or combined daily treatment with an LHRH agonist and low or high doses of LH upon the testes of adult hypophysectomized rats were studied for up to 2 weeks in which changes in testicular histology, particularly the interstitial tissue, were examined by morphometry and related to functional assessment of the Leydig cells in vivo and in vitro. Compared to saline-treated controls, LHRH agonist treatment did not alter testis volume or the composition of the seminiferous epithelium or any of the interstitial tissue components although serum testosterone and in-vitro testosterone production by isolated Leydig cells were significantly reduced. With 2 micrograms LH for treatment, testis volume was increased, spermatogenesis was qualitatively normal, total Leydig cell volume was increased, serum testosterone values were initially elevated but subsequently declined and in-vitro testosterone production was enhanced. Testis volume with 20 micrograms LH treatment was unchanged compared to saline treatment, the seminiferous epithelium exhibited severe disruption but total Leydig cell volume was greatly increased due to interstitial cell hyperplasia. This group showed elevated serum testosterone concentrations and major increases in testosterone production in vitro. Treatment with LHRH agonist with either dose of LH resulted in reduced testis volume, moderate to very severe focal spermatogenic disruption and increased total Leydig cell volume although serum testosterone values and in-vitro testosterone production were markedly reduced compared to control rats. It is concluded that, in the absence of the pituitary, LHRH agonist fails to disrupt spermatogenesis and the previously described antitesticular action of LHRH agonists in intact rats is therefore dependent upon the presence of LH, which alone or in combination with LHRH agonist, may focally disrupt spermatogenesis in hypophysectomized rats whereas the Leydig cells undergo hyperplasia. The findings show that impairment of spermatogenesis is accompanied by alterations of the interstitial tissue and suggest that communication between these two compartments is involved in the regulation of testicular function.  相似文献   

5.
M L Adams  B Nock  R Truong  T J Cicero 《Life sciences》1992,50(6):PL35-PL40
Recent studies suggest that nitric oxide (NO) may regulate hormone biosynthesis and secretion. This was tested by treating male rats with NG-nitro-L-arginine methyl ester (NAME), a NO synthase inhibitor, and measuring serum and testicular interstitial fluid testosterone and serum corticosterone, luteinizing hormone (LH), and prolactin (PRL). The effect of NG-nitro-L-arginine (NA), a less-soluble form of the same NO synthase inhibitor, on the reproductive suppressant actions of alcohol was also examined. NAME increased testosterone and corticosterone secretion dose-dependently without affecting LH and PRL secretion. The alcohol-induced suppression of testosterone or LH secretion was not altered by treatment with NA. Although effects of NAME and NA on other systems may be involved, these results indicate that testicular and adrenal steroidogenesis are negatively regulated by endogenous NO and that NO does not regulate LH and PRL secretion or inhibit the testicular steroidogenic pathway in the same way as alcohol.  相似文献   

6.
Nitric oxide (NO) is a well-recognized versatile signaling molecule. It is produced by catalytic action of nitric oxide synthase (NOS) on L-arginine in a variety of animal tissues. Existence of different isoforms of NOS has been shown in mammalian testis, but report on their presence in the testis of ectothermic vertebrates is non-existent. This study demonstrates the differential expressions of two isoforms of nitric oxide synthase (neuronal-nNOS and inducible-iNOS) like molecules in different cell types in the testis of seasonally breeding catfish, Clarias batrachus through immunohistochemistry. Positive immunoprecipitation of nNOS and iNOS like molecules were detected in germ cells as well as interstitial cells only in the recrudescing and fully mature fish. The immunoreactions differed in intensity and varied with changing reproductive status. Treatment of adult male fish with NO donor, sodium nitroprusside, and a NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME) increased and decreased the total nitrate and nitrite concentration in the testis, respectively. Sodium nitroprusside and L-NAME also induced simultaneous decline and rise in the testicular testosterone level, respectively. These findings, thus, suggest that NOS isoforms are expressed variedly in different cell types in the testis of reproductively active fish. This investigation also suggests that NO inhibits testosterone production in the testis.  相似文献   

7.
The messenger role of nitric oxide (NO) in immobilization stress-induced inhibition of testicular steroidogenesis has been previously suggested. In accord with this, here, we show that the intratesticular injection of isosorbide dinitrate (ISDN; 2x2.5 mg/testis), an NO donor, mimicked the action of stress on serum testosterone concentrations and hCG-stimulated testosterone production in rat testicular tissue. When added in vitro, ISDN inhibited testicular 3beta-hydroxysteroid dehydrogenase and 17alpha-hydroxylase/lyase. Immobilization stress and injections of ISDN also decreased the activity of catalase, glutathione peroxidase, glutathione transferase, and glutathione reductase in the interstitial compartment of testis. When stressed rats were treated concomitantly with bilateral intratesticular injections of N(omega)-nitro-L-arginine methyl ester, a non-selective NOS inhibitor (2x600 microg/testis), the activities of antioxidative enzymes, as well as serum testosterone concentration, were partially normalized. These results indicate that stress-induced stimulation of the testicular NO signalling pathway leads to inhibition of both steroidogenic and antioxidant enzymes.  相似文献   

8.

Background

Although the testis is considered an immunoprivileged organ it can orchestrate immune responses against pathological insults such as infection and trauma. Experimental autoimmune orchitis (EAO) is a model of chronic inflammation whose main histopathological features it shares with human orchitis. In EAO an increased number of macrophages infiltrate the interstitium concomitantly with progressive germ cell degeneration and impaired steroidogenesis. Up-regulation of nitric oxide (NO)-NO synthase (NOS) system occurs, macrophages being the main producers of NO.

Objective

The aim of our study was to evaluate the role of NO-NOS system in orchitis development and determine the involvement of NO released by testicular macrophages on germ cell apoptosis and testosterone secretion.

Method and Results

EAO was induced in rats by immunization with testicular homogenate and adjuvants (E group) and a group of untreated normal rats (N) was also studied. Blockage of NOS by i.p. injection of E rats with a competitive inhibitor of NOS, L-NAME (8mg/kg), significantly reduced the incidence and severity of orchitis and lowered testicular nitrite content. L-NAME reduced germ cell apoptosis and restored intratesticular testosterone levels, without variations in serum LH. Co-culture of N testicular fragments with testicular macrophages obtained from EAO rats significantly increased germ cell apoptosis and testosterone secretion, whereas addition of L-NAME lowered both effects and reduced nitrite content. Incubation of testicular fragments from N rats with a NO donor DETA-NOnoate (DETA-NO) induced germ cell apoptosis through external and internal apoptotic pathways, an effect prevented by N-acetyl-L-cysteine (NAC). DETA-NO inhibited testosterone released from Leydig cells, whereas NAC (from 2.5 to 15 mM) did not prevent this effect.

Conclusions

We demonstrated that NO-NOS system is involved in the impairment of testicular function in orchitis. NO secreted mainly by testicular macrophages could promote oxidative stress inducing ST damage and interfering in Leydig cell function.  相似文献   

9.
Prostaglandins (PGs), particularly PGE(2), have been implicated in the control of testicular steroidogenesis, spermatogenesis, and local immunity. However, virtually nothing is known about the expression or activity of the prostaglandin-endoperoxide synthases (PTGSs; also referred to as the cyclooxygenases), the specific rate-limiting enzymes responsible for PG production, in the adult testis. This activity was investigated in rats under normal conditions and during lipopolysaccharide-induced inflammation using quantitative real-time PCR, in situ hybridization, Western blotting, and PGE(2) measurements by ELISA. The mRNA for both the "constitutive" Ptgs1 and the "inducible" Ptgs2 forms was detected in multiple testicular cell types. Testicular Ptgs2 expression was substantially higher than that of Ptgs1, and testicular production of PGE(2) in vitro was found to be suppressed by a specific PTGS2 inhibitor (NS-398), but not by an inhibitor of PTGS1. Further investigation indicated that 1) PGE(2) production in the adult testis is attributable to constitutive expression of PTGS2 by somatic (Leydig cells and Sertoli cells) and spermatogenic cells; 2) testicular macrophages constitutively produce relatively low levels of PTGS2 and PGE(2) but are the only cell type to respond significantly to an inflammatory stimulus by increasing production of PGE(2); and 3) testicular PTGS2 expression and intratesticular PGE(2) levels are only marginally affected by acute inflammation. These data point toward a previously unanticipated maintenance role for the "inducible" PTGS2 enzyme in normal testicular function, as well as an anomalous response of testicular PTGS2 to inflammatory stimuli. Both observations are consistent with the reduced capacity of the testis to initiate and support inflammatory reactions.  相似文献   

10.
Previous studies have established a stimulatory effect of natriuretic peptides (NP) on testosterone production in mouse Leydig cells as intense as that of LH. Chronic administration of ANP in mice, on the other side, reduced testosterone levels. So, the understanding of the role of ANP on testicular steroidogenesis has been impaired by discrepant findings. The aim of the present study was to clarify the physiological role of ANP in the rat testis steroidogenesis using a model that preserves the interactions between testis cells and a medium devoid of any circulating factors that could interfere with testosterone production. First, ANP was immunolocalized in the interstitial compartment of the rat testis, mainly in Leydig cells. We also determined the presence of ANP and both GC-A (guanylyl cyclase A) and C receptors by real-time PCR in testis. Perfusion in vitro of testis with ANP (1 and 3x10(-7)M) stimulated testosterone production in a time- and dose-dependent manner. On the other side, testosterone secretion induced by LH was blunted by ANP. Similar effect was obtained using the specific C receptor ligand, cANF, indicating the involvement of C receptor in such response. In conclusion, ANP stimulated testosterone production in the rat testis perfused in vitro but decreased testosterone production LH-induced, effect that seems to involve C receptor. To this extent, our results suggest the existence of a local and complex peptidergic system in the rat testis, involving ANP and its receptors that could importantly modulate the androgen biosynthesis.  相似文献   

11.
This review centers around studies which have used ethane dimethane sulphonate (EDS) selectively to destroy all of the Leydig cells in the adult rat testis. With additional manipulations such as testosterone replacement and/or experimental induction of severe seminiferous tubule damage in EDS-injected rats, the following questions have been addressed: 1) What are the roles and relative importance of testosterone and other non-androgenic Leydig cell products in normal spermatogenesis and testicular function in general? 2) What are the factors controlling Leydig cell proliferation and maturation? 3) Is it the Leydig cells or the seminiferous tubules (or both) which control the testicular vasculature? The findings emphasize that in the normal adult rat testis there is a complex interaction between the Leydig cells, the Sertoli (and/or peritubular) cells, the germ cells, and the vasculature, and that testosterone, but not other Leydig cell products, plays a central role in many of these interactions. The Leydig cells drive spermatogenesis via the secretion of testosterone which acts on the Sertoli and/or peritubular cells to create an environment which enables normal progression of germ cells through stage VII of the spermatogenic cycle. In addition, testosterone is involved in the control of the vasculature, and hence the formation of testicular interstitial fluid, presumably again via effects on the Sertoli and/or peritubular cells. When Leydig cells regenerate and mature after their destruction by EDS, it can be shown that both the rate and the location of regenerating Leydig cells is determined by an interplay between endocrine (LH and perhaps FSH) and paracrine factors; the latter emanate from the seminiferous tubules and are determined by the germ cell complement. Taken together with other data on the paracrine control of Leydig cell testosterone secretion by the seminiferous tubules, these findings demonstrate that the functions of all of the cell types in the testis are interwoven in a highly organized manner. This has considerable implications with regard to the concentration of research effort on in vitro studies of the testis, and is discussed together with the need for a multidisciplinary approach if the complex control of spermatogenesis is ever to be properly understood.  相似文献   

12.
13.
The majority of macrophages in the rat testis can be identified by the tissue-resident macrophage marker ED2. A smaller population of intratesticular macrophages do not express the ED2 antigen but are positive for the monocyte/macrophage marker ED1. Treatment of adult rats with the inflammatory stimulus lipopolysaccharide (LPS) had no effect on the number of testicular resident (ED2(+)) macrophages but caused a transient increase in ED1(+)ED2(-) monocyte-like macrophages (an average three-fold increase 12 h later). In both control and LPS-treated rat testes, a majority of macrophages that expressed ED1 and all Leydig cells were immuno-positive for the inducible isoform of nitric oxide synthase (iNOS). However, less than 6% of ED2(+) macrophages showed any iNOS expression, even after LPS treatment. This deficiency was confirmed by the finding that isolated ED2(+) testicular macrophages (>98% pure) stimulated with LPS did not produce NO in vitro. In contrast, resident macrophages from the peritoneum showed the expected NO response, and purified Leydig cells produced significant NO regardless of the presence or absence of LPS. Collectively, these data indicate the presence of at least two macrophage subsets in the adult rat testis: (1) the ED2(+) resident macrophages, which do not alter following LPS-treatment and mostly do not express iNOS or produce NO in response to an inflammatory stimulus, and (2) the ED1(+)ED2(-) monocyte-like macrophages, which increase in number after LPS-treatment and express iNOS even in the absence of exogenous inflammatory stimulation. It is highly probable that these different subsets have different functional roles within the testis.  相似文献   

14.
D-Aspartic acid (D-Asp) and nitric oxide (NO) are two biologically active molecules playing important functions as neurotransmitters and neuromodulators of nerve impulse and as regulators of hormone production by endocrine organs. We studied the occurrence of D-Asp and NO as well as their effects on testosterone synthesis in the testis of boar. This model was chosen for our investigations because it contains more Leydig cells than other mammals. Indirect immunofluorescence applied to cryostat sections was used to evaluate the co-localization of D-Asp and of the enzyme nitric oxide synthase (NOS) in the same Leydig cells. D-Asp and NOS often co-existed in the same Leydig cells and were found, separately, in many other testicular cytotypes. D-Asp level was dosed by an enzymatic method performed on boar testis extracts and was 40+/-3.6 nmol/g of fresh tissue. NO measurement was carried out using a biochemical method by NOS activity determination and expressed as quantity of nitrites produced: it was 155.25+/-21.9 nmol/mg of tissue. The effects of the two molecules on steroid hormone production were evaluated by incubating testis homogenates, respectively with or without D-Asp and/or the NO-donor L-arginine (L-Arg). After incubation, the testosterone presence was measured by immunoenzymatic assay (EIA). These in vitro experiments showed that the addition of D-Asp to incubated testicular homogenates significantly increased testosterone concentration, whereas the addition of L-Arg decreased the hormone production. Moreover, the inclusion of L-Arg to an incubation medium of testicular homogenates with added D-Asp, completely inhibited the stimulating effects of this enantiomer. Our results suggest an autocrine action of both D-Asp and NO on the steroidogenetic activity of the Leydig cell.  相似文献   

15.
16.
Otani M  Kogo M  Furukawa S  Wakisaka S  Maeda T 《Cytokine》2012,57(2):238-244
CTRP3, a paralog of adiponectin, is a member of the C1q and tumor necrosis factor (TNF)-related protein (CTRP) superfamily. It is expressed at high levels in adipose tissue and has recently emerged as a novel adipokine. In the present study, we provide the first evidence for a physiological role of the new adipokine, CTRP3, in the reproductive system. CTRP3 was specifically expressed in interstitial Leydig cells, where testosterone is produced, in the adult mouse testis. CTRP3 increased testosterone production by TM3 mouse Leydig cells in a dose-dependent manner. The increased testosterone production was linked to upregulation of steroidogenic proteins expression, such as steroidogenic acute regulatory (StAR) protein and cholesterol side-chain cleavage cytochrome P450 (P450scc). Moreover, increases in intracellular cyclic AMP (cAMP) concentrations and the phosphorylation of cAMP-response element binding protein (CREB) in CTRP3-stimulated TM3 Leydig cells were observed. Inhibition of this signaling pathway by a specific protein kinase A (PKA) inhibitor, H89, blocked testosterone production in CTRP3-stimulated Leydig cells, suggesting that the stimulatory effect of CTRP3 on testosterone production is associated with activation of the cAMP/PKA signaling pathway. Thus, our results demonstrate a physiological role for CTRP3 in testicular steroidogenesis and provide novel insights in the intracellular mechanisms activated by this protein.  相似文献   

17.
The purpose of this study is to determine whether inducible nitric oxide synthase (iNOS) is involved in the pathogenesis of testicular ischemia-reperfusion (I/R) injury in association with germ cell death, through either necrosis or apoptosis. Western blot analysis showed that iNOS expression was markedly increased 1 h after ischemia, and was accompanied by a huge nitric oxide (NO) production, as measured by the Griess method, with a peak at 48 h of reperfusion. Immunohistochemistry showed that iNOS was expressed predominantly in the macrophage-like cells infiltrated in the interstitial tissues of the testis. Intraperitoneal injection of aminoguanidine (AMG) (400 mg/day), the inhibitor of iNOS, reduced NO production by 57.7% at 96 h of reperfusion. Calpain activation and proteolysis of alpha-fodrin induced by I/R were inhibited by AMG. Germ cell apoptosis was demonstrated by in situ TUNEL and DNA fragmentation on agarose gel electrophoresis. Germ cell apoptosis was maximally induced at 24 h of reperfusion, and was not inhibited by AMG. NO produced by iNOS in the delayed phase of reperfusion promoted alpha-fodrin proteolysis, which is closely associated with necrosis. Inducible NOS inhibition combined with calpain inhibition may improve impaired spermatogenesis after testicular torsion.  相似文献   

18.
Percoll-purified mature rat Leydig cells have been used to evaluate the testicular toxicity of two highly potent intercalating agents (Celiptium and MR 14505). Testosterone secretion in the absence and in the presence of human chorionic gonadotropin (hCG) was measured to assess Leydig cell function. Celiptium and MR 14504 induce time- and dose-related inhibitory effects on the production of testosterone by Leydig cells, both in the presence and in the absence of hCG, whatever the concentration of hCG used. We have observed that MR 14504 is about 5 times more potent as an inhibitor of rat Leydig cell steroidogenesis than Celiptium without inducing any cell toxicity. The present study indicates that the Leydig cell is an additional potential site for the primary toxic effects of these drugs in the adult rat testis.  相似文献   

19.
Testosterone deficiency is associated with sickle cell disease (SCD), but its underlying mechanism is not known. We investigated the possible occurrence and mechanism of testosterone deficiency in a mouse model of human SCD. Transgenic sickle male mice (Sickle) exhibited decreased serum and intratesticular testosterone and increased luteinizing hormone (LH) levels compared with wild type (WT) mice, indicating primary hypogonadism in Sickle mice. LH-, dbcAMP-, and pregnenolone- (but not 22-hydroxycholesterol)- stimulated testosterone production by Leydig cells isolated from the Sickle mouse testis was decreased compared to that of WT mice, implying defective Leydig cell steroidogenesis. There also was reduced protein expression of steroidogenic acute regulatory protein (STAR), but not cholesterol side-chain cleavage enzyme (P450scc), in the Sickle mouse testis. These data suggest that the capacity of P450scc to support testosterone production may be limited by the supply of cholesterol to the mitochondria in Sickle mice. The sickle mouse testis exhibited upregulated NADPH oxidase subunit gp91phox and increased oxidative stress, measured as 4-hydroxy-2-nonenal, and unchanged protein expression of an antioxidant glutathione peroxidase-1. Mice heterozygous for the human sickle globin (Hemi) exhibited intermediate hypogonadal changes between those of WT and Sickle mice. These results demonstrate that testosterone deficiency occurs in Sickle mice, mimicking the human condition. The defects in the Leydig cell steroidogenic pathway in Sickle mice, mainly due to reduced availability of cholesterol for testosterone production, may be related to NADPH oxidase-derived oxidative stress. Our findings suggest that targeting testicular oxidative stress or steroidogenesis mechanisms in SCD offers a potential treatment for improving phenotypic changes associated with testosterone deficiency in this disease.  相似文献   

20.
Exposure to phthalates in utero alters fetal rat testis gene expression and testosterone production, but much remains to be done to understand the mechanisms underlying the direct action of phthalate within the fetal testis. We aimed to investigate the direct mechanisms of action of mono-(2-ethylhexyl) phthalate (MEHP) on the rat fetal testis, focusing on Leydig cell steroidogenesis in particular. We used an in vitro system based on the culture for three days, with or without MEHP, of rat fetal testes obtained at 14.5 days post-coitum.Exposure to MEHP led to a dose-dependent decrease in testosterone production. Moreover, the production of 5 alpha-dihydrotestosterone (5α-DHT) (-68%) and androstenedione (-54%) was also inhibited by 10 μM MEHP, whereas 17 alpha-hydroxyprogesterone (17α-OHP) production was found to increase (+41%). Testosterone synthesis was rescued by the addition of androstenedione but not by any of the other precursors used. Thus, the hormone data suggested that steroidogenesis was blocked at the level of the 17,20 lyase activity of the P450c17 enzyme (CYP17), converting 17α-OHP to androstenedione. The subsequent gene expression and protein levels supported this hypothesis. In addition to Cyp17a1, microarray analysis showed that several other genes important for testes development were affected by MEHP. These genes included those encoding insulin-like factor 3 (INSL3), which is involved in controlling testicular descent, and Inha, which encodes the alpha subunit of inhibin B.These findings indicate that under in vitro conditions known to support normal differentiation of the fetal rat testis, the exposure to MEHP directly inhibits several important Leydig cell factors involved in testis function and that the Cyp17a1 gene is a specific target to MEHP explaining the MEHP-induced suppression of steroidogenesis observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号