首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Human inducible nitric oxide synthase (hiNOS) catalyzes nitric oxide (NO) which has a significant effect on tumor suppression and cancer therapy. Here we revealed the detailed molecular mechanism involved in the regulation of hiNOS expression induced by retinoic acid (RA). We showed that RARalpha/RXRalpha heterodimer was important in hiNOS promoter activation, hiNOS protein expression, and NO production. Serial deletion and site-directed mutation analysis revealed two half-sites of retinoic acid response element (RARE) spaced by 5bp located at -172 to -156 in the hiNOS promoter. EMSA and ChIP assays demonstrated that RARalpha/RXRalpha directly bound to this RARE of hiNOS promoter. Our results suggested the identification of a novel RARE in the hiNOS promoter and the roles of the nuclear receptors (RARalpha/RXRalpha) in the induction of hiNOS by RA.  相似文献   

5.
6.
7.
8.
9.
10.
Human acute promyelocytic leukemias (APLs) are associated with chromosomal translocations that replace the NH2 terminus of wild-type retinoic acid receptor (RAR) alpha with portions of the promyelocytic leukemia protein (PML) or promyelocytic leukemia zinc-finger protein (PLZF). The wild-type RARalpha readily forms heterodimers with the retinoid X receptors (RXRs), and these RAR/RXR heterodimers appear to be the principal mediators of retinoid signaling in normal cells. In contrast, PML-RARalpha and PLZF-RARa display an enhanced ability to form homodimers, and this enhanced homodimer formation is believed to contribute to the neoplastic properties of these chimeric oncoproteins. We report here that the DNA recognition specificity of the RXRalpha/RARa heterodimer, which is presumed to be the dominant receptor species in normal cells, differs from that of the PML-RARalpha and PLZF-RARalpha homodimers, which are thought to prevail in the oncogenic cell. We suggest that differences in target gene recognition by the normal and oncogenic RARalpha proteins may contribute to the leukemogenic phenotype.  相似文献   

11.
12.
The Carbonic Anhydrase II (CAII) gene that encodes an enzyme involved in proton production is expressed in several cell types including monocyte/macrophage-derived osteoclasts. We have analyzed the regulation of the chicken CAII promoter/reporter construct by nuclear hormone receptors of the VDR subfamily in HD11 avian macrophages. The CAII expression is stimulated by 1, 25-dihydroxyvitamin D(3) but not by 9-cis retinoic acid and repressed by VDR overexpression due to RXR squelching. It is also stimulated by all-trans retinoic acid only when RARalpha is overexpressed, and is dependent on a RARE located in the distal part of the promoter and bound by RARalpha homodimer. Finally, in macrophages, unlike in erythrocytes, the CAII promoter is unresponsive to thyroid hormone. Our results demonstrate the first retinoic acid response element in the CAII promoter and show that according to cell type, different nuclear receptors of the VDR subfamily can regulate the CAII gene.  相似文献   

13.
14.
15.
16.
17.
18.
Retinoic acid decreases collagen production by hepatic stellate cells. This study investigated the effects of retinoic acid receptor beta (RARbeta) and retinoid X receptor alpha (RXRalpha) on the regulation of the alpha(2)(I) collagen promoter. Retinoic acid and the RARbeta and RXRalpha expression vectors suppressed the promoter in transfected stellate cells with maximal suppression obtained when combined. Mutation of the retinoic acid response element (RARE) at -879 to -874 (site 1) enhanced promoter activity and diminished but did not eliminate the suppression by RARbeta and RXRalpha. Mutation of another RARE site (site 2), at -930 to -911, resulted in low activity that was inhibited by retinoic acid. Mutation of the AP-2-binding site enhanced promoter activity that was inhibited by retinoic acid. This study shows that the suppressive effect of retinoic acid on the promoter is maximal with a combination of RARbeta and RXRalpha and occurs at more than one RARE site. The effect of retinoic acid is not mediated by AP-2.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号