首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partially purified extracts from Chlorella pyrenoidosa and Chlamydomonas reinhardtii catalyze the cleavage of queuosine (Q), a modified 7-deazaguanine nucleoside found exclusively in the first position of the anticodon of certain tRNAs, to queuine, the base of Q. This is the first report of an enzyme that specifically cleaves a 7-deazapurine riboside. Guanosine is not a substrate for this activity, nor is the epoxide a derivative of Q. We also establish that both algae can incorporate exogenously supplied queuine into their tRNA but lack Q-containing tRNA when cultivated in the absence of queuine, indicating that they are unable to synthesize Q de novo. Although no physiological function for Q has been identified in these algae, Q cleavage to queuine would enable algae to generate queuine from exogenous Q in the wild and also to salvage (and recycle) queuine from intracellular tRNA degraded during the normal turnover process. In mammalian cells, queuine salvage occurs by the specific cleavage of queuine from Q-5'-phosphate. The present data also support the hypothesis that plants, like animals, cannot synthesize Q de novo.  相似文献   

2.
The modified base queuine is a nutrient factor for lower and higher eukaryotes except yeast. It is synthesized in eubacteria and inserted into the wobble position of specific tRNAs (tRNAGUN) in exchange of guanine at position 34. The tRNAs of Q family are completely modified in terminally differentiated somatic cells. However, mainly free queuine is present in embryonic and fast proliferating cells, tRNA remains Q deficient. Lactate dehydrogenase (LDH) A mRNA and LDH A protein is known to increase when cells are grown in hypoxic conditions. In the present study, the level of LDH isozymes is analyzed in different tissues of normal and cancerous (DLA) mice and the effect of queuine treatment on LDH isozyme is observed. LDH A isozyme is shown to increase in serum and liver of DLA mice. The level and activity of LDH A decreases on queuine treatment. In skeletal muscle and heart, LDH A isozyme decreases while LDH B increases in DLA mice. Queuine administration leads to change back towards normal. In case of brain, LDH A increases but LDH B decreases in DLA mice. Queuine treatment leads to decrease in A4 anaerobic isozymes of LDH. The results suggest that queuine suppresses anaerobic glycolytic pathway, which leads to tumor suppression of DLA mice.  相似文献   

3.
Cell cultures derived from human neonatal foreskins (HF cells) are susceptible to phorbol-12,13-didecanoate- (PDD) induced inhibition of queuine uptake, but this inhibition is pronounced only in early passage HF cells. The present analysis of five different primary cultures demonstrated that, between 10 and 30 population doublings beyond the primary cultures, HF cells gradually became refractile to PDD-induced inhibition of queuine uptake, after which PDD begins to stimulate queuine uptake. Treating late passage HF cells with conditioned medium from early passage HF cells partially restored the PDD-induced inhibition of queuine uptake. This indicates the existence of a factor produced by early passage HF cells that permits PDD to inhibit queuine uptake. The tumor promoter, teleocidin, mimics the effects of PDD on queuine uptake. Both PDD and teleocidin are known to activate protein kinase C; therefore, this kinase may be an intermediary in tumor promoter-induced effects on queuine uptake. Epidermal growth factor, platelet-derived growth factor, and transforming growth factor beta stimulated queuine uptake in both early and late passage HF cells. Growth factor stimulation of uptake was enhanced by PDD in late passage cells but inhibited by PDD in early passage cells. Polyinosinic polycytidylic acid treatment of late passage HF cells partially restored PDD-induced inhibition of queuine uptake. Human recombinant beta-interferon, plus or minus PDD, had no effect on queuine uptake. PDD did not inhibit queuine uptake in the immortal human and non-human cell lines examined.  相似文献   

4.
Higher eukaryotes contain tRNA transglycosylases that incorporate the guanine derivative queuine from the nutritional environment into specific tRNAs by exchange with guanine at position 34. Alterations in the queuosine content of specific tRNAs are suggested to be involved in regulatory mechanisms of major routes of metabolism during differentiation. Dictyostelium discoideum has been applied as a model to investigate the function of queuine or queuine-containing tRNAs. Axenic strains are supplied with queuine by peptone, but they grow equally well in a defined queuine-free medium. Queuine-lacking amoebae, starved in suspension culture for 24 h, lose their ability to differentiate into stalk cells and spores, whereas amoebae sufficiently supplied with queuine will overcome this metabolic stress and undergo further development when plated on agar. The results presented here show that D(-)-lactate occurs in the slime mould in millimolar amounts and that its level is remarkably decreased in queuine-lacking cells after 24 h of starvation in suspension culture. On isoelectric-focusing polyacrylamide gels, nine different forms of NAD-dependent D(-)-lactate dehydrogenase can be separated from extracts of vegetative cells, and six forms from extracts of the starved cells. Under queuine limitation, one form is missing in the starved cells. Low amounts of L(+)-lactate are usually found in vegetative amoebae but significantly less in queuine-lacking cells. Five forms of NAD-dependent L(+)-lactate dehydrogenase are detectable in extracts from vegetative, queuine-treated cells, and slight alterations occur in queuine-deficient amoebae. In the starved cells only one form of L(+)-lactate dehydrogenase is found, irrespective of the supply of queuine to the cells. A cytochrome of type b with an absorption maximum at 559 nm accumulates during starvation only in queuine-lacking cells; it might be a component of an NAD-independent lactic acid oxidoreductase as is cytochrome b 557 in yeast and be responsible for the reduced level of lactate in cells lacking queuine in tRNA.  相似文献   

5.
Queuine, a modified form of 7-deazaguanine present in certain transfer RNAs, is shown to occur in Drosophila melanogaster adults in a free form and its concentration varies as a function of age, nutrition and genotype. In several, but not all mutant strains, the concentrations of queuine and the Q(+) (queuine-containing) form of tRNATyr are correlated. The bioassay employs L-M cells which respond to the presence of queuine by an increase in their Q(+)tRNAAsp that is accompanied by a decrease in the Q(-)tRNAAsp isoacceptors. The increase in Q(+)tRNATyr in Drosophila that occurs on a yeast diet is accompanied by an increase in queuine. Similarly the increase of Q(+)tRNAs with age also is accompanied by an increase in free queuine. In two mutants, brown and sepia, these correlations were either diminished or failed to occur. Indeed, the extract of both mutants inhibited the response of the L-M cells to authentic queuine. When the pteridines that occur at abnormally high levels in sepia were used at 1 x 10(-6)M, the inhibition of the L-M cell assay occurred in the order biopterin greater than pterin greater than sepiapterin. These pteridines were also inhibitory for the purified guanine:tRNA transglycosylase from rabbit but the relative effectiveness then was pterin greater than biopterin greater than sepiapterin. Pterin was competitive with guanine in the enzyme reaction with Ki = 0.9 x 10(-7)M. Also when an extract of sepia was chromatographed on Sephadex G-50, the pteridine-containing fractions only were inhibitory toward the L-M cell assay or the enzyme assay. These results indicate that free queuine occurs in Drosophila but also that certain pteridines may interfere with the incorporation of queuine into RNA.  相似文献   

6.
Queuine modulates growth of HeLa cells depending on oxygen availability   总被引:1,自引:0,他引:1  
HeLa cells can be grown in media supplemented with horse serum that is lacking the nutrient factor queuine. The addition of 1 X 10(-8) M queuine to aerobically grown cells caused a slight, but significant, inhibition of growth, whereas cell proliferation was stimulated increasingly when the concentration of queuine was raised from 3 X 10(-8) M to 3 X 10(-7) M. This was also observed when the cells were transiently starved of serum factors. When the cells were grown under hypoxic stress, but otherwise identical conditions, they responded to queuine in an opposite manner. Under conditions of mitogenic stimulation, characteristic new proteins were found in cytosolic, nuclear and mitochondrial fractions of aerobically grown cells. The effects of queuine on cell proliferation at low concentrations are assumed to be mediated by the free base, whereas the effects at higher concentrations possibly involve both, queuine and Q-tRNAs. The 'Q system' appears to mediate growth control in dependence on oxygen availability.  相似文献   

7.
The functional role of the deazaguanine-derivative queuine was investigated using virus-transformed erythroleukaemic cells of mice as a model. The two-dimensional patterns of [35S]methionine-labelled proteins on two-dimensional O'Farrell gels of queuine-deficient (Q-), compared with queuine-supplemented (Q+) growing cells, showed specific characteristic alterations in the synthesis of 36 and 42 kd basic proteins. According to pI values and immunoreactivity with anti-LDH antibodies, the 36 kd proteins represent various forms of LDH A subunits or closely related proteins. Cell-free systems of protein synthesis were established from growing (Q-) or (Q+) cells. Addition of 3 x 10(-8) M queuine to the (Q-) in vitro system inhibited the incorporation of [35S]methionine into total protein to approximately 20%; raising the concentration of queuine up to 1 x 10(-6) M did not increase the inhibitory effect appreciably. In the (Q-) system, a series of 36 kd proteins, with pI values corresponding to LDH A isoforms, were synthesized. The in vitro synthesis of these proteins was completely inhibited by addition of queuine at a concentration of 3 x 10(-8) M. Furthermore, the expression of certain other proteins was lower in the (Q+) than in the (Q-) in vitro system. Labelling of growing (Q+) or (Q-) cells with [32P]orthophosphate and subsequent analysis of phosphoproteins on two-dimensional O'Farrell gels showed that queuine inhibited the synthesis of distinct phosphoproteins. Protein synthesis performed in cell-free (Q-) or (Q+) systems in the presence of non-labelled amino acids and 32P-labelled gamma ATP also indicated that queuine interferes with the synthesis and/or phosphorylation of particular phosphoproteins.  相似文献   

8.
Protein phosphorylation or dephosphorylation is the most important regulatory switch of signal transduction contributing to control of cell proliferation. The reversibility of phosphorylation and dephosphorylation is due to the activities of kinases and phosphatase, which determine protein phosphorylation level of cell under different physiological and pathological conditions. Receptor tyrosine kinase (RTK) mediated cellular signaling is precisely coordinated and tightly controlled in normal cells which ensures regulated mitosis. Deregulation of RTK signaling resulting in aberrant activation in RTKs leads to malignant transformation. Queuine is one of the modified base of tRNA which participates in down regulation of tyrosine kinase activity. The guanine analogue queuine is a nutrient factor to eukaryotes and occurs as free base or modified nucleoside queuosine into the first anticodon position of specific tRNAs. The tRNAs are often queuine deficient in cancer and fast proliferating tissues. The present study is aimed to investigate queuine mediated inhibition in phosphorylation of tyrosine phosphorylated proteins in lymphoma bearing mouse. The result shows high level of cytosolic and membrane associated tyrosine phosphoprotein in DLAT cancerous mouse liver compared to normal. Queuine treatments down regulate the level of tyrosine phosphoproteins, which suggests that queuine is involved in regulation of mitotic signaling pathways.  相似文献   

9.
In eubacterial and eukaryotic tRNAs specific for Asn, Asp, His and Tyr the modified deazaguanosinederivative queuosine occurs in position 34, the first position of the anticodon. Analysis of unfractionated tRNAs from wheat and from tobacco leaves shows that these tRNAs contain high amounts of guanosine (G) in place of queuosine (Q). This was measured by the exchange of G34 for [3H]guanine catalysed by the specific tRNA guanine transglycosylase from E. coli. Upon gel electrophoretic separation of the labeled tRNAs, seven Q-deficient tRNA species including isoacceptors are detectable. Two are identified as cytoplasmic tRNAsTyr and tRNAAsp and two represent chloroplast tRNATyr isoacceptors. In contrast to leaf cytoplasm and chloroplasts, wheat germ has low amounts of tRNAs with G34 in place of Q.A new enzymatic assay is described for quantitation of free queuine in cells and tissues. Analysis of queuine in plant tissues shows that wheat germ contains about 200 ng queuine per g wet weight. In wheat and tobacco leaves queuine is present, if at all, in amounts lower than 10 ng/g wet weight. The absence of Q in tRNAs from plant leaves is therefore caused by a deficiency of queuine. Tobacco cells cultivated in a synthetic medium without added queuine do not contain Q in tRNA, indicating that these rapidly growing cells do not synthesize queuine de novo.  相似文献   

10.
In its natural environment the protist Dictyostelium discoideum grows on bacteria and queuosine-containing tRNAs of the bacteria serve as source of the nutrient factor queuine. This deazaguanine derivative is inserted into tRNAAsp, tRNAAsn, tRNAHis and tRNATyr of the amoebae. The axenic strain AX-2 of D. discoideum grows equally well in a defined medium with or without exogenous queuine. When queuine is omitted, changes occur in lactate levels, lactate dehydrogenase patterns and cytochromes and the amoebae cannot differentiate after a metabolic stress. In this report we show that growing cells contain two-fold higher levels of tRNAAsp and tRNATyr when sufficiently supplied with queuine, than those lacking queuine. In tRNAAsp a new, as yet unidentified, derivative of queuine has been discovered. When RNA synthesis is totally inhibited by actinomycin, tRNAAsp and tRNATyr remain stable in queuine-containing, but not in queuine-lacking cells. In contrast, tRNAAsn and tRNAHis become partially degraded in both conditions. We suggest that free queuine can be obtained from endogeneous tRNA and that differential salvage of queuine by tRNAs of the Q-family plays a role in the regulation of genes encoding components of redox chains.  相似文献   

11.
The incorporation of queuine into tRNA and its fate upon tRNA turnover has been studied in the Vero and L-M cell lines. An assay was developed using [3H]dihydroqueuine to detect the queuine acceptance and, thus, the queuine content of tRNA in intact cells. While L-M cells can use only queuine, Vero cells can use either queuine or its nucleoside, queuosine, to form queunine-containing tRNA. Since queuosine is not a substrate for the enzyme which incorporates queuine into tRNA, Vero cells must generate queuine from its nucleoside. When Vero cells are labelled with [3H]dihydroqueuine, the half life of acid insoluble radioactivity is 52 days in queuine-free medium and 3.1 days in queuine-containing medium, indicating that [3H]dihydroqueuine is salvaged from tRNA and reused by Vero cells, but that exogenous queuine can compete with the salvaged [3H]dihydroqueuine. When L-M cells are labelled with [3H]dihydroqueuine, the half life of the acid insoluble radioactivity is 1.2 days in the presence or absence of queuine, indicating the absence of queuine salvage in L-M cells.  相似文献   

12.
Treatment of hypoxanthine-guanine phosphoribosyltransferase (HGPRT)-deficient human promyelocytic leukemia (HL-60) cells with 6-thioguanine results in growth inhibition and cell differentiation. 6-Thioguanine is a substrate for the tRNA modification enzyme tRNA-guanine ribosyltransferase, which normally catalyzes the exchange of queuine for guanine in position 1 of the anticodon of tRNAs for asparagine, aspartic acid, histidine, and tyrosine. During the early stages of HGPRT-deficient HL-60 cell differentiation induced by 6-thioguanine, there was a transient decrease in the queuine content of tRNA, and changes in the isoacceptor profiles of tRNA(His) indicate that 6-thioguanine was incorporated into the tRNA in place of queuine. Reversing this structural change in the tRNA anticodon by addition of excess exogenous queuine reversed the 6-thioguanine-induced growth inhibition and differentiation. Similar results were obtained when 8-azaguanine (another inhibitor of queuine modification of tRNA that can be incorporated into the anticodon) replaced 6-thioguanine as the inducing agent. The data suggest a primary role for the change in queuine modification of tRNA in mediating the differentiation of HGPRT-deficient HL-60 cells induced by guanine analogs.  相似文献   

13.
Eukaryotic life benefits from—and ofttimes critically relies upon—the de novo biosynthesis and supply of vitamins and micronutrients from bacteria. The micronutrient queuosine (Q), derived from diet and/or the gut microbiome, is used as a source of the nucleobase queuine, which once incorporated into the anticodon of tRNA contributes to translational efficiency and accuracy. Here, we report high-resolution, substrate-bound crystal structures of the Sphaerobacter thermophilus queuine salvage protein Qng1 (formerly DUF2419) and of its human ortholog QNG1 (C9orf64), which together with biochemical and genetic evidence demonstrate its function as the hydrolase releasing queuine from queuosine-5′-monophosphate as the biological substrate. We also show that QNG1 is highly expressed in the liver, with implications for Q salvage and recycling. The essential role of this family of hydrolases in supplying queuine in eukaryotes places it at the nexus of numerous (patho)physiological processes associated with queuine deficiency, including altered metabolism, proliferation, differentiation and cancer progression.  相似文献   

14.
Can a queuine-specific tRNA function normally without replacement of G by Q in its structure? To answer this, kinetics of aspartate queuine-containing tRNA (Q-tRNA) is compared with its queuine-deficient counterpart (G-tRNA). The results indicate that Asp Q-tRNA is a more effective substrate than the Asp G-tRNA. The Asp Q-tRNA exhibits a higher reaction velocity (Vmax greater than 30%) and a higher reaction rate (Km less than 55%) than its counterpart. The Asp tRNAs derived from human tumor lines and grown in athymic mice contain a full complement of queuine. This tumor tRNA exhibits aminoacylation kinetics similar to a normal liver tRNA. Reasons for observing the lack of a G-to-Q modification in cancer tRNAs by others are hypothesized. Two purified Asp isoacceptors from liver are compared for the aminoacylation reaction; small differences are noted in the Vmax, but none in the Km values.  相似文献   

15.
Identifying inhibitors of queuine modification of tRNA in cultured cells   总被引:1,自引:0,他引:1  
Altered queuine modification of tRNA has been associated with cellular development, differentiation, and neoplastic transformation. Present methods of evaluating agents for their ability to induce queuine hypomodification of tRNA are tedious, time-consuming, and not readily amenable to examining cell-type or tissue specificity. Therefore, a rapid, small-scale assay was developed to identify agents that alter queuine modification of tRNA in cultured cells. Monolayer cultures (2cm2) of Chinese hamster embryo cells depleted of queuine for 24 h were evaluated for their ability to incorporate [3H]dihydroqueuine into acid precipitable material (tRNA) in the presence and absence of potential inhibitors. Known inhibitors of the queuine modification enzyme tRNA-guanine ribosyltransferase (e.g., 7-methylguanine, 6-thio-guanine, and 8-azaguanine) were very effective in blocking incorporation of the radiolabel, and the dose-dependent results exhibited small standard deviations in independent experiments. The data indicate that the method is rapid, reliable, and potentially useful with a variety of cell types.  相似文献   

16.
Interferon inhibits uptake of the radiolabeled queuine analog, rQT3, into cultured human fibroblasts. Simultaneous exposure to 10 nM phorbol-12,13-didecanoate (PDD) potentiates interferon-induced inhibition of rQT3 into cultured fibroblasts. All three major classes of human interferon tested affected uptake similarly, with fibroblast derived beta-interferon being more effective in dose response than gamma or alpha interferons. This suggests that endogenous production of interferon by cultured cells, such as that observed during a low grade viral infection, inhibits queuine uptake and may subsequently lead to a decreased level of queuine modified transfer RNA. Queuine-hypomodified transfer RNA has been implicated in growth control, differentiation and neoplastic transformation.  相似文献   

17.
18.
It has been suggested that the rate of queuine uptake into cultured human fibroblasts is controlled by phosphorylation levels within the cell. We show that the uptake of queuine is stimulated by activators of protein kinase C (PKC) and inhibitors of protein phosphatase; while inhibitors of PKC, and down-regulation of PKC by chronic exposure to phorbol esters inhibit the uptake of queuine into cultured human fibroblasts. Activators of cAMP- and cGMP-dependent kinases exert no effect on the uptake of queuine into fibroblast cell cultures. These studies suggest that PKC directly supports the activity of the queuine uptake mechanism, and that protein phosphatase activity in the cell acts to reverse this. Regardless of the modulation of uptake rate, the level of intracellular queuine base saturates in 6 h. However, there is still an effect on the incorporation rate of queuine into tRNA of fibroblast cultures even after 24 h. We now show that the incorporation of queuine into tRNA in cultured human fibroblasts by tRNA-guanine ribosyltransferase (TGRase) is also stimulated by activators of PKC and inhibitors of protein phosphatase: while inhibitors of PKC decrease the activity of this enzyme. These studies suggest that PKC supports both the cellular transport of queuine and the activity of TGRase in cultured human fibroblasts, and that protein phosphatase activity in fibroblasts acts to reverse this phenomenon. A kinase-phosphatase control system, that is common to controlling both intracellular signal transduction and many enzyme systems, appears to be controlling the availability of the queuine substrate and the mechanism for its incorporation into tRNA. Since hypomodification of transfer RNA with queuine is commonly observed in undifferentiated, rapidly growing and neoplastically transformed cells, phosphorylation of the queuine modification system may be critical regulatory mechanism for the modification of tRNA and subsequent control of cell growth and differentiation.  相似文献   

19.
Raman spectroscopy is successfully becoming an analytical tool used to characterize alterations in the biochemical composition of cells. In this work, we identify the features of Raman spectra of murine primary endothelial cells (EC) isolated from lungs, heart, liver, brain, kidney and aorta of normal mice, as well as from heart, lung and liver in a murine model of heart failure (HF) in Tgαq*44 mice. Primary cells were measured in suspension immediately after their isolation. Raman images showed that isolated primary EC were elliptical or circular, and did not show organ-specific spectral features for any of the studied organ, i.e. lungs, heart, liver, brain, kidney and aorta. Principal Component Analysis pairwise analysis of primary endothelial cells from FVB mice and Tgαq*44 mice revealed an increased protein content in EC isolated from the heart and increased lipid content in EC isolated from the lung in Tgαq*44 mice. No significant differences were found in the EC isolated from the liver using the same chemometric procedure. To our knowledge, this is the first report in which Raman spectroscopy has been used to characterize the biochemical phenotype of primary murine EC with developing HF. This pilot study shows that Raman-based analysis of freshly isolated primary EC did not revealed organ-specific features, however disease-associated changes were found in the coronary and pulmonary EC in the early stage of heart failure in Tgαq*44 mice.  相似文献   

20.
Queuosine (Q), found exclusively in the first position of the anticodons of tRNA(Asp), tRNA(Asn), tRNA(His) and tRNA(Tyr), is synthesized in eucaryotes by a base-for-base exchange of queuine, the base of Q, for guanine at tRNA position 34. This reaction is catalyzed by the enzyme tRNA-guanine transglycosylase (EC 2.4.2.29). We measured the specific release of queuine from Q-5'-phosphate (queuine salvage) and the extent of tRNA Q modification in 6 human tumors carried as xenografts in immune-deprived mice. Q-deficient tRNA was found in 3 of the tumors but it did not correlate with diminished queuine salvage. The low tRNA Q content of one tumor, the HxGC3 colon adenocarcinoma, prompted us to examine a HxGC3-derived cell line, GC3/M. GC3/M completely lacks Q in its tRNA and measurable tRNA-guanine transglycosylase activity; the first example of a higher eucaryotic cell which lacks this enzyme. Exposure of GC3/M cells to 5-azacytidine induces the transient appearance of Q-positive tRNA. This result suggests that at least one allele of the transglycosylase gene in GC3/M cells may have been inactivated by DNA methylation. In clinical samples, we found Q-deficient tRNA in 10 of 46 solid tumors, including 2 of 13 colonic carcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号