首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron microscopic studies of Leishmania gymnodactyli cells lysed at hypotonic conditions showed that the structures identified as kinetoplast DNA have the appearance of loose accumulations of crossed and sometimes branched rod-like structures 100 to 200 nm long and 20 nm thick. The compaction of isolated kinetoplast DNA (kpDNA) caused by interaction with synthetic tripeptide--dansylhydrazide trivaline--was also studied. The analysis of the structures arising at different steps of compaction showed that the minicircles are compacted forming rod-like structures where minicircle double-stranded DNA segments are closely associated side by side in a manner which was earlier described for initial compaction stages of "triple rings". These rod-like structures resemble in their appearance the structures found in lysed cell preparations obtained according to Miller's method. Branching of rod-like structures can be the consequence of minicircle catenation. In vitro compaction is completed with the formation of a compacted network, its diameter being 3 to 6 times smaller as compared with the initial one.  相似文献   

2.
Weakly condensed interphase chromosomes made of chromatin, and the tightly packed kinetoplast DNA (kpDNA) of a single mitochondrion of Crithidia (Kinetoplastidea, Trypanosomatida) flagellates were studied on the Miller-type spread preparations by electron microscopy. Chromatin of organisms lysed at low ionic strength conditions for 5-10 min unfolds up to 10-nm nucleosomal filaments and 20-nm chromatin fibers. The initial indications of kpDNA decompaction become visible after a 10-13 min dispersion of lysed flagellates. However, at least a 15 min long procedure is required for well-defined identification of intrakinetoplast structures. In this case, the kinetoplast looks like a heterogeneous network disposed close to the kinetosome of a single flagellum. Cells with diameters of 162.5 nm and contour wall length of 510 nm dominated within the network. With the prolongation of the dispersion time up to 20 min both these parameters increased up to 218 and 686 nm, respectively. Further prolongation of the treatment up to 60 min results in wall disruption in many cells. Within these cells, some isolated circular kpDNA molecules appear with the contour length of 588-792 nm. The circles of this size correspond to individual minicircles of the Crithidia kpDNA. Partly unfolded maxicircles of the kpDNA can be found only at early stages of dispersion (10 min). Special features of compaction of DNA-containing structures in both the nucleus and cytoplasm of Crithidia are discussed.  相似文献   

3.
The electron microscopic data on compactization of DNA at interaction with the synthetic oligopeptides having the trend of beta-structures formation in solutions are summarized. The new types of intramolecular and intermolecular compact structures are described in brief. Sequence of compactization process steps is discussed, the models of DNA packaging in the structures are presented. On the basis of the data presented the general principles of arrangement of the described compact structures are formulated, the mechanisms are proposed for formation of different types of compact particles on the final stage of the process of DNA condensation. Some processes of the genetic material compactization in vivo are discussed in which the proposed mechanisms for compact structures formation may have realization.  相似文献   

4.
Compactization of supercoiled circular plasmid pBR322 caused by interaction with synthetic oligopeptide dansyl hydrazide trivaline capable of beta-structure formation was studied by electron microscopy. The results show that at rising input peptide concentration circular DNA molecules undergo intramolecular structural transition with the formation of compact ring structures. The compact ring structures are formed by the fiber having the thickness of 60 A. The analysis of morphology of intermediate structures and the contour length measurements enable us to conclude that 60 A-fiber contains three lying side-by-side and interwound double-stranded DNA segments. Thus, the compact ring structures are addressed to as triple rings. The triple ring have one special point, where the triple region ends are locked by a duplex DNA segment. The mechanisms responsible for the triple ring formation may be of importance for DNA and chromatin compactization processes in vivo.  相似文献   

5.
The protein-free method was applied for the investigation of histone H1 DNA complexes formation. The main advantage of this method is the possibility to get intramolecular compact structures at interaction of individual spread molecules of DNA with histone H1. It was shown that in the presence of 0.2-5 micrograms/ml of histone H1 in hypophase there are three types of structures on electronmicroscopic preparations: fibres of non-compacted DNA, compact fibres with twisted strands of duplex DNA and compacted rod-like and circular structures where separate fibres of duplex DNA could not be distinguished. The study of compact structures morphology allows to conclude that they are formed by side-by-side association of DNA fibres, as it takes place in the case of triple rings formation at the compactization of circular DNA due to trivaline binding. At increasing ionic strength there is a tendency for transition from second type structures to the third type structures. The latter can be explained by transition from non-cooperative to cooperative binding of histone H1 to DNA.  相似文献   

6.
M Ferguson  A F Torri  D C Ward  P T Englund 《Cell》1992,70(4):621-629
Kinetoplast DNA is a network of interlocked minicircles and maxicircles. In situ hybridization, using probes detected by digital fluorescence microscopy, has clarified the in vivo structure and replication mechanism of the network. The probe recognizes only nicked minicircles. Hybridization reveals prereplication kinetoplasts (with closed minicircles), donut-shaped replicating kinetoplasts (with nicked minicircles on the periphery and closed minicircles in the center), and postreplication kinetoplasts (with nicked minicircles). Replicating kinetoplasts are associated with two peripheral structures containing free minicircle replication intermediates and DNA polymerase. Replication may involve release of closed minicircles from the center of the kinetoplast and their migration to the peripheral structures, replication of the free minicircles therein, and then peripheral reattachment of the progeny minicircles to the kinetoplast.  相似文献   

7.
Trypanosomes have an unusual mitochondrial genome, called kinetoplast DNA, that is a giant network containing thousands of interlocked minicircles. During kinetoplast DNA synthesis, minicircles are released from the network for replication as theta-structures, and then the free minicircle progeny reattach to the network. We report that a mitochondrial protein, which we term p38, functions in kinetoplast DNA replication. RNA interference (RNAi) of p38 resulted in loss of kinetoplast DNA and accumulation of a novel free minicircle species named fraction S. Fraction S minicircles are so underwound that on isolation they become highly negatively supertwisted and develop a region of Z-DNA. p38 binds to minicircle sequences within the replication origin. We conclude that cells with RNAi-induced loss of p38 cannot initiate minicircle replication, although they can extensively unwind free minicircles.  相似文献   

8.
The data showing the features of the DNA compactization process in PEG-containing solutions of chlorides of different alkaline metals (LiCl, KCl, RbCl and CsCl) and an ammonium salt (CH3-(CH2)17-N-(CH3)3Br) are presented. The data indicate that the formation of a compact form of the double-stranded DNA in PEG-containing water-salt solutions depends not only on the PEG concentration and ionic strength but on tha cation nature as well. The compactization occurs most easily in the presence of Na+-ions. This indicates a specific character of interaction between Na+-ions and DNA phosphate groups which may be due to an optimum structural fit between the hydrated Na+-ions and orientation of the phosphate groups in the DNA molecule. The nature of forces involved in the processes of the intramolecular compactization and intermolecular aggregation of double-stranded DNA molecules in water-salt solution is discussed. The difference between the effect of Na+ and that of K+-ions on the compactization process at the ionic strengths close to physiological values makes it possible to suggest that the changes of the tertiary structure of double-stranded DNA which accompany its function in vivo may take place under conditions of a decreased water activity at the expense of relatively slight changes in ion composition of the water surrounding DNA.  相似文献   

9.
The absence of supercoiling in kinetoplast DNA minicircles.   总被引:7,自引:1,他引:6       下载免费PDF全文
Crithidia fasciculata kinetoplast DNA is a mitochondrial DNA composed of 5000 minicircles and approximately 25 maxicircles, all catenated into a giant network. By comparing the linking number of minicircles released from the network by limited sonication with that of control minicircles, we demonstrate that not only does the elaborate catenation of the network not cause supercoiling, but that there is no minicircle supercoiling at all. The absence of catenation-induced supercoiling is explained by our finding [using electron microscopy (EM) and gel electrophoresis] that network minicircles are joined by only one interlock; single interlocking can be accommodated without helix distortion. EM revealed that propidium diiodide supertwists all the network minicircles and thereby condenses the network into a much smaller size while maintaining its planarity. At high dye concentration the network is condensed to a size comparable to that found in vivo. Nevertheless, network minicircles bind less propidium than free minicircles, indicating that catenation into a network restricts the supercoiling of individual rings. These studies show that the mitochondrion of trypanosomatids may be a unique niche in nature where a covalently-closed circular DNA is not supercoiled. This absence of supercoiling may be a major factor in promoting the formation of the network.  相似文献   

10.
A comparative study of the kinetoplast DNA (kpDNA) from 8 isolates of fish trypanosomes has been performed. The data of restriction analysis have revealed that these trypanosomes differ from species studied before. The size of minicircles is about 1600 bp and that of maxicircles--30-36 Kbp. The restriction analysis of the maxicircles allows us to divide studied isolates in at least two groups. Another evidence has been obtained that it is impossible to identify species of fish trypanosomes using host species.  相似文献   

11.
The structure of replicating kinetoplast DNA networks   总被引:8,自引:2,他引:6       下载免费PDF全文
《The Journal of cell biology》1993,123(5):1069-1079
Kinetoplast DNA (kDNA), the mitochondrial DNA of Crithidia fasciculata and related trypanosomatids, is a network containing approximately 5,000 covalently closed minicircles which are topologically interlocked. kDNA synthesis involves release of covalently closed minicircles from the network, and, after replication of the free minicircles, reattachment of the nicked or gapped progeny minicircles to the network periphery. We have investigated this process by electron microscopy of networks at different stages of replication. The distribution of nicked and closed minicircles is easily detectable either by autoradiography of networks radiolabeled at endogenous nicks by nick translation or by twisting the covalently closed minicircles with intercalating dye. The location of newly synthesized minicircles within the network is determined by autoradiography of network is determined by autoradiography of networks labeled in vivo with a pulse of [3H]thymidine. These studies have clarified structural changes in the network during replication, the timing of repair of nicked minicircles after replication, and the mechanism of division of the network.  相似文献   

12.
Kinetoplast DNA (kDNA), a unique mitochondrial structure common to trypanosomatid parasites, contains thousands of DNA minicircles that are densely packed and can be topologically linked into a chain mail-like network. Experimental data indicate that every minicircle in the network is, on average, singly linked to three other minicircles (i.e., has mean valence 3) before replication and to six minicircles in the late stages of replication. The biophysical factors that determine the topology of the network and its changes during the cell cycle remain unknown. Using a mathematical modeling approach, we previously showed that volume confinement alone can drive the formation of the network and that it induces a linear relationship between mean valence and minicircle density. Our modeling also predicted a minicircle valence two orders of magnitude greater than that observed in kDNA. To determine the factors that contribute to this discrepancy we systematically analyzed the relationship between the topological properties of the network (i.e., minicircle density and mean valence) and its biophysical properties such as DNA bending, electrostatic repulsion, and minicircle relative position and orientation. Significantly, our results showed that most of the discrepancy between the theoretical and experimental observations can be accounted for by the orientation of the minicircles with volume exclusion due to electrostatic interactions and DNA bending playing smaller roles. Our results are in agreement with the three dimensional kDNA organization model, initially proposed by Delain and Riou, in which minicircles are oriented almost perpendicular to the horizontal plane of the kDNA disk. We suggest that while minicircle confinement drives the formation of kDNA networks, it is minicircle orientation that regulates the topological complexity of the network.  相似文献   

13.
Although centromere function has been conserved through evolution, apparently no interspecies consensus DNA sequence exists. Instead, centromere DNA may be interconnected through the formation of certain DNA structures creating topological binding sites for centromeric proteins. DNA topoisomerase II is a protein, which is located at centromeres, and enzymatic topoisomerase II activity correlates with centromere activity in human cells. It is therefore possible that topoisomerase II recognizes and interacts with the alpha satellite DNA of human centromeres through an interaction with potential DNA structures formed solely at active centromeres. In the present study, human topoisomerase IIα-mediated cleavage at centromeric DNA sequences was examined in vitro. The investigation has revealed that the enzyme recognizes and cleaves a specific hairpin structure formed by alpha satellite DNA. The topoisomerase introduces a single-stranded break at the hairpin loop in a reaction, where DNA ligation is partly uncoupled from the cleavage reaction. A mutational analysis has revealed, which features of the hairpin are required for topoisomerease IIα-mediated cleavage. Based on this a model is discussed, where topoisomerase II interacts with two hairpins as a mediator of centromere cohesion.  相似文献   

14.
Binding of tripeptide H-Val3-(NH)2-Dns (TVP) to polyribonucleotides was studied by fluorescence methods, circular and flow linear dichroism, equilibrium dialysis and electron microscopy. It was found that TVP binds to poly(U) in monomer, dimer and tetramer forms with binding constants of about 10(3), 40, 18.10(4) M, respectively. The cooperativity parameter for peptide dimer binding is 2000. The peptide forms tetramer complexes with poly(A), poly(C), poly(G) also. The formation of a complex between the peptide tetramer and nucleic acid is accompanied by a significant increase in the fluorescence intensity. The cooperative binding of TVP dimers to poly(U), poly(A), poly(C) is accompanied by a dramatic decrease in the flexibility of polynucleotide chains. However, it has a small effect (if any) on the flexibility of the poly(G) chain. The observed similarity of thermodynamic, optical and hydrodynamic++ properties of TVP complexes with single-stranded and double-stranded nucleic acids may reflect a similarity in the geometries of peptide complexes with nucleic acids. Electron microscopy studies show that peptide binding to poly(U) and dsDNA leads to compactization of the nucleic acids caused by interaction between the peptide tetramers bound to a nucleic acid. At the first stage of the compactization process the well-organized rod-like particles are formed, each consisting of one or more single-stranded polynucleotide fibers. Increasing the peptide concentration stimulates a side-by-side association and folding of the rods with the formation of macromolecular "leech-like" structures with the thickness of 20-50 nm.  相似文献   

15.
The mitochondrial DNA (mtDNA) of a primitive kinetoplastid flagellate Cryptobia helicis is composed of 4.2 kb minicircles and 43 kb maxicircles. 85% and 6% of the minicircles are in the form of supercoiled (SC) and relaxed (OC) monomers, respectively. The remaining minicircles (9%) constitute catenated oligomers composed of both the SC and OC molecules. Minicircles contain bent helix and sequences homologous to the minicircle conserved sequence blocks. Maxicircles encode typical mitochondrial genes and are not catenated. The mtDNA, which we describe with the term 'pankinetoplast DNA', is spread throughout the mitochondrial lumen, where it is associated with multiple electron-lucent loci. There are approximately 8400 minicircles per pankinetoplast-mitochondrion, with the pan-kDNA representing approximately 36% of the total cellular DNA. Based on the similarity of the C.helicis minicircles to plasmids, we present a theory on the formation of the kDNA network.  相似文献   

16.
Free minicircles of kinetoplast DNA in Crithidia fasciculata.   总被引:8,自引:0,他引:8  
The major form of kinetoplast DNA in Crithidia fasciculata is a network which contains thousands of minicircles linked together in a two-dimensional array. This paper reports the existence of free minicircles in Crithidia which by several criteria are identical to those in networks. They are the same size (about 2500 base pairs), and they yield the same products upon digestion with restriction enzymes. About 0.4% of the minicircles in exponentially growing nonsynchronized cells are free and the remainder are in networks. After a 5-min pulse with [3H]thymidine, above 10% of all of the incorporated radioactivity in the cell is in free minicircles, and the minicircles have a higher specific radioactivity than the average of other DNAs in the cell. Three-branched structures, which resemble Cairns-type replication intermediates, are occasionally observed by electron microscopy. Kinetic studies of the incorporation of [3H]thymidine into free minicircles indicate that they turn over, and this turnover was confirmed by a pulse-chase experiment. These properties of free minicircles suggest that they may be intermediates in the replication of network minicircles.  相似文献   

17.
Trypanosomatida parasites, such as trypanosoma and lishmania, are the cause of deadly diseases in many third world countries. A distinctive feature of these organisms is the three dimensional organization of their mitochondrial DNA into maxi and minicircles. In some of these organisms minicircles are confined into a small disk volume and are topologically linked, forming a gigantic linked network. The origins of such a network as well as of its topological properties are mostly unknown. In this paper we quantify the effects of the confinement on the topology of such a minicircle network. We introduce a simple mathematical model in which a collection of randomly oriented minicircles are spread over a rectangular grid. We present analytical and computational results showing that a finite positive critical percolation density exists, that the probability of formation of a highly linked network increases exponentially fast when minicircles are confined, and that the mean minicircle valence (the number of minicircles that a particular minicircle is linked to) increases linearly with density. When these results are interpreted in the context of the mitochondrial DNA of the trypanosome they suggest that confinement plays a key role on the formation of the linked network. This hypothesis is supported by the agreement of our simulations with experimental results that show that the valence grows linearly with density. Our model predicts the existence of a percolation density and that the distribution of minicircle valences is more heterogeneous than initially thought.  相似文献   

18.
J. M. Darlow  DRF. Leach 《Genetics》1995,141(3):825-832
Unusual DNA secondary structures have been implicated in the expansion of trinucleotide repeat tracts that are associated with several human inherited disorders. We present evidence consistent with the folding of these trinucleotide repeats into hairpin loops at the center of a long DNA palindrome in vivo. Our assay utilizes a palindrome in bacteriophage λ, the center of which determines its ability to inhibit plaque formation in a manner that is consistent with folding into a hairpin or cruciform structure. We show that central inserts of even numbers of d(CAG)·d(CTG) repeats inhibit plaque formation more than do odd numbers. Both d(CAG)(2)·d(CTG)(2) and d(CGG)(2)·d(CCG)(2) central sequences behave like DNA sequences known to form two-base loops in vitro, suggesting that they may also form compact and stable loops. By contrast, repeats of d(GAC)·d(GTC) do not show any evidence consistent with unusual loop stability. These results agree with in vitro evidence that the unstable repeats can form hairpin secondary structures and suggest a favored position of folding. We discuss the potential roles of secondary structures, DNA replication and recombination in models of repeat tract expansion.  相似文献   

19.
DNA-putrescine complexes were studied by electron-microscopy with the use of protein-free method. The latter gives the opportunity to investigate the interaction of DNA molecules spread on the surface layer of hypophase and the polyamine molecules in the thick layer of hypophase. Polyamine concentration varied from 5 x 10(-4) mM to 5 x 10(-1) mM. Under the low concentration of putrescine the complexes are represented by agglomerations of kinked knobbed fibres 10 to 20 nm thick, consisting of several fibres of duplex DNA. Upon increasing of putrescine concentration from 5 x 10(-4) to 1.5 x 10(-1) mM, the fibres become more thick (up to 25 nm), highly twisted and have the appearance of cylinders. Very often in the composition of complexes, it is possible to encounter the circular structures, which were formed at the expense of intermolecular interaction of different parts of the complex. The circular structures can serve as "embryos" of toroids of different sizes, that is of different degree of saturation with DNA and putrescine. At the concentration of putrescine 5 x 10(-1) mM the complexes have the appearance of toroids and structures on the basis of toroids, cylinders. The scheme of possible transitions of fibres of various thickness is proposed. The regularities of the compactization process, stimulated by polyamines, don't depend on the degree of compactization (the thickness of compacting fibre), that is they are similar for duplex DNA and for the fibres 25 nm thick, consisting of dozens of DNA molecules.  相似文献   

20.
Certain minor minicircle sequence classes in the kinetoplast DNA (kDNA) networks of arsenite- or tunicamycin-resistant Leishmania mexicana amazonensis variants whose nuclear DNA is amplified appear to be preferentially selected to replicate (S. T. Lee, C. Tarn, and K. P. Chang, Mol. Biochem. Parasitol. 58:187-204, 1993). These sequences replace the predominant wild-type minicircle sequences to become dominant species in the kDNA network. The switch from wild-type-specific to variant-specific minicircles takes place rapidly within the same network, the period of minicircle dominance changes being defined as the transition period. To investigate the structural organization of the kDNA networks during this transition period, we analyzed kDNA from whole arsenite-resistant Leishmania parasites by dot hybridization with sequence-specific DNA probes and by electron-microscopic examination of isolated kDNA networks in vitro. Both analyses concluded that during the switch of dominance the predominant wild-type minicircle class was rapidly lost and that selective replication of variant-specific minicircles subsequently filled the network step by step. There was a time during the transition when few wild-type- or variant-specific minicircles were present, leaving the network almost empty and exposing a species of thick, long, fibrous DNA which seemed to form a skeleton for the network. Both minicircles and maxicircles were found to attach to these long DNA fibrils. The nature of the long DNA fibrils is not clear, but they may be important in providing a framework for the network structure and a support for the replication of minicircles and maxicircles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号