首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The costs of different modes of bipedalism are a key issue in reconstructing the likely gait of early human ancestors such as Australopithecus afarensis. Some workers, on the basis of morphological differences between the locomotor skeleton of A. afarensis and modern humans, have proposed that this hominid would have walked in a 'bent-hip, bent-knee' (BHBK) posture like that seen in the voluntary bipedalism of untrained chimpanzees. Computer modelling studies using inverse dynamics indicate that on the basis of segment proportions AL-288-1 should have been capable of mechanically effective upright walking, but in contrast predicted that BHBK walking would have been highly ineffective. The measure most pertinent to natural selection, however, is more likely to be the complete, physiological, or metabolic energy cost. We cannot measure this parameter in a fossil. This paper presents the most complete investigation yet of the metabolic and thermoregulatory costs of BHBK walking in humans. Data show that metabolic costs including the basal metabolic rate (BMR) increase by around 50% while the energy costs of locomotion and blood lactate production nearly double, heat load is increased, and core temperature does not return to normal within 20 minutes rest. Net effects imply that a resting period of 150% activity time would be necessary to prevent physiologically intolerable heat load. Preliminary data for children suggest that scaling effects would not significantly reduce relative costs for hominids of AL-288-1's size. Data from recent studies using forwards dynamic modelling confirm that similar total (including BMR) and locomotor metabolic costs would have applied to BHBK walking by AL-288-1. We explore some of the ecological consequences of our findings.  相似文献   

2.
Size and proportions of the postcranial skeleton differ markedly between Australopithecus afarensis and Homo ergaster, and between the latter and modern Homo sapiens. This study uses computer simulations of gait in models derived from the best-known skeletons of these species (AL 288-1, Australopithecus afarensis, 3.18 million year ago) and KNM-WT 15000 (Homo ergaster, 1.5-1.8 million year ago) compared to models of adult human males and females, to estimate the required muscle power during bipedal walking, and to compare this with those in modern humans. Skeletal measurements were carried out on a cast of KNM-WT 15000, but for AL 288-1 were taken from the literature. Muscle attachments were applied to the models based on their position relative to the bone in modern humans. Joint motions and moments from experiments on human walking were input into the models to calculate muscle stress and power. The models were tested in erect walking and 'bent-hip bent-knee' gait. Calculated muscle forces were verified against EMG activity phases from experimental data, with reference to reasonable activation/force delays. Calculated muscle powers are reasonably comparable to experimentally derived metabolic values from the literature, given likely values for muscle efficiency. The results show that: 1) if evaluated by the power expenditure per unit of mass (W/kg) in walking, AL 288-1 and KNM-WT 15000 would need similar power to modern humans; however, 2) with distance-specific parameters as the criteria, AL 288-1 would require to expend relatively more muscle power (W/kg.m(-1)) in comparison to modern humans. The results imply that in the evolution of bipedalism, body proportions, for example those of KNM-WT 15000, may have evolved to obtain an effective application of muscle power to bipedal walking over a long distance, or at high speed.  相似文献   

3.
In this study, we examined the kinematics of bipedal walking in macaque monkeys that have been highly trained to stand and walk bipedally, and compared them to the kinematics of bipedal walking in ordinary macaques. The results revealed that the trained macaques walked with longer and less frequent strides than ordinary subjects. In addition, they appear to have used inverted pendulum mechanics during bipedal walking, which resulted in an efficient exchange of potential and kinetic energy. These gait characteristics resulted from the relatively more extended hindlimb joints of the trained macaques. By contrast, the body of the ordinary macaques translated downward during the single-limb stance phase due to more flexed hindlimb joints. This resulted in almost in-phase fluctuations of potential and kinetic energy, which indicated that energy transformation was less efficient in the ordinary macaques. The findings provide two insights into the early stage of the evolution of human bipedalism. First, the finding that training considerably improved bipedal walking a posteriori may explain why the very first bipeds that might not yet have been morphologically adapted to bipedal walking continued to walk bipedally. The evolutionary transition from quadrupedalism to bipedalism might not be as difficult as has been envisioned. In addition, the finding that macaques, which are phylogenetically distant from humans and in which bipedal walking is unlike human walking, could develop humanlike gait characteristics with training, provides strong support for the commonly held but unproven idea that the characteristics of the human gait are advantageous to human bipedalism.  相似文献   

4.
Center of mass (CoM) oscillations were documented for 81 bipedal walking strides of three chimpanzees. Full‐stride ground reaction forces were recorded as well as kinematic data to synchronize force to gait events and to determine speed. Despite being a bent‐hip, bent‐knee (BHBK) gait, chimpanzee walking uses pendulum‐like motion with vertical oscillations of the CoM that are similar in pattern and relative magnitude to those of humans. Maximum height is achieved during single support and minimum height during double support. The mediolateral oscillations of the CoM are more pronounced relative to stature than in human walking when compared at the same Froude speed. Despite the pendular nature of chimpanzee bipedalism, energy recoveries from exchanges of kinetic and potential energies are low on average and highly variable. This variability is probably related to the poor phasic coordination of energy fluctuations in these facultatively bipedal animals. The work on the CoM per unit mass and distance (mechanical cost of transport) is higher than that in humans, but lower than that in bipedally walking monkeys and gibbons. The pronounced side sway is not passive, but constitutes 10% of the total work of lifting and accelerating the CoM. CoM oscillations of bipedally walking chimpanzees are distinctly different from those of BHBK gait of humans with a flat trajectory, but this is often described as “chimpanzee‐like” walking. Human BHBK gait is a poor model for chimpanzee bipedal walking and offers limited insights for reconstructing early hominin gait evolution. Am J Phys Anthropol 156:422–433, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
In animal walking, the gravitational potential and kinetic energy of the center of mass (COM) fluctuates out-of-phase to reduce the energetic cost of locomotion via an inverted pendulum mechanism, and, in canine quadrupedal walking, up to 70% of the mechanical energy can be recovered. However, the rate of energy recovery for quadrupedal walking in primates has been reported to be comparatively lower. The present study analyzed fluctuations in the potential and kinetic energy of the COM during quadrupedal walking in the Japanese macaque to clarify the mechanisms underlying this inefficient utilization of the inverted pendulum mechanism in primates. Monkeys walked on a wooden walkway at a self-selected speed, and ground reaction forces were measured, using a force platform, to calculate patterns of mechanical energy fluctuation and rates of energy recovery. Our results demonstrated that rates of energy recovery for quadrupedal walking in Japanese macaques were approximately 30–50%, much smaller than those reported for dogs. Comparisons of the patterns of mechanical energy fluctuation suggested that the potential and kinetic energies oscillated relatively more in-phase, and amplitudes did not attain near equality during quadrupedal walking in Japanese macaques, possibly because of greater weight support (reaction force) of the hindlimbs and more protracted forelimbs at touchdown in the Japanese macaque, two of the three commonly accepted locomotor characteristics distinguishing primates from non-primate mammals.  相似文献   

6.
It is widely accepted that humans and animals minimize energetic cost while walking. While such principles predict average behavior, they do not explain the variability observed in walking. For robust performance, walking movements must adapt at each step, not just on average. Here, we propose an analytical framework that reconciles issues of optimality, redundancy, and stochasticity. For human treadmill walking, we defined a goal function to formulate a precise mathematical definition of one possible control strategy: maintain constant speed at each stride. We recorded stride times and stride lengths from healthy subjects walking at five speeds. The specified goal function yielded a decomposition of stride-to-stride variations into new gait variables explicitly related to achieving the hypothesized strategy. Subjects exhibited greatly decreased variability for goal-relevant gait fluctuations directly related to achieving this strategy, but far greater variability for goal-irrelevant fluctuations. More importantly, humans immediately corrected goal-relevant deviations at each successive stride, while allowing goal-irrelevant deviations to persist across multiple strides. To demonstrate that this was not the only strategy people could have used to successfully accomplish the task, we created three surrogate data sets. Each tested a specific alternative hypothesis that subjects used a different strategy that made no reference to the hypothesized goal function. Humans did not adopt any of these viable alternative strategies. Finally, we developed a sequence of stochastic control models of stride-to-stride variability for walking, based on the Minimum Intervention Principle. We demonstrate that healthy humans are not precisely “optimal,” but instead consistently slightly over-correct small deviations in walking speed at each stride. Our results reveal a new governing principle for regulating stride-to-stride fluctuations in human walking that acts independently of, but in parallel with, minimizing energetic cost. Thus, humans exploit task redundancies to achieve robust control while minimizing effort and allowing potentially beneficial motor variability.  相似文献   

7.
Bipedal walking following inverted pendulum mechanics is constrained by two requirements: sufficient kinetic energy for the vault over midstance and sufficient gravity to provide the centripetal acceleration required for the arc of the body about the stance foot. While the acceleration condition identifies a maximum walking speed at a Froude number of 1, empirical observation indicates favoured walk-run transition speeds at a Froude number around 0.5 for birds, humans and humans under manipulated gravity conditions. In this study, I demonstrate that the risk of 'take-off' is greatest at the extremes of stance. This is because before and after kinetic energy is converted to potential, velocities (and so required centripetal accelerations) are highest, while concurrently the component of gravity acting in line with the leg is least. Limitations to the range of walking velocity and stride angle are explored. At walking speeds approaching a Froude number of 1, take-off is only avoidable with very small steps. With realistic limitations on swing-leg frequency, a novel explanation for the walk-run transition at a Froude number of 0.5 is shown.  相似文献   

8.
Until recently, the last common ancestor of African apes and humans was presumed to resemble living chimpanzees and bonobos. This was frequently extended to their locomotor pattern leading to the presumption that knuckle-walking was a likely ancestral pattern, requiring bipedality to have emerged as a modification of their bent-hip-bent-knee gait used during erect walking. Research on the development and anatomy of the vertebral column, coupled with new revelations from the fossil record (in particular, Ardipithecus ramidus), now demonstrate that these presumptions have been in error. Reassessment of the potential pathway to early hominid bipedality now reveals an entirely novel sequence of likely morphological events leading to the emergence of upright walking.  相似文献   

9.
Bipedalism is a defining feature of the hominin lineage, but the nature and efficiency of early hominin walking remains the focus of much debate. Here, we investigate walking cost in early hominins using experimental data from humans and chimpanzees. We use gait and energetics data from humans, and from chimpanzees walking bipedally and quadrupedally, to test a new model linking locomotor anatomy and posture to walking cost. We then use this model to reconstruct locomotor cost for early, ape-like hominins and for the A.L. 288 Australopithecus afarensis specimen. Results of the model indicate that hind limb length, posture (effective mechanical advantage), and muscle fascicle length contribute nearly equally to differences in walking cost between humans and chimpanzees. Further, relatively small changes in these variables would decrease the cost of bipedalism in an early chimpanzee-like biped below that of quadrupedal apes. Estimates of walking cost in A.L. 288, over a range of hypothetical postures from crouched to fully extended, are below those of quadrupedal apes, but above those of modern humans. These results indicate that walking cost in early hominins was likely similar to or below that of their quadrupedal ape-like forebears, and that by the mid-Pliocene, hominin walking was less costly than that of other apes. This supports the hypothesis that locomotor energy economy was an important evolutionary pressure on hominin bipedalism.  相似文献   

10.
What morphological and functional factors allow for the unique and characteristic upright striding walk of the hominin lineage? Predictive models of locomotion that arise from considering mechanisms of energy loss indicate that collision-like losses at the transition between stance limbs are important determinants of bipedal gait. Theoretical predictions argue that these collisional losses can be reduced by having “functional extra legs” which are physically the heel and the toe part of a single anatomical foot. The ideal spacing for these “functional legs” are up to a quarter of a stride length, depending on the model employed. We evaluate the foot in the context of the dynamics of a bipedal system and compare predictions of optimal foot size against empirical data from modern humans, the Laetoli footprint trackways, and chimpanzees walking bipedally. The dynamics-based modeling approach provides substantial insight into how, and why, walking works as it does, even though current models are too simple to make predictions at a level adequate to anticipate specific morphology except at the most general level.  相似文献   

11.
Inverted pendulum models of walking predict that little muscle work is required for the exchange of body potential and kinetic energy in single-limb support. External power during walking (product of the measured ground reaction force and body center-of-mass (COM) velocity) is often analyzed to deduce net work output or mechanical energetic cost by muscles. Based on external power analyses and inverted pendulum theory, it has been suggested that a primary mechanical energetic cost may be associated with the mechanical work required to redirect the COM motion at the step-to-step transition. However, these models do not capture the multi-muscle, multi-segmental properties of walking, co-excitation of muscles to coordinate segmental energetic flow, and simultaneous production of positive and negative muscle work. In this study, a muscle-actuated forward dynamic simulation of walking was used to assess whether: (1). potential and kinetic energy of the body are exchanged with little muscle work; (2). external mechanical power can estimate the mechanical energetic cost for muscles; and (3.) the net work output and the mechanical energetic cost for muscles occurs mostly in double support. We found that the net work output by muscles cannot be estimated from external power and was the highest when the COM moved upward in early single-limb support even though kinetic and potential energy were exchanged, and muscle mechanical (and most likely metabolic) energetic cost is dominated not only by the need to redirect the COM in double support but also by the need to raise the COM in single support.  相似文献   

12.
Capuchin monkeys are known to use bipedalism when transporting food items and tools. The bipedal gait of two capuchin monkeys in the laboratory was studied with three-dimensional kinematics. Capuchins progress bipedally with a bent-hip, bent-knee gait. The knee collapses into flexion during stance and the hip drops in height. The knee is also highly flexed during swing to allow the foot which is plantarflexed to clear the ground. The forefoot makes first contact at touchdown. Stride frequency is high, and stride length and limb excursion low. Hind limb retraction is limited, presumably to reduce the pitch moment of the forward-leaning trunk. Unlike human bipedalism, the bipedal gait of capuchins is not a vaulting gait, and energy recovery from pendulum-like exchanges is unlikely. It extends into speeds at which humans and other animals run, but without a human-like gait transition. In this respect it resembles avian bipedal gaits. It remains to be tested whether energy is recovered through cyclic elastic storage and release as in bipedal birds at higher speeds. Capuchin bipedalism has many features in common with the facultative bipedalism of other primates which is further evidence for restrictions on a fully upright striding gait in primates that transition to bipedalism. It differs from the facultative bipedalism of other primates in the lack of an extended double-support phase and short aerial phases at higher speeds that make it a run by kinematic definition. This demonstrates that facultative bipedalism of quadrupedal primates need not necessarily be a walking gait.  相似文献   

13.
Humans tend to swing their arms when they walk, a curious behaviour since the arms play no obvious role in bipedal gait. It might be costly to use muscles to swing the arms, and it is unclear whether potential benefits elsewhere in the body would justify such costs. To examine these costs and benefits, we developed a passive dynamic walking model with free-swinging arms. Even with no torques driving the arms or legs, the model produced walking gaits with arm swinging similar to humans. Passive gaits with arm phasing opposite to normal were also found, but these induced a much greater reaction moment from the ground, which could require muscular effort in humans. We therefore hypothesized that the reduction of this moment may explain the physiological benefit of arm swinging. Experimental measurements of humans (n = 10) showed that normal arm swinging required minimal shoulder torque, while volitionally holding the arms still required 12 per cent more metabolic energy. Among measures of gait mechanics, vertical ground reaction moment was most affected by arm swinging and increased by 63 per cent without it. Walking with opposite-to-normal arm phasing required minimal shoulder effort but magnified the ground reaction moment, causing metabolic rate to increase by 26 per cent. Passive dynamics appear to make arm swinging easy, while indirect benefits from reduced vertical moments make it worthwhile overall.  相似文献   

14.
Abstract

In this paper, a mechanical model of the skeletal muscle of human lower limb system is established by using the Hill muscle model and kinetic equation of the movement of lower extremities according to the attachment positions of skeletal muscle. State vector and neural control are delineated by the direct configuration method. Changes of gait and skeletal muscle stress during walking process are analyzed with energy consumption as objective function. Results illustrate that simulation data are in good agreement with actual walking gait data. Feasibility and correctness of the designed model and control behavior of skeletal muscle tension structure are also verified.  相似文献   

15.
Compared to most quadrupedal mammals, humans are energetically inefficient when running at high speeds. This fact can be taken to mean that human bipedalism evolved for reasons other than to reduce relative energy cost during locomotion. Recalculation of the energy expended during human walking at normal speeds shows that (1) human bipedalism is at least as efficient as typical mammalian quadrupedalism and (2) human gait is much more efficient than bipedal or quadrupedal locomotion in the chimpanzee. We conclude that bipedalism bestowed an energetic advantage on the Miocene hominoid ancestors of the Hominidae.  相似文献   

16.
The Froude number has been widely used in anthropology to adjust for size differences when comparing gait parameters or other nonmorphological locomotor variables (such as optimal walking speed or speed at gait transitions) among humans, nonhuman primates, and fossil hominins. However, the dynamic similarity hypothesis, which is the theoretical basis for Froude number corrections, was originally developed and tested at much higher taxonomic levels, for which the ranges of variation are much greater than in the intraspecific or intrageneric comparisons typical of anthropological studies. Here we present new experimental data on optimal walking speed and the mass-specific cost of transport at that speed from 19 adult humans walking on a treadmill, and evaluate the predictive power of the dynamic similarity hypothesis in this sample. Contrary to the predictions of the dynamic similarity hypothesis, we found that the mass-specific cost of transport at experimentally measured optimal walking speed and Froude number were not equal across individuals, but retained a significant correlation with body mass. Overall, the effect of lower limb length on optimal walking speed was weak. These results suggest that the Froude number may not be an effective way for anthropologists to correct for size differences across individuals, but more studies are needed. We suggest that researchers first determine whether geometric similarity characterizes their data before making inferences based on the dynamic similarity hypothesis, and then check the consistency of their results with and without Froude number corrections before drawing any firm conclusions.  相似文献   

17.
Dynamic balance in human locomotion can be assessed through the local dynamic stability (LDS) method. Whereas gait LDS has been used successfully in many settings and applications, little is known about its sensitivity to individual characteristics of healthy adults. Therefore, we reanalyzed a large dataset of accelerometric data measured for 100 healthy adults from 20 to 70 years of age performing 10 min treadmill walking. We sought to assess the extent to which the variations of age, body mass and height, sex, and preferred walking speed (PWS) could influence gait LDS. The random forest (RF) and multiple adaptive regression splines (MARS) algorithms were selected for their good bias-variance tradeoff and their capabilities to handle nonlinear associations. First, through variable importance measure (VIM), we used RF to evaluate which individual characteristics had the highest influence on gait LDS. Second, we used MARS to detect potential interactions among individual characteristics that may influence LDS. The VIM and MARS results indicated that PWS and age correlated with LDS, whereas no associations were found for sex, body height, and body mass. Further, the MARS model detected an age by PWS interaction: on one hand, at high PWS, gait stability is constant across age while, on the other hand, at low PWS, gait instability increases substantially with age. We conclude that it is advisable to consider the participants’ age as well as their PWS to avoid potential biases in evaluating dynamic balance through LDS.  相似文献   

18.
19.
The emu is a large, (bipedal) flightless bird that potentially can be used to study various orthopaedic disorders in which load protection of the experimental limb is a limitation of quadrupedal models. An anatomy-based analysis of normal emu walking gait was undertaken to determine hip contact forces for comparison with human data. Kinematic and kinetic data captured for two laboratory-habituated emus were used to drive the model. Muscle attachment data were obtained by dissection, and bony geometries were obtained by CT scan. Inverse dynamics calculations at all major lower-limb joints were used in conjunction with optimization of muscle forces to determine hip contact forces. Like human walking gait, emu ground reaction forces showed a bimodal distribution over the course of the stance phase. Two-bird averaged maximum hip contact force was approximately 5.5 times body weight, directed nominally axially along the femur. This value is only modestly larger than optimization-based hip contact forces reported in literature for humans. The interspecies similarity in hip contact forces makes the emu a biomechanically attractive animal in which to model loading-dependent human orthopaedic hip disorders.  相似文献   

20.
Optimal foot shape for a passive dynamic biped   总被引:1,自引:0,他引:1  
Passive walking dynamics describe the motion of a biped that is able to "walk" down a shallow slope without any actuation or control. Instead, the walker relies on gravitational and inertial effects to propel itself forward, exhibiting a gait quite similar to that of humans. These purely passive models depend on potential energy to overcome the energy lost when the foot impacts the ground. Previous research has demonstrated that energy loss at heel-strike can vary widely for a given speed, depending on the nature of the collision. The point of foot contact with the ground (relative to the hip) can have a significant effect: semi-circular (round) feet soften the impact, resulting in much smaller losses than point-foot walkers. Collisional losses are also lower if a single impulse is broken up into a series of smaller impulses that gradually redirect the velocity of the center of mass rather than a single abrupt impulse. Using this principle, a model was created where foot-strike occurs over two impulses, "heel-strike" and "toe-strike," representative of the initial impact of the heel and the following impact as the ball of the foot strikes the ground. Having two collisions with the flat-foot model did improve efficiency over the point-foot model. Representation of the flat-foot walker as a rimless wheel helped to explain the optimal flat-foot shape, driven by symmetry of the virtual spoke angles. The optimal long period foot shape of the simple passive walking model was not very representative of the human foot shape, although a reasonably anthropometric foot shape was predicted by the short period solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号