首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Leucine zipper-bearing kinase (LZK) is a novel member of the mixed lineage kinase (MLK) protein family, the cDNA of which was first cloned from a human brain cDNA library [Sakuma, H., Ikeda, A., Oka, S., Kozutsumi, Y., Zanetta, J.-P., and Kawasaki, T. (1997) J. Biol. Chem. 272, 28622-28629]. Several MLK family proteins have been proposed to function as MAP kinase kinase kinases in the c-Jun NH(2) terminal kinase (JNK)/stress-activated protein kinase (SAPK) pathway. In the present study, we demonstrated that, like other MLKs, LZK activated the JNK/SAPK pathway but not the ERK pathway. LZK directly phosphorylated and activated MKK7, one of the two MAPKKs in the JNK/SAPK pathway, to a comparable extent to a constitutive active form of MEKK1 (MEKK1DeltaN), suggesting a biological role of LZK as a MAPKKK in the JNK/SAPK pathway. Recent studies have revealed the essential roles of scaffold proteins in intracellular signaling pathways including MAP kinase pathways. JIP-1, one of the scaffold proteins, has been shown to be associated with MLKs, MKK7, and JNK [Whitmarsh, A.J., Cavanagh, J., Tournier, C., Yasuda, J., and Davis, R.J. (1998) Science 281, 1671-1674], suggesting the presence of a selective signaling pathway including LZK, MKK7, and JNK. Consistent with this hypothesis, we provided evidence that LZK is associated with the C-terminal region of JIP-1 through its kinase catalytic domain. In addition, LZK-induced JNK activation was markedly enhanced when LZK and JNK were co-expressed with JIP-1. These results constituted important clues for understanding the molecular mechanisms regulating the signaling specificities of various JNK activators under different cellular conditions.  相似文献   

3.
4.
The leucine-zipper (LZ) and sterile-alpha motif (SAM) kinase (ZAK) belongs to the MAP kinase kinase kinase (MAP3K) when upon over-expression in mammalian cells activates the JNK/SAPK pathway. The mechanisms by which ZAK activity is regulated are not well understood. Co-expression of dominant-negative MKK7 but not MKK4 and ZAK significantly attenuates JNK/SAPK activation. This result suggests that ZAK activates JNK/SAPK mediated by downstream target, MKK7. Expression of ZAK but not kinase-dead ZAK in 10T1/2 cells results in the disruption of actin stress fibers and morphological changes. Therefore, ZAK activity may be involved in actin organization regulation. Expression of wild-type ZAK increases the cell population in the G(2)/M phase of the cell cycle, which may indicate G(2) arrest. Western blot analysis shows that the decreased cyclin E level correlated strongly with the low proliferative capacity of ZAK-expressed cells.  相似文献   

5.
Mixed lineage kinase 3 mediates gp120IIIB-induced neurotoxicity   总被引:1,自引:0,他引:1  
Overexpression of gp120, the major coat protein of the HIV-1 virus, in central glial cells, or treatment of neurons with gp120 in culture, produces apoptotic neuronal death. Here we demonstrate that CEP-1347 (KT7515), an inhibitor of mixed lineage kinase 3 (MLK3), an upstream activator of JNK, inhibits gp120IIIB-induced apoptosis of hippocampal neurons. Furthermore, expression of wild type MLK3 in hippocampal pyramidal neurons enhanced gp120IIIB-induced neurotoxicity, whereas expression of a dominant negative MLK3 protected neurons from the toxic effects of the glycoprotein. These results indicate a role for MLK3 signaling in gp120IIIB-induced neuronal death, and suggest potential clinical utility of CEP-1347 in inhibiting the progression of AIDS dementia.  相似文献   

6.
The role of the checkpoint kinase 2 (Chk2) as an upstream activator of p53 following DNA damage has been controversial. We have recently shown that Chk2 and the DNA-dependent protein kinase (DNA-PK) are both involved in DNA damage-induced apoptosis but not G(1) arrest in mouse embryo fibroblasts. Here we demonstrate that Chk2 is required to activate p53 in vitro as measured by its ability to bind its consensus DNA target sequence following DNA damage and is in fact the previously unidentified factor working synergistically with DNA-PK to activate p53. The gene mutated in ataxia telangiectasia is not involved in this p53 activation. Using wortmannin, serine 15 mutants of p53, DNA-PK null cells and Chk2 null cells, we demonstrate that DNA-PK and Chk2 act independently and sequentially on p53. Furthermore, the p53 target of these two kinases represents a latent (preexisting) population of p53. Taken together, the results from these studies are consistent with a model in which DNA damage causes an immediate and sequential modification of latent p53 by DNA-PK and Chk2, which under appropriate conditions can lead to apoptosis.  相似文献   

7.
8.
Sun L  Wang H  Wang Z  He S  Chen S  Liao D  Wang L  Yan J  Liu W  Lei X  Wang X 《Cell》2012,148(1-2):213-227
The receptor-interacting serine-threonine kinase 3 (RIP3) is a key signaling molecule in the programmed necrosis (necroptosis) pathway. This pathway plays important roles in a variety of physiological and pathological conditions, including development, tissue damage response, and antiviral immunity. Here, we report the identification of a small molecule called (E)-N-(4-(N-(3-methoxypyrazin-2-yl)sulfamoyl)phenyl)-3-(5-nitrothiophene-2-yl)acrylamide--hereafter referred to as necrosulfonamide--that specifically blocks necrosis downstream of RIP3 activation. An affinity probe derived from necrosulfonamide and coimmunoprecipitation using anti-RIP3 antibodies both identified the mixed lineage kinase domain-like protein (MLKL) as the interacting target. MLKL was phosphorylated by RIP3 at the threonine 357 and serine 358 residues, and these phosphorylation events were critical for necrosis. Treating cells with necrosulfonamide or knocking down MLKL expression arrested necrosis at a specific step at which RIP3 formed discrete punctae in cells. These findings implicate MLKL as a key mediator of necrosis signaling downstream of the kinase RIP3.  相似文献   

9.
Using a well-defined model membrane bilayer system, incorporation of both lipid second messengers, 1,2-diacylglycerol and arachidonic acid, at submaximal activating concentrations, resulted in a synergistic activation of protein kinase C in a Ca2+/phosphatidylserine-dependent manner as measured by monitoring phosphorylation of phosphoprotein substrates. The arachidonic acid appears to modulate membrane properties both at the hydrocarbon core and the membrane surface increasing the availability of the diacylglycerol which can bind to and subsequently activate the enzyme. Co-application of these two lipid activators to the Hermissenda photoreceptor reduced K+ channel conductance in a synergistic manner via a PKC-dependent pathway. Thus, these in vivo and in vitro studies suggest that the membrane bilayer properties of these PKC lipid activators interact to specifically regulate the cellular lipid microenvironment resulting in PKC activation.  相似文献   

10.
Mixed lineage kinase 2 (MLK2) is a protein kinase that signals in the stress-activated Jun N-terminal kinase signal transduction pathway. We used immunoprecipitation and mass spectrometric analysis to identify MLK2-binding proteins in cell lines with inducible expression of green fluorescent protein-tagged MLK2. Here we report the identification of clathrin as a binding partner for MLK2 in both cultured cells and mammalian brain. We demonstrate that clathrin binding requires a motif (LLDMD) located near the MLK2 C terminus, which is similar to "clathrin box" motifs important for binding of clathrin coat assembly and accessory proteins to the clathrin heavy chain. A C-terminal fragment of MLK2 containing this motif binds strongly to clathrin, and mutation of the LLDMD sequence to LAAAD completely abrogates clathrin binding. We isolated clathrin-coated vesicles from green fluorescent protein-MLK2-expressing cells and from mouse brain lysates and found that MLK2 is enriched along with clathrin in these vesicles. In addition, we demonstrated that endogenous MLK2 co-immunoprecipitates with clathrin heavy chain from the vesicle-enriched fraction of mouse brain lysate. Furthermore, overexpression of MLK2 in cultured cells inhibits accumulation of labeled transferrin in recycling endosomes during receptor-mediated endocytosis. These findings suggest a role for MLK2 and the stress-signaling pathway at sites of clathrin activity in vesicle formation or trafficking.  相似文献   

11.
12.
We examined whether ANG II and TNF-alpha cooperatively induce vascular inflammation using the expression of monocyte chemoattractant protein (MCP)-1 as a marker of vascular inflammation. ANG II and TNF-alpha stimulated MCP-1 expression in a synergistic manner in vascular smooth muscle cells. ANG II-induced MCP-1 expression was potently inhibited to a nonstimulated basal level by blockade of the p38-dependent pathway but only partially inhibited by blockade of the NF-kappaB-dependent pathway. In contrast, TNF-alpha-induced MCP-1 expression was potently suppressed by blockade of NF-kappaB activation but only modestly suppressed by blockade of p38 activation. ANG II- and TNF-alpha-induced activation of NF-kappaB- and p38-dependent pathways was partially inhibited by pharmacological inhibitors of ROS production. Furthermore, ANG II- and TNF-alpha-stimulated MCP-1 expression was partially suppressed by ROS inhibitors. We also examined whether endogenous ANG II and TNF-alpha cooperatively promote vascular inflammation in vivo using a wire injury model of the rat femoral artery. Blockade of both ANG II and TNF-alpha further suppressed neointimal formation, macrophage infiltration, and MCP-1 expression in an additive manner compared with blockade of ANG II or TNF-alpha alone. These results suggested that ANG II and TNF-alpha synergistically stimulate MCP-1 expression via the utilization of distinct intracellular signaling pathways (p38- and NFkappaB-dependent pathways) and that these pathways are activated in ROS-dependent and -independent manners. These results also suggest that ANG II and TNF-alpha cooperatively stimulate vascular inflammation in vivo as well as in vitro.  相似文献   

13.
14.
15.
Mutations in cryopyrin and pyrin proteins are responsible for several autoinflammatory disorders in humans, suggesting that these proteins play important roles in regulating inflammation. Using a HEK293 cell-based reconstitution system that stably expresses ASC and procaspase-1 we demonstrated that neither cryopyrin nor pyrin or their corresponding disease-associated mutants could significantly activate NF-kappaB in this system. However, both cryopyrin and two disease-associated cryopyrin mutants induced ASC oligomerization and ASC-dependent caspase-1 activation, with the disease-associated mutants being more potent than the wild-type (WT) cryopyrin, because of increased self-oligomerization. Contrary to the proposed anti-inflammatory activity of WT pyrin, our results demonstrated that pyrin, like cryopyrin, can also assemble an inflammasome complex with ASC and procaspase-1 leading to ASC oligomerization, caspase-1 activation and interleukin-1beta processing. Thus, we propose that pyrin could function as a proinflammatory molecule.  相似文献   

16.
17.
18.
Wang Y  Sun X  Wu J  Xu BE  Gu C  Wang H  Wang X  Tan F  Peng X  Qiang B  Yuan J  Luo Y 《Biochemistry》2008,47(1):441-448
Tumor necrosis factor alpha (TNFalpha) triggers a signaling pathway converging on the activation of NF-kappaB, which forms the basis for many physiological and pathological processes. In a kinase gene screen using a NF-kappaB reporter, we observed that overexpression of casein kinase 1alpha (CK1alpha) enhanced TNFalpha-induced NF-kappaB activation, and a CK1alpha kinase dead mutant, CK1alpha (K46A), reduced NF-kappaB activation induced by TNFalpha. We subsequently demonstrated that CK1alpha interacted with receptor interacting protein 1 (RIP1) but not with TRADD, TRAF2, MEKK3, IKKalpha, IKKbeta, or IKKgamma in mammalian cells. RIP1 is an indispensable molecule in TNFalpha/NF-kappaB signaling. We demonstrated that CK1alpha interacted with and phosphorylated RIP1 at the intermediate domain. Finally, we showed that CK1alpha enhanced RIP1-mediated NF-kappaB activation. Taken together, our studies suggest that CK1alpha is another kinase that regulates RIP1 function in NF-kappaB activation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号