首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A very similar ultrastructure has been attributed to pancreatic polypeptide and somatostatin cells in chickens. In order to characterize any possible differences between them, cells shown to be immunoreactive for these hormones in semi-thin sections of chick pancreas were identified in adjacent thin sections prepared for conventional electron microscopy. In this way the ultrastructural features of the immunoreactive cells could be determined. In general, in somatostatin-immunoreactive cells, granule profiles are almost exclusively round, whereas in pancreatic polypeptide cells there are elongate as well round profiles. Within cells of both types the electron density of the granule matrix varies from one granule to another, but the range of density is greater in pancreatic polypeptide granules. The latter are slightly smaller than somatostatin granules.  相似文献   

2.
Pancreatic endocrine cells were examined by light and electron microscopic immunocytochemistry to discuss the co-localization of peptides in one cell type. A cells were irregular in shape with an occasional long cytoplasmic process, and contained glucagon-immunoreactive granules with various contours. These granules were 160-300nm in diameter with various density, and also immunoreactive to anti-human pancreatic polypeptide (PP) serum. A part of them were further immunoreactive to anti-somatostatin serum. B cells were round to elliptical in shape, and often aggregated around the capillaries. Granules of B cells were round to irregular in shape, 270-410 nm in diameter, and immunoreactive to anti-insulin serum. D cells were irregular in shape with meager cytoplasm, and contained somatostatin-immunoreactive granules. These granules were ovoid or teardrop in shape, 140-250nm in longitudinal diameter, and immunoreactive to both anti-somatostatin and anti-human PP sera. PP cells were round to spindle-shaped, and contained human PP-immunoreactive round granules 150-35nm in diameter. These findings reveal the existence of at least 4 types of endocrine cells secreting glucagon, insulin, somatostatin, and PP, respectively, in the newt pancreas, and suggest the co-localization of some of these peptides in one cell type.  相似文献   

3.
Most, if not all, endocrine cells seem capable of synthesizing and storing more than one hormone. Such cellular colocalization of hormones can be due either to the presence of two or more specific granules within the cells or to colocalization of the hormones within a single granule. The present study was performed to clarify the subcellular localization of insulin, glucagon, somatostatin, and pancreatic polypeptide within the endocrine cells of the human and porcine pancreas during fetal development, with special reference to possible colocalization of the hormones. The tissue specimens were processed for ultrastructural cytochemistry using Lowicryl as embedding medium. An immunogold labeling technique was used with two parallel, but not interacting, antibody chains. Sections from each specimen were double labeled in different combinations giving a complete covering of the four major islet hormones. During fetal life (50-90 days prenatally in porcine pancreas, 14 weeks gestation in the human pancreas) several hormones were demonstrated, not only in the same endocrine cells, but also in the same secretory granules (polyhormonal granules). Costorage of insulin, glucagon, somatostatin, and pancreatic polypeptide was demonstrated in granules in pancreatic endocrine fetal cells. At an early fetal stage, the endocrine cells contained either dense, round granules or pale, heteromorphous granules. With increasing age and maturation of the endocrine cells, structural differentiation of the secretory granules was found to be associated with a gradual disappearance of the polyhormonal granules. The first genuine monohormonal cell to appear in the porcine fetus was the pancreatic polypeptide cell (at 70 days gestation); it was followed by the somatostatin-producing endocrine cell. Mature insulin- and glucagon-producing cells were only demonstrated after birth. Thus, in the adult pancreatic endocrine cells, each specific endocrine cell type produced only one of the four classical hormones. The present investigation demonstrated that the endocrine cells of the fetal, but not the adult, pancreas are able to synthesize all the major islet hormones, and that these peptides are costored in the same granule. The data obtained support the concept of a common precursor stem cell for pancreatic hormone-producing cells.  相似文献   

4.
The gastroenteropancreatic (GEP) endocrine system of bowfin (Amia calva) was described using light and electron microscopy and immunological methods. The islet organ (endocrine pancreas) consists of diffusely scattered, mostly small islets and isolated patches of cells among and within the exocrine acini. The islets are composed of abundant, centrally located B cells immunoreactive to bovine and lamprey insulin antisera and D cells showing a widespread distribution and specificity to somatostatin antibodies. A and F cells are present at the very periphery of the islets and are immunoreactive with antisera against glucagon (and glucagon-like peptide) and several peptides of the pancreatic polypeptide (PP)-family, respectively. The peptides of the two families usually collocates within the same peripheral islet cells and are the most common immunoreactive peptides present in the extra-islet tissue. Immunocytochemistry and fine structural observations characterised the granule morphology for B and D cells and identified two cell types with granules immunoreactive to glucagon antisera. These two putative A cells had similar granules, which were distinct from either B or D cells, but one of the cells had rod-shaped cytoplasmic inclusions within cisternae of what appeared to be rough endoplasmic reticulum. The inclusions were not immunoreactive to either insulin or glucagon antisera. Only small numbers of cells in the stomach and intestine immunoreacted to antisera against somatostatin, glucagon, and PP-family peptides. The paucity of these cells was reflected in the low concentrations of these peptides in intestinal extracts. The GEP system of bowfin is not unlike that of other actinopterygian fishes, but there are some marked differences that may reflect the antiquity of this system and/or may be a consequence of the ontogeny of this system in this species.  相似文献   

5.
Low-voltage (5-kV) transmission electron microscopy revealed a novel aspect of the pancreatic acinar cell secretory granules not previously detected by conventional (80-kV) transmission electron microscopy. Examination of ultra-thin (30-nm) sections of non-osmicated, stain-free pancreatic tissue sections by low-voltage electron microscopy revealed the existence of granules with non-homogeneous matrix and sub-compartments having circular or oval profiles of different electron densities and sizes. Such partition is completely masked when observing tissues after postfixation with osmium tetroxide by low-voltage transmission electron microscopy at 5 kV and/or when thicker sections (70 nm) are examined at 80 kV. This morphological partition reflects an internal compartmentalization of the granule content that was previously predicted by morphological, physiological, and biochemical means. It corresponds to the segregation of the different secretory proteins inside the granule as demonstrated by high-resolution immunocytochemistry and reflects a well-organized aggregation of the secretory proteins at the time of granule formation in the trans-Golgi. Such partition of the granule matrix undergoes changes under experimental conditions known to alter the secretory process such as stimulation of secretion or diabetes.  相似文献   

6.
In mammals, neurotensin cells occur scattered in the epithelium of the jejunum-ileum. In chicken, neurotensin cells are abundant in the region of the gizzard-duodenal junction (antrum) where they occur intermingled with numerous somatostatin and gastrin cells. The neurotensin cells in chicken, dog and man were identified at the electron microscopic level by immunocytochemistry, using the consecutive semithin/ultrathin section technique. They contain numerous electron dense cytoplasmic granules, pre-dominantly in the basal portion of the cell. It was shown that these granules are the storage site for neurotensin. The neurotensin granules are round, highly electron dense and of about the same size in the different species examined (mean diameter 260--290 nm). In dog and man the granules have a tightly applied surrounding membrane while in the chicken a relatively electron lucent zone separates the electron dense core from the granule membrane. The ultrastructure of the neurotensin granules in chicken is somewhat reminiscent of that of the gastrin granules. The mean diameter of the gastrin granules in chicken antrum is 230 nm; for the somatostatin granules the mean diameter is 305 nm.  相似文献   

7.
Summary In mammals, neurotensin cells occur scattered in the epithelium of the jejunum-ileum. In chicken, neurotensin cells are abundant in the region of the gizzard-duodenal junction (antrum) where they occur intermingled with numerous somatostatin and gastrin cells. The neurotensin cells in chicken, dog and man were identified at the electron microscopic level by immunocytochemistry, using the consecutive semithin/ultrathin section technique. They contain numerous electron dense cytoplasmic granules, predominantly in the basal portion of the cell. It was shown that these granules are the storage site for neurotensin. The neurotensin granules are round, highly electron dense and of about the same size in the different species examined (mean diameter 260–290 nm). in dog and man the granules have a tightly applied surrounding membrane while in the chicken a relatively electron lucent zone separates the electron dense core from the granule membrane. The ultrastructure of the neurotensin granules in chicken is some-what reminiscent of that of the gastrin granules. The mean diameter of the gastrin granules in chicken antrum is 230 nm; for the somatostatin granules the mean diameter is 305 nm.  相似文献   

8.
Gastrin, pancreatic polypeptide and somatostatin immunoreactive cells in the gut of two fish with stomachs (perch and catfish) and a stomachless fish (carp) were studied by immunocytochemistry. In the gastric mucosa of perch and catfish, cells showing gastrin and somatostatin-like immunoreactivity are found, scattered among the surface mucous cells and mucous neck cells. No pancreatic polypeptide (P.P.) immunoreactive cells are detected in the gastric mucosa. Cells showing gastrin and P.P.-like immunoreactivity are observed in the intestinal mucosa of perch, catfish and carp. In this location no somatostatin immunoreactive cells are found.  相似文献   

9.
Correlative immunocytochemical and electron microscopic studies, using the semi thin-thin technic, were performed to identify the (entero) glucagon, somatostatin and pancreatic polypeptide-like immunoreactive cells of the human colonic mucosa. Mean granule diameter for each cell type was estimated according to two methods and histograms showing the granule size distribution were constructed. A total of 139 immunostained cells identified at the ultrastructural level were analyzed. Mean granule diameter for (entero)glucagon-containing cells was 318 +/- 11 nm but a reduction of granule size with age was noteworthy: granules were larger in the fetus (mean diameter 350 +/- 15) than in adults (mean diameter 310 +/- 10 nm). Somatostatin-containing cells, very rare in adults, were present in the fetal distal colon. Their general mean granule diameter was 354 +/- 18 nm but many cells had a mean granule diameter of more than 400 nm. A pancreatic polypeptide-like immunoreactivity was found only in (entero)glucagon-containing cells, pointing out the possible occurrence of both peptides (or of similar sequences) in the same cells. Previous ultrastructural studies dealing with a tentative classification of the human colonic endocrine cells were compared with the present data.  相似文献   

10.
Pancreastatin is a 49 amino acid comprising peptide isolated from porcine pancreas that is derived by proteolytic processing from chromogranin A. Using an antibody against the synthetic C-terminal fragment pancreastatin (33-49), we examined the light and electron microscopical immunocytochemical localization of this peptide in porcine tissues. Pancreastatin-like immunoreactivity (PLI) was found in pancreatic somatostatin-, insulin- and glucagon cells in varying intensities; pancreatic polypeptide cells were always negative. At the electron microscopical (EM) level the immunoreactivity was confined to the electron dense core of the secretory granules in the case of somatostatin and insulin cells or to the less electron dense "halo" of the glucagon granules. In the antrum PLI positive cells represented gastrin (G), somatostatin (D) and enterochromaffin (EC) cells, in the duodenum in addition to EC- and G-cells a small number of PLI positive cells showed a positive immunoreaction for glucagon-like peptide (GLP) I and secretin in serial sections. Both norepinephrine and epinephrine containing cells of the adrenal medulla exhibited a strong reaction for PLI. In the pituitary several cell populations stained with varying intensities, including gonadotrophs and thyrotrophys. PLI is present in a distinct and characteristic subpopulation of neuroendocrine cells in various organs. The subcellular localization may indicate a function in the granular concentration, packaging and storage of peptides and amines in the brain-gut endocrine system.  相似文献   

11.
Serotonin-producing pancreatic endocrine tumours are rare neoplasms which in most cases exhibit malignant biological behaviour. These tumours, in the majority of the well-documented cases, are composed of argyrophil- and argentaffin-positive cells which contain large pleomorphic neurosecretory granules. In contrast, argyrophilic non-argentaffin pancreatic endocrine tumours with tumour cells containing round neurosecretory granules are exceptional. In this study we describe such a tumour not associated with clinical evidence of carcinoid syndrome in a 60-year-old woman. Histological examination revealed tumour extension in pancreatic lymphatic vessels and veins but no evidence of locoregional or distant metastases. Ten months after surgery the patient showed no recurrence of the disease. Immunohistochemistry revealed cytoplasmic serotonin production in the tumour cells which were negative for anti-gastrin, insulin, glucagon, somatostatin, pancreatic polypeptide (PP), vasoactive intestinal peptide (VIP) and ACTH. This study emphasizes the usefulness of combined ultrastructural and immunohistochemical investigations in order to identify and characterize the rare pancreatic endocrine tumours with serotonin production.  相似文献   

12.
Summary The endocrine pancreas of the grey kangaroo,Macropus fuliginosus, was investigated by means of immunocytochemistry using the PAP method on the same section at the light- and electron-microscopic levels. Semithin plastic sections were stained individually with primary antibodies for insulin, glucagon, somatostatin and pancreatic polypeptide (PP), and then photographed. Sections were osmicated, re-embedded in BEEM capsules, and ultrathin sections made and examined. The same labelled cells as in the semithin sections were localised in the thin sections, photographs taken and the morphology of secretory granules studied. The insulin cells were pleomorphic; their secretory granules displayed an electron-dense core surrounded by an empty halo. The glucagon cells possessed granules with an electron-dense core usually surrounded by a halo of less dense granular material. Somatostatin cells had larger, less dense secretory granules. The PP cells showed small, dense secretory granules. In order for an ultrastructural study to be considered reliable for the definite identification of endocrine cell types, it is essential that it be corroborted by correlated immunocytochemical data at the light-and electron-microscopic levels.  相似文献   

13.
In the gastrointestinal tract somatostatin is localized in endocrine cells and in neurons. The antral somatostatin (D-) cell shares features of both cell types. The activity of the antral D-cell is regulated by intragastric pH. Therefore different states of gastric acidity were induced experimentally in order to study D-cell morphology at the electron microscopical level. The morphological findings were related to measurements of plasma and tissue concentrations of the peptide. The D-cell is characterized by extensive membrane interdigitations with neighbouring cells. Changes in the activity of antral D-cells are reflected by an increase in cytoplasmic secretory granule density and a shift of secretory granules towards basal cell processes. Direct endocrine cell contacts at the level of the perikarya were rarely observed. The intracellular distribution of secretory granules suggests that cell communication is more likely to take place at the level of the strongly immunoreactive cytoplasmic processes. No evidence for endocrine or exocrine (luminar) secretion was observed morphologically. This is in agreement with the concept of paracrine secretion of the antral D-cell.  相似文献   

14.
We investigated the co-localization in secretory granules of secretogranins/chromogranins, thyrotropin, and luteinizing hormone in ultra-thin frozen sections of cow anterior pituitary by double immunoelectron microscopy, using specific antibodies and protein A-gold particles of different sizes. The distribution of secretogranin II, chromogranin A, and chromogranin B (secretogranin I) was largely similar. In cells containing secretory granules of relatively small size (100-300 nm) and low electron density (identified as thyrotrophs and gonadotrophs by immunolabeling for the respective hormone) and in cells containing both small (170-250 nm) and large (300-500 nm) secretory granules of low electron density (also identified as gonadotrophs), all three secretogranins/chromogranins were detected in most if not all granules, being co-localized with the hormone. In cells containing both relatively large (400-550 nm), electron-dense granules and small, less electron-dense secretory granules (150-300 nm), identified as somatomammotrophs by double immunolabeling for growth hormone and prolactin, all three secretogranins/chromogranins were predominantly detected in the subpopulation of small, less electron-dense granules containing neither growth hormone nor prolactin. Interestingly, this granule subpopulation of somatomammotrophs was also immunoreactive for thyrotropin and luteinizing hormone. These data show that somatomammotrophs of cow anterior pituitary are highly multihormonal, in that the same cell can produce and store in secretory granules up to four different hormones and, in addition, the three secretogranins/chromogranins. Moreover, selective localization of the secretogranins/chromogranins together with thyrotropin and luteinizing hormone in a subpopulation of secretory granules of somatomammotrophs indicates the preferential co-packaging of the secretogranins/chromogranins and these hormones during secretory granule formation.  相似文献   

15.
Summary In the gastrointestinal tract somatostatin is localized in endocrine cells and in neurons. The antral somatostatin (D-) cell shares features of both cell types. The activity of the antral D-cell is regulated by intragastric pH. Therefore different states of gastric acidity were induced experimentally in order to study D-cell morphology at the electron microscopical level. The morphological findings were related to measurements of plasma and tissue concentrations of the peptide. The D-cell is characterized by extensive membrane interdigitations with neighbouring cells. Changes in the activity of antral D-cells are reflected by an increase in cytoplasmic secretory granule density and a shift of secretory granules towards basal cell processes. Direct endocrine cell contacts at the level of the perikarya were rarely observed. The intracellular distribution of secretory granules suggests that cell communication is more likely to take place at the level of the strongly immunoreactive cytoplasmic processes. No evidence for endocrine or exocrine (luminar) secretion was observed morphologically. This is in agreement with the concept of paracrine secretion of the antral D-cell.  相似文献   

16.
Summary The pancreatic endocrine tissue of Fugu rubripes rubripes consists of numerous round principal islets (Brockmann bodies) of various sizes scattered around the gall-bladder. The endocrine cells are divided into A-, B-, D-, and Ff-cells. Each cell type was identified by comparing thick and thin sections in both light and electron microscopy. Aldehyde-fuchsin positive B-cells contain numerous round secretory granules (average diameter 300 nm) each of which has a round compact core of moderate density; a narrow space exists between this core and the limiting membrane. Grimelius' silver positive A cells contain round secretory granules (average diameter 360 nm) with a hexagonal or tetragonal crystalline core (average diameter 170 nm) of high density; the silver grains preferentially appear in the space between the limiting membrane and the core. The crystalline core of each -granule often contains an appendix-like structure of variable shape. D cells blackened by the silver impregnation method of Hellman and Hellerström (1960) have round secretory granules (average diameter 320 nm) filled with a flocculent material of low density. The fourth cell type (Ff-cell) has a clear cytoplasm after differential staining for light microscopy. By electron microscopy, this cell has elongated fusiform secretory granules (520 nm average length × 230 nm average width) filled with numerous filaments arranged in parallel with the longitudinal axis. Figures suggesting granule formation in the sacs of the Golgi apparatus were obtained in all of islet cell types. Equivalents of emiocytotic release of secretory granules were encountered in the A and Ff cells.  相似文献   

17.
Summary Correlative immunocytochemical and electron microscopic studies, using the semi thin-thin technic, were performed to identify the (entero) glucagon, somatostatin and pancreatic polypeptide-like immunoreactive cells of the human colonic mucosa. Mean granule diameter for each cell type was estimated according to two methods and histograms showing the granule size distribution were constructed. A total of 139 immunostained cells identified at the ultrastructural level were analyzed. Mean granule diameter for (entero)glucagon-containing cells was 318±11 nm but a reduction of granule size with age was noteworthy: granules were larger in the fetus (mean diameter 350±15) than in adults (mean diameter 310±10 nm). Somatostatin-containing cells, very rare in adults, were present in the fetal distal colon. Their general mean granule diameter was 354±18 nm but many cells had a mean granule diameter of more than 400 nm. A pancreatic polypeptidelike immunoreactivity was found only in (entero)glucagon-containing cells, pointing out the possible occurrence of both peptides (or of similar sequences) in the same cells. Previous ultrastructural studies dealing with a tentative classification of the human colonic endocrine cells were compared with the present data.This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM).  相似文献   

18.
19.
The endocrine pancreas of the Australian brush-tailed possum (Trichosurus vulpecula) was investigated by means of immunocytochemistry using the avidin-biotin-peroxidase technique. This was a light microscopic study using this established technique. Serial paraffin sections were stained individually with primary antibodies for glucagon, insulin, somatostatin, and pancreatic polypeptide (PP), showing the same islet. Cells immunoreactive to glucagon, insulin, somatostatin and PP were found in endocrine islets. PP cells appear to be scattered amidst the exocrine portion also. Insulin immunoreactive cells were located in the central region of islet, glucagon in the periphery, somatostatin in periphery and had elongated processes. PP cells were more sparse and located both in the periphery of islet and amidst the exocrine tissue. These results can then be related to a similar study in the same marsupial, but using the immunofluorescence technique and to studies in other marsupials such as grey kangaroo (Macropus fuliginosus) fat-tailed dunnart (Sminthopsis crasicaudata) and the American opossum (Didelphis virginiana). These investigations are part of a study in Australian mammals.  相似文献   

20.
In the present study, we investigated types of pancreatic endocrine cells and its respective peptides in the Brazilian sparrow species using immunocytochemistry. The use of polyclonal specific antisera for somatostatin, glucagon, avian pancreatic polypeptide (APP), YY polypeptide (PYY) and insulin, revealed a diversified distribution in the pancreas. All these types of immunoreactive cells were observed in the pancreas with different amounts. Insulin-Immunoreactive cells to (B cells) were most numerous, preferably occupying the central place in the pancreatic islets. Somatostatin, PPA, PYY and glucagon immunoreactive cells occurred in a lower frequency in the periphery of pancreatic islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号