共查询到20条相似文献,搜索用时 0 毫秒
1.
Chan Alvin C. Wagner Michelle Kennedy Chris Chen Eve Lanuville Odette Mezl Vasek A. Tran Khai Choy Patrick C. 《Molecular and cellular biochemistry》1998,185(1-2):153-159
The alteration in calcium transport in the liver nuclei of rats orally administered carbon tetrachloride (CCl4) was investigated. Rats received a single oral administration of CCl4(5, 10, and 25%, 1.0ml/100 g body weight), and 5, 24 and 48 h later the animals were sacrificed. The administration of CCl4 (25%) caused a remarkable elevetion of calcium content in the liver tissues and the nuclei of rats. Liver nuclear Ca2+-ATPase activity was markedly decreased by CCl4 (25%) administration. The presence of dibutyryl cyclic AMP(10-4 and 10-3 M) or inositol 1,4,5-trisphosphate (10-6 and 10-5 M) in the enzyme reaction mixture caused a significant decrease in Ca2+-ATPase activity in the liver nuclei obtained from normal rat, while the enzyme activity was significantly increased by calmodulin (1.0 and 2.0 g/ml). These signaling factor's effects were completely impaired in the liver nuclei obtained from CCl4 (25%)-administered rats. DNA fragmentation in the liver nuclei obtained from CCl4 -administered rats was significantly decreased by the presence of EGTA (2 mM) in the reaction mixture, suggesting that the endogenous calcium activates nuclear DNA fragmentation. The present study demonstrates that calcium transport system in the liver nuclei is impaired by liver injury with CCl4 administration in rats. 相似文献
2.
Marshall J Krump E Lindsay T Downey G Ford DA Zhu P Walker P Rubin B 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(4):2084-2091
The purpose of this study was to define the role of secretory phospholipase A2 (sPLA2), calcium-independent PLA2, and cytosolic PLA2 (cPLA2) in arachidonic acid (AA) release from fMLP-stimulated human neutrophils. While fMLP induced the release of extracellular sPLA2 activity and AA, 70% of sPLA2 activity remained associated with the cell. Treatment with the cell-impermeable sPLA2 inhibitors DTT or LY311-727, or the anti-sPLA2 Ab 3F10 all inactivated extracellular sPLA2 activity, but had minimal effect on neutrophil AA mass release. In contrast, coincubation of streptolysin-O toxin-permeabilized neutrophils with DTT, LY311-727, or 3F10 all decreased [3H8]AA release from [3H8]AA-labeled, fMLP-stimulated cells. Exposure to fMLP resulted in a decrease in the electrophoretic mobility of cPLA2, a finding consistent with cPLA2 phosphorylation, and stimulated the translocation of cPLA2 from cytosolic to microsomal and nuclear compartments. The role of cPLA2 was further evaluated with the cPLA2 inhibitor methyl arachidonyl fluorophosphonate, which attenuated cPLA2 activity in vitro and decreased fMLP-stimulated AA mass release by intact neutrophils, but had no effect on neutrophil sPLA2 activity. Inhibition of calcium-independent PLA2 with haloenol lactone suicide substrate had no effect on neutrophil cPLA2 activity or AA mass release. These results indicate a role for cPLA2 and an intracellular or cell-associated sPLA2 in the release of AA from fMLP-stimulated human neutrophils. 相似文献
3.
Leslie CC 《Prostaglandins, leukotrienes, and essential fatty acids》2004,70(4):373-376
Cytosolic phospholipase A(2) alpha (cPLA(2)alpha) is the only PLA(2) that exhibits specificity for sn-2 arachidonic acid consistent with its primary role in mediating the agonist-induced release of arachidonic acid for eicosanoid production. It is subject to complex mechanisms of regulation that ensure that levels of free arachidonic acid are tightly controlled. The calcium-induced translocation of cPLA(2)alpha from the cytosol to membrane regulates its interaction with phospholipid substrate. cPLA(2)alpha is additionally regulated by phosphorylation on sites in the catalytic domain. Because of its central position as the upstream regulatory enzyme for initiating production of several classes of bioactive lipid mediators (leukotrienes, prostaglandins and platelet-activating factor), it is a potentially important pharmacological target for the control of inflammatory diseases. 相似文献
4.
Type II phospholipase A2 recombinant overexpression enhances stimulated arachidonic acid release 总被引:4,自引:0,他引:4
P Pernas J Masliah J L Olivier C Salvat T Rybkine G Bereziat 《Biochemical and biophysical research communications》1991,178(3):1298-1305
The coding sequence of type II phospholipase A2 from human placenta was cloned in a bovine papilloma virus-derived eukaryotic expression vector under the control of the metallothionein promoter. Stably transfected C127 mouse fibroblast lines were obtained with this vector. These transfected cells overexpressed a functional 14 kDa phospholipase A2, which was bulky secreted. However, a significant phospholipase A2 activity was measured in cell homogenates. The involvement of this 14 kDa phospholipase A2 in mechanisms related to stimulated arachidonic acid release was investigated. We could parallel the overexpression of phospholipase A2 with an increase in phorbol ester and fluoroaluminate-stimulated arachidonic acid release. Pertussis toxin inhibited this stimulation. These results suggest that the 14 kDa type II phospholipase A2 might contribute to stimulation of arachidonic acid release, and therefore to eicosanoid production. 相似文献
5.
Guanine nucleotides stimulate arachidonic acid release by phospholipase A2 in saponin-permeabilized human platelets 总被引:5,自引:0,他引:5
GTP or GTP gamma S alone caused low but significant liberation of arachidonic acid in saponin-permeabilized human platelets but not in intact platelets. GTP or GTP gamma S also enhanced thrombin-induced [3H]arachidonic acid release in permeabilized platelets. Inhibitors of the phospholipase C (neomycin)/diacylglycerol lipase (RHC 80267) pathway for arachidonate liberation did not reduce the [3H]arachidonic acid release. The loss of [3H]arachidonate radioactivity from phosphatidylcholine was almost equivalent to the increase in released [3H]arachidonic acid, suggesting the hydrolysis of phosphatidylcholine by phospholipase A2. The effect of GTP gamma S was greater at lower Ca2+ concentrations. These data indicate that the release of arachidonic acid by phospholipase A2 in saponin-treated platelets may be linked to a GTP-binding protein. 相似文献
6.
Saiga A Uozumi N Ono T Seno K Ishimoto Y Arita H Shimizu T Hanasaki K 《Prostaglandins & other lipid mediators》2005,75(1-4):79-89
Group X secretory phospholipase A2 (sPLA2-X) and cytosolic phospholipase A2 alpha (cPLA2alpha) are involved in the release of arachidonic acid (AA) from membrane phospholipids linked to the eicosanoid production in various pathological states. Recent studies have indicated the presence of various types of cross-talk between sPLA2s and cPLA2alpha resulting in effective AA release. Here we examined the dependence of sPLA2-X-induced potent AA release on the cPLA2alpha activation by using specific cPLA2alpha or sPLA2 inhibitors as well as cPLA2alpha-deficient mice. We found that Pyrrophenone, a cPLA2alpha-specific inhibitor, did not suppress the sPLA2-X-induced potent AA release and prostaglandin E2 formation in mouse spleen cells. Furthermore, the amount of AA released by sPLA2-X from spleen cells was not significantly altered by cPLA2alpha deficiency. These results suggest that sPLA2-X induces potent AA release without activation of cPLA2a, which might be relevant to eicosanoid production in some pathological states where cPLA2a is not activated. 相似文献
7.
Several studies indicate that phospholipase A(2) (PLA(2)) expression and/or activation account for the high levels of arachidonic acid (AA) detected in cancer and, together with the elevated expression of cyclooxygenase-2, lead to cell proliferation and tumor formation. Using Caco-2 cells, a human colorectal carcinoma cell, we studied the role of high-molecular-weight PLA(2)s, cytosolic PLA(2) (cPLA(2)), and calcium-independent PLA(2) (iPLA(2)) in the AA cascade and in cell growth. Treatment with an antisense oligonucleotide against cPLA(2)alpha decreased [(3)H]AA release induced by ionophore A23187 or by a phorbol ester but did not affect the release of [(3)H]AA, [(3)H]thymidine incorporation, or Caco-2 growth induced by fetal calf serum (FCS). However, these parameters were significantly modified by iPLA(2) inhibitors and by an antisense oligonucleotide against iPLA(2)beta. Our results show that iPLA(2) was involved in AA release and the subsequent prostaglandin production induced by serum. Moreover, these data indicate that iPLA(2) may be involved in the signaling pathways involved in the control of Caco-2 proliferation. 相似文献
8.
A major role for phospholipase A2 in antigen-induced arachidonic acid release in rat mast cells. 总被引:1,自引:0,他引:1 下载免费PDF全文
Cross-linking of IgE receptors by antigen stimulation leads to histamine release and arachidonic acid release in rat peritoneal mast cells. Investigators have reported a diverse distribution of [3H]arachidonate that is dependent on labelling conditions. Mast cells from rat peritoneal cavity were labelled with [3H]arachidonic acid for different periods of time at either 30 or 37 degrees C. Optimum labelling was found to be after 4 h incubation with [3H]arachidonate at 30 degrees C, as judged by cell viability (Trypan Blue uptake), responsiveness (histamine release) and distribution of radioactivity. Alterations in 3H-radioactivity distribution in mast cells labelled to equilibrium were examined on stimulation with antigen (2,4-dinitrophenyl-conjugated Ascaris suum extract). The results indicated that [3H]arachidonic acid was lost mainly from phosphatidylcholine and, to a lesser extent, from phosphatidylinositol. A transient appearance of radiolabelled phosphatidic acid and diacylglycerol indicated phosphatidylinositol hydrolysis by phospholipase C. Pretreatment with a phospholipase A2 inhibitor, mepacrine, substantially prevented the antigen-induced liberation of [3H]arachidonic acid from phosphatidylcholine. It can be thus concluded that, in the release of arachidonic acid by antigen-stimulated mast cells, the phospholipase A2 pathway, in which phosphatidylcholine is hydrolysed, serves as the major one, the phospholipase C/diacylglycerol lipase pathway playing only a minor role. 相似文献
9.
Role of Ca2+-independent phospholipase A2 on arachidonic acid release induced by reactive oxygen species 总被引:3,自引:0,他引:3
Previous studies have shown that reactive oxygen species (ROS) enhance arachidonic acid (AA) release and the subsequent AA metabolism in macrophages. The purpose of this study was determined the implication of phospholipases A2 (PLA2s) in these events. Our results show that oxidative stress induced by exogenous adding of hydrogen peroxide or superoxide anion in macrophage RAW 264.7 and mouse peritoneal macrophage cultures caused a marked enhancement of calcium-independent PLA2 (iPLA2) activity,whereas the increment of secreted PLA2 (sPLA2) and calcium-dependent cytosolic PLA2 (cPLA2) activities were slight. This increase of iPLA2 activity by ROS was rapid and dose-dependent. ROS also induced a significant [3H] arachidonic acid (AA) release. The iPLA2 selective inhibitor, bromoenol lactone, almost completely suppressed the mobilization of [3H]AA induced by ROS whereas antisense oligonucleotide against cPLA2 did not have any appreciable effect. Thus, our data show that iPLA2 activity is involved in the mechanism by which ROS increases the availability of free AA in macrophages RAW 264.7. Moreover, the protein kinase C (PKC) inhibitor, calphostin C, and calcium chelators had no effect on the [3H]AA release induced by ROS, suggesting this is a regulatory role of iPLA2. 相似文献
10.
Ghasemi A Elfringhoff AS Lehr M 《Journal of enzyme inhibition and medicinal chemistry》2005,20(5):429-437
Recently we found that 1-methyldodecanoylindole-2-carboxylic acid (1) and 1-[2-(4-carboxyphenoxy)ethyl]-3-dodecanoylindole-2-carboxylic acid (4) were inhibitors of the cytosolic phospholipase A2alpha (cPLA2alpha)-mediated arachidonic acid release in calcium ionophore A23187-stimulated human platelets with IC50-values of 4.8 microM (1) and 0.86 microM (4). We have now replaced the 3-acyl residue of these compounds by alkylated sulfinyl-, sulfony-, sulfinamoyl-, sulfamoyl-, carbonylamino-, or carbonylaminomethyl-substituents. Structure-activity relationship studies revealed that the pronounced cellular activity of 4 strongly depends on the presence of the 3-acyl moiety. Surprisingly, when testing 4 and its derivatives in an assay with the isolated cPLA2, none of these compounds showed an inhibitory potency at 10 microM indicating that they do not inhibit cPLA2alpha in the cells by a direct interaction with the active site of the enzyme. 相似文献
11.
To determine if lysophosphatidylcholine (lysoPC) is able to induce proinflammatory changes in monocytes, its ability to stimulate arachidonic acid (AA) release, a product of phospholipase A2 (PLA(2)) activity, has been analyzed. LysoPC increased AA release in THP-1 and Mono Mac6 cells in a time- and concentration-dependent manner. The monocytes expressed both secretory and cytosolic PLA(2) enzymes and AA release was strongly reduced by cellular pretreatment with different PLA(2) inhibitors and by pertussis toxin, an inhibitor of G(i)-protein activation. This indicates that both cytosolic and secretory PLA(2) enzymes regulate specific lysoPC receptor-induced AA release, suggesting lysoPC participation in monocyte proinflammatory activation. 相似文献
12.
A requirement for calcium-independent phospholipase A2 in thrombin-induced arachidonic acid release and growth in vascular smooth muscle cells 总被引:2,自引:0,他引:2
Thrombin is a potent mitogen for vascular smooth muscle cells (VSMC). To understand its mitogenic signaling events, we have studied the role of calcium-independent phospholipase A2 (iPLA2). Without affecting its levels, thrombin increased iPLA2 activity in a time-dependent manner in VSMC. Thrombin also induced arachidonic acid release and DNA synthesis by about 2-fold as compared with control. Down-regulation of iPLA2 activity by its specific inhibitor, bromoenol lactone, or its expression by antisense oligonucleotides, significantly reduced thrombin-induced arachidonic acid release and DNA synthesis in VSMC. To learn the mechanism of thrombin-stimulated iPLA2 activity, we next tested the role of p38 MAPK. Thrombin stimulated p38 MAPK phosphorylation and activity in a time-dependent manner in VSMC. Inhibition of p38 MAPK activity by SB203580 and SB202190 resulted in decreased iPLA2 activity, arachidonic acid release, and DNA synthesis induced by thrombin in VSMC. Together, these results for the first time demonstrate that iPLA2 plays a role in thrombin-induced arachidonic acid release and growth in VSMC and that these responses are mediated by p38 MAPK. 相似文献
13.
Evidence for the release of arachidonic acid through the selective action of phospholipase A2 in thrombin-stimulated human platelets 总被引:6,自引:0,他引:6
The release of arachidonic acid from thrombin-stimulated platelets can be attributed to the action of phospholipase A2 on membrane phospholipid. Previously, analysis of individual subclasses of phospholipid demonstrated that 1-acyl-2-[3H]arachidonoyl-sn-glycerophosphocholine and to a lesser degree 1-acyl-2-[3H]arachidonoyl-sn-glycerophosphoethanolamine were the main source of [3H]arachidonic acid in thrombin-stimulated cells. In the present work, 1,2-diacyl phospholipid subclasses were analyzed as 1,2-diacylglycerobenzoates by high-pressure liquid chromatography in order to analyze arachidonate release as mass changes in individual molecular species of phospholipid. Following thrombin stimulation (5 U/ml, 5 min, 37 degrees C) all arachidonoyl-containing molecular species of 1,2-diacyl-sn-glycerophosphocholine decreased in mass and [3H]arachidonate content by almost 50%, while those of 1,2-diacyl-sn-glycerophosphoethanolamine decreased by 20%. The mass change was substantial and indicated that these phospholipids are a major source of arachidonate in stimulated cells. No variation was seen in the other non-arachidonate-containing molecular species of either subclass. Thus, deacylation of membrane 1,2-diacylglycerophosphocholine and 1,2-diacylglycerophosphoethanolamine by phospholipase A2 is selective for those molecular species of phospholipid containing arachidonic acid, suggesting that a certain proportion of arachidonoyl-containing molecular species of phospholipid are compartmentalized with the platelet membrane proximal to the site of action of this enzyme. These studies demonstrate that the human platelet is a cell poised and specialized to release rapidly substantial amounts of arachidonic acid upon stimulation. 相似文献
14.
M Chihara T Nomura M Tachibana H Nomura Y Nomura Y Hagino 《Biochimica et biophysica acta》1989,1012(1):5-9
Studies were conducted to see whether exogenous phospholipase C from Clostridium perfringens, phospholipase A2 from Crotalus adamanteus venom, arachidonic acid and 1-oleoyl-2-acetyl-sn-glycerol (OAG) mimic the anti-ketogenic action of vasopressin in isolated rat hepatocytes. Exogenous phospholipase C inhibited ketogenesis in the presence of 0.5 mM oleate. Experiments employing [1-14C]oleate, however, indicated that the mechanism involved in the anti-ketogenic action of exogenous phospholipase C is distinct from that of vasopressin. The decreased rate of the production of acid-soluble products from [1-14C]oleate in response to vasopressin could be explained by the sum of the increased rates of 14CO2 formation and [1-14C]oleate esterification. By contrast, exogenous phospholipase C suppressed not only the formation of acid-soluble products but also 14CO2 production and [1-14C]oleate esterification. Indeed, phospholipase C greatly inhibited [1-14C]oleate uptake into hepatocytes. It is suggested that the alteration of the architecture of plasma membrane by exogenous phospholipase C may lead to the disturbance of oleate uptake and consequent general suppression of oleate metabolism. Exogenous phospholipase A2, arachidonic acid and OAG increased ketogenesis regardless of the presence of oleate. The ketogenic effects may be attributed to the supply of fatty acids by these agents to hepatocytes. 相似文献
15.
Protease inhibitors reduce lysosomal acid phospholipase A1 activity in cultured rat hepatocytes 总被引:1,自引:0,他引:1
When rat hepatocytes were cultured in the presence of various specific protease inhibitors, lysosomal acid phospholipase A1 activity decreased progressively. Exposure of the cultured cells to 0.1 micrograms/ml of pepstatin, E 64, leupeptin or chymostatin also reduced the catalytic activities of several lysosomal marker enzymes. Irrespective of the protease inhibitor type employed, acid phospholipase A1 activity reacted most sensitively, followed by acid phosphatase, acid beta-N-acetyl-D-hexosaminidase and acid beta-glucuronidase. Of the protease inhibitors studied, pepstatin appeared to be most potent in reducing lysosomal enzyme activities in cultured hepatocytes. These findings suggest that proteolytic processes at as yet unknown, possibly extralysosomal sites play an important role in the turnover rates of lysosomal enzymes. 相似文献
16.
Moon SH Jenkins CM Mancuso DJ Turk J Gross RW 《The Journal of biological chemistry》2008,283(49):33975-33987
Pharmacologic evidence suggests that the lipid products generated by one or more calcium-independent phospholipases A(2) (iPLA(2)s) participate in the regulation of vascular tone through smooth muscle cell (SMC) Ca(2+) signaling and the release of arachidonic acid. However, the recent identification of new members of the iPLA(2) family, each inhibitable by (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one, has rendered definitive identification of the specific enzyme(s) mediating these processes difficult. Accordingly, we used iPLA(2)beta(-/-) mice to demonstrate that iPLA(2)beta is responsible for the majority of thapsigargin and ionophore (A23187)-induced arachidonic acid release from SMCs. Both thapsigargin and A23187 stimulated robust [(3)H]arachidonate (AA) release from wild-type aortic SMCs that was dramatically attenuated in iPLA(2)beta(-/-) mice (>80% reduction at 5 min; p < 0.01). Moreover, iPLA(2)beta(-/-) mice displayed defects in SMC Ca(2+) homeostasis and decreased SMC migration and proliferation in a model of vascular injury. Ca(2+)-store depletion resulted in the rapid entry of external Ca(2+) into wild-type aortic SMCs that was significantly slower in iPLA(2)beta-null cells (p < 0.01). Furthermore, SMCs from iPLA(2)beta-null mesenteric arterial explants demonstrated decreased proliferation and migration. The defects in migration and proliferation in iPLA(2)beta-null SMCs were restored by 2 mum AA. Remarkably, the cyclooxygenase-2-specific inhibitor, NS-398, prevented AA-induced rescue of SMC migration and proliferation in iPLA(2)beta(-/-) mice. Moreover, PGE(2) alone rescued proliferation and migration in iPLA(2)beta(-/-) mice. We conclude that iPLA(2)beta is an important mediator of AA release and prostaglandin E(2) production in SMCs, modulating vascular tone, cellular signaling, proliferation, and migration. 相似文献
17.
Han WK Sapirstein A Hung CC Alessandrini A Bonventre JV 《The Journal of biological chemistry》2003,278(26):24153-24163
Oxidant stress and phospholipase A2 (PLA2) activation have been implicated in numerous proinflammatory responses of the mesangial cell (MC). We investigated the cross-talk between group IValpha cytosolic PLA2 (cPLA2alpha) and secretory PLA2s (sPLA2s) during H2O2-induced arachidonic acid (AA) release using two types of murine MC: (i). MC+/+, which lack group IIa and V PLA2s, and (ii). MC-/-, which lack groups IIa, V, and IValpha PLA2s. H2O2-induced AA release was greater in MC+/+ compared with MC-/-. It has been argued that cPLA2alpha plays a regulatory role enhancing the activity of sPLA2s, which act on phospholipids to release fatty acid. Group IIa, V, or IValpha PLA2s were expressed in MC-/- or MC+/+ using recombinant adenovirus vectors. Expression of cPLA2alpha in H2O2-treated MC-/- increased AA release to a level approaching that of H2O2-treated MC+/+. Expression of either group IIa PLA2 or V PLA2 enhanced AA release in MC+/+ but had no effect on AA release in MC-/-. When sPLA2 and cPLA2alpha are both present, the effect of H2O2 is manifested by preferential release of AA compared with oleic acid. Inhibition of the ERK and protein kinase C signaling pathways with the MEK-1 inhibitor, U0126, and protein kinase C inhibitor, GF 1092030x, respectively, and chelating intracellular free calcium with 1,2-bis(2-aminophenoyl)ethane-N,N,N',N'-tetraacetic acid-AM, which also reduced ERK1/2 activation, significantly reduced H2O2-induced AA release in MC+/+ expressing either group IIa or V PLA2s. By contrast, H2O2-induced AA release was not enhanced when ERK1/2 was activated by infection of MC+/+ with constitutively active MEK1-DD. We conclude that the effect of group IIa and V PLA2s on H2O2-induced AA release is dependent upon the presence of cPLA2alpha and the activation of PKC and ERK1/2. Group IIa and V PLA2s are regulatory and cPLA2alpha is responsible for AA release. 相似文献
18.
19.
Excessive production of eicosanoids is characteristic of many inflammatory diseases. In this study we show that ceramide, which is an early messenger of inflammatory cytokine action, exerts a dual effect on the cytosolic phospholipase A2 (cPLA2), the rate-limiting enzyme in arachidonic acid release and subsequent eicosanoid formation. Stimulation of renal mesangial cells with exogenous short-chain ceramide analogs for 30 and 60 min leads to a concentration-dependent increase in arachidonic acid release that is not blocked by specific inhibitors of mitogen-activated protein kinase pathways. This suggests that these established upstream activators of cPLA2 are not involved in ceramide-induced arachidonic acid release. By use of photoactivatable ceramide analogs, D- and L-[125I]3-trifluoromethyl-3-(m-iodophenyl)diazirine-ceramides (TID-ceramides), we observed a direct interaction of ceramide with cPLA2. This interaction was independent of the absolute configuration as D- and L-TID-ceramide were equally effective in binding to cPLA2. Moreover, recombinant CaLB domain of cPLA2 as well as a mutant deficient in the connecting 'hinge' domain of cPLA2, efficiently bound D- and L-TID-ceramides, whereas the catalytic domain did not interact with TID-ceramides. In vitro binding assays reveal that stearoyl-arachidonyl-phosphatidylcholine (SAPC)-liposomes containing increasing mol% of ceramide lead to an increased association of recombinant cPLA2 to the liposomes. Furthermore, measurement of cPLA2 activity in vitro shows that the presence of SAPC-liposomes resulted in only weak cPLA2 activity. However, the activity dramatically increases by addition of ceramide to the liposomes. Furthermore, liposomes containing SAPC and sphingomyelin resulted in no better substrate than SAPC liposomes, unless bacterial sphingomyelinase was added to generate ceramide, which then causes a marked increase in cPLA2 activity. These results demonstrate that ceramide can interact directly with cPLA2 via the CaLB domain and thereby serves as a membrane-docking device that facilitates cPLA2 action in inflammatory diseases. 相似文献
20.
Amyloid beta enhances cytosolic phospholipase A2 level and arachidonic acid release via nitric oxide in APP-transfected PC12 cells 总被引:1,自引:0,他引:1
Chalimoniuk M Stolecka A Cakała M Hauptmann S Schulz K Lipka U Leuner K Eckert A Muller WE Strosznajder JB 《Acta biochimica Polonica》2007,54(3):611-623
Cytosolic phospholipase A2 (cPLA2) preferentially liberates arachidonic acid (AA), which is known to be elevated in Alzheimer's disease (AD). The aim of this study was to investigate the possible relationship between enhanced nitric oxide (NO) generation observed in AD and cPLA2 protein level, phosphorylation, and AA release in rat pheochromocytoma cell lines (PC12) differing in amyloid beta secretion. PC12 control cells, PC12 cells bearing the Swedish double mutation in amyloid beta precursor protein (APPsw), and PC12 cells transfected with human APP (APPwt) were used. The transfected APPwt and APPsw PC12 cells showed an about 2.8- and 4.8-fold increase of amyloid beta (Abeta) secretion comparing to control PC12 cells. An increase of NO synthase activity, cGMP and free radical levels in APPsw and APPwt PC12 cells was observed. cPLA2 protein level was higher in APPsw and APPwt PC12 cells comparing to PC12 cells. Moreover, phosphorylated cPLA2 protein level and [3H]AA release were also higher in APP-transfected PC12 cells than in the control PC12 cells. An NO donor, sodium nitroprusside, stimulated [3H]AA release from prelabeled cells. The highest NO-induced AA release was observed in control PC12 cells, the effect in the other cell lines being statistically insignificant. Inhibition of cPLA2 by AACOCF3 significantly decreased the AA release. Inhibitors of nNOS and gamma-secretase reduced AA release in APPsw and APPwt PC12 cells. The basal cytosolic [Ca2+](i) and mitochondrial Ca2+ concentration was not changed in all investigated cell lines. Stimulation with thapsigargin increased the cytosolic and mitochondrial Ca2+ level, activated NOS and stimulated AA release in APP-transfected PC12 cells. These results indicate that Abeta peptides enhance the protein level and phosphorylation of cPLA2 and AA release by the NO signaling pathway. 相似文献