首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Ischemic preconditioning (IPC) is a phenomenon of protection in various tissues from normothermic ischemic injury by previous exposure to short cycles of ischemia-reperfusion. The ability of IPC to protect hepatocytes from a model of hypothermic transplant preservation injury was tested in this study. Rat hepatocytes were subjected to 30min of warm ischemia (37 degrees C) followed by 24 or 48h of hypothermic (4 degrees C) storage in UW solution and subsequent re-oxygenation at normothermia for 1h. Studies were performed with untreated control cells and cells treated with IPC (10min anoxia followed by 10min re-oxygenation, 1 cycle). Hepatocytes exposed to IPC prior to warm ischemia released significantly less LDH and had higher ATP concentrations, relative to untreated ischemic hepatocytes. IPC significantly reduced LDH release after 24h of cold storage before reperfusion and after 48h of cold storage and after 60min of warm re-oxygenation, relative to the corresponding untreated hepatocytes. ATP levels were also significantly higher when IPC was used prior to the warm and cold ischemia-re-oxygenation protocols. In parallel studies, IPC increased new protein synthesis and lactate after cold storage and reperfusion compared to untreated cells but no differences in the patterns of protein banding were detected on electrophoresis between the groups. In conclusion, IPC significantly improves hepatocyte viability and energy metabolism in a model of hypothermic preservation injury preceded by normothermic ischemia. These protective effects on viability may be related to enhanced protein and ATP synthesis at reperfusion.  相似文献   

2.
Glycine prevention of cold ischemic injury in isolated hepatocytes   总被引:5,自引:2,他引:3  
Isolated hepatocytes suspended in a liver preservation solution (University of Wisconsin (UW) solution) and exposed to cold (5 degrees C) ischemia lose viability (LDH release) after 3 (76.5 +/- 2.6% extracellular LDH) and 4 days (90.3 +/- 5.7% extracellular LDH) storage when rewarmed (37 degrees C) in Krebs-Henseleit buffer. However, if 3 mM glycine is added to Krebs-Henseleit buffer the loss of LDH on rewarming was suppressed (% LDH = 24.4 +/- 2.2% and 33.2 +/- 3.0%, at 3 and 4 days, respectively). The protection by glycine could also be obtained by storing the hepatocytes in the UW solution containing 15 mM glycine and rewarming in the absence of glycine in Krebs-Henseleit buffer. There did not appear to be a relationship between the protection by glycine and glutathione concentration of the hepatocytes as shown by the lack of effect of a glutathione synthetase inhibitor (butathionine sulfoximine) on the protective effects of glycine. Other amino acids did not provide protection to hepatocytes exposed to cold ischemia. The mechanism of action of glycine is not known, but this compound may be important in improving cold storage of livers for transplantation.  相似文献   

3.
In this study, we used isolated rat hepatocytes to investigate the effect of nucleoside content of the preserved cells on the ability to synthesize glutathione (GSH) during the rewarming process. We cold-stored hepatocytes in University of Wisconsin (UW) solution (72 h, 0 degrees C, N(2)) without nucleosides and with the addition of 5 mM adenosine or 10 mM ATP. After 72 h of cold storage, we determined the GSH synthesis rate and the ATP content of the cells. We found a GSH synthesis rate similar to that of freshly isolated hepatocytes only in the group of cells cold-stored with 10 mM ATP. When we tested the cellular ATP concentrations, we found that controls and preserved cells with 10 mM ATP showed a similar value of ATP during the rewarming step. Our results suggested that the incorporation of ATP in the UW solution increased the ATP content and the rate of GSH synthesis of cold-stored hepatocytes during rewarming.  相似文献   

4.
Effect of cold storage on tissue and cellular glutathione   总被引:2,自引:0,他引:2  
One of the mechanisms thought to cause injury in preserved organs is the formation of oxygen free radicals. The cell is protected from oxidative stress by many defense mechanisms. A major defense mechanism involves glutathione and glutathione-dependent enzymes. During organ preservation by simple cold storage the loss of glutathione may sensitize the organ to free radical damage after transplantation. In this study we show that glutathione is depleted from the rabbit liver, kidney, and heart cold-stored (5 degrees C) for up to 72 h in the UW solution without glutathione. In the first 24 h kidney glutathione decreased to 84 +/- 3% of control values, liver glutathione decreased to 49 +/- 3% of control values, and heart glutathione decreased to 73 +/- 3% of control values. After 48 h of storage the kidney and liver lost an additional 30 and 20%, respectively, whereas heart glutathione changed very little. By 72 h all three organs had lost more than 50% of the glutathione found in freshly obtained tissue. To determine if glutathione added to the UW solution can effectively prevent this loss of glutathione during preservation, hepatocytes were cold-stored for up to 72 h in a preservation solution with and without glutathione. We found that adding glutathione to the preservation solution slowed the rate of loss of glutathione from the cells. These data suggest that at hypothermia the cell may be permeable to GSH. Methods to suppress the loss of glutathione during preservation of organs may be an important factor in suppressing oxygen free radical injury.  相似文献   

5.
Investigations were carried out on the respiratory function of isolated rat hepatocytes after cold storage alone for periods up to 48 h in either sucrose-based solution (SBS) or University of Wisconsin (UW) solution and after subsequent normothermic preincubation. In both SBS and UW, cold storage for 24 h depressed respiratory function (to 21 +/- 3 and 23 +/- 3 nmol O(2)/min/10(6) cells, respectively) compared to control cell values (31 +/- 3 and 33 +/- 5 nmol O(2)/min/10(6) cells; P < 0.01 in each case). However, normothermic preincubation for 60 min returned respiratory activity to control values (for SBS and UW storage: 41 +/- 6 and 40 +/- 5 nmol O(2)/min/10(6) cells; for control cells: 43 +/- 5 and 46 +/- 6 nmol O(2)/min/10(6) cells). Storage for 48 h in both SBS and UW allowed further depression of respiratory activity, with no recovery after preincubation. Stimulation of respiration by succinate in hepatocytes stored for longer periods was suggestive of increased membrane permeability. Both SBS and UW are effective storage solutions for isolated hepatocytes for up to 24 h as judged by aerobic metabolism, but significant damage was expressed in both solutions when preservation was extended.  相似文献   

6.
Cold transport of epididymides from genetically modified mice is an efficient alternative to the shipment of live animals between research facilities. Mouse sperm from epididymides cold-stored for short periods can maintain viability. We previously reported that cold storage of mouse epididymides in Lifor® perfusion medium prolonged sperm motility and fertilization potential and that the sperm efficiently fertilized oocytes when reduced glutathione was added to the fertilization medium. Cryopreservation usually results in decreased sperm viability; an optimized protocol for cold storage of epididymides plus sperm cryopreservation has yet to be established. Here, we examined the motility and fertilization potential of cryopreserved, thawed (frozen-thawed) sperm from previously cold-stored mouse epididymides. We also examined the protective effect of sphingosine-1-phosphate (S1P) on sperm viability when S1P was added to the preservation medium during cold storage. We assessed viability of frozen-thawed sperm from mouse epididymides that had been cold-transported domestically or internationally and investigated whether embryos fertilized in vitro with these sperm developed normally when implanted in pseudo-pregnant mice. Our results indicate that frozen-thawed sperm from epididymides cold-stored for up to 48 h maintained high fertilization potential. Fertilization potential was reduced after cold storage for 72 h, but not if S1P was included in the cold storage medium. Live pups were born normally to recipients after in vitro fertilization using frozen-thawed sperm from cold-transported epididymides. In summary, we demonstrate an improved protocol for cold-storage of epididymides that can facilitate transport of genetically engineered-mice and preserve sperm viability after cryopreservation.  相似文献   

7.
A sucrose-based solution has been compared with other preservation solutions (University of Wisconsin (UW) solution and Marshall's citrate solution, with Dulbecco's medium as control) during hypothermic preservation of isolated rat hepatocytes for up to 72 h. Studies on the stability of liver cells at low temperature by exclusion of trypan blue dye and morphological appearance were conducted. During storage beyond 24 h, there was a clear difference between cells stored in Dulbecco's medium and Marshall's citrate and those stored in sucrose-based solution and UW solution, with the former storage groups showing many cells developing large membrane "blebs" and the latter storage groups maintaining a more typical morphology and developing only small membrane protrusions. Dye exclusion was higher in sucrose-based solution (48 h, 75 +/- 7%; 72 h, 65 +/- 6%) and UW solution (48 h, 72 +/- 5%; 72 h, 63 +/- 4%) than in Marshall's citrate (48 h, 31 +/- 5%; 72 h, 10 +/- 1%) and Dulbecco's medium (48 h, 8 +/- 2%; 72 h, 5 +/- 1%). These data suggest that sucrose-based solution should be investigated further as a less complex alternative solution for storage of isolated hepatocytes.  相似文献   

8.
Supercooling preservation holds the potential to drastically extend the preservation time of organs, tissues and engineered tissue products, and fragile cell types that do not lend themselves well to cryopreservation or vitrification. Here, we investigate the effects of supercooling preservation (SCP at -4oC) on primary rat hepatocytes stored in cryovials and compare its success (high viability and good functional characteristics) to that of static cold storage (CS at +4oC) and cryopreservation. We consider two prominent preservation solutions a) Hypothermosol (HTS-FRS) and b) University of Wisconsin solution (UW) and a range of preservation temperatures (-4 to -10 oC). We find that there exists an optimum temperature (-4oC) for SCP of rat hepatocytes which yields the highest viability; at this temperature HTS-FRS significantly outperforms UW solution in terms of viability and functional characteristics (secretions and enzymatic activity in suspension and plate culture). With the HTS-FRS solution we show that the cells can be stored for up to a week with high viability (~56%); moreover we also show that the preservation can be performed in large batches (50 million cells) with equal or better viability and no loss of functionality as compared to smaller batches (1.5 million cells) performed in cryovials.  相似文献   

9.
Hepatocytes isolated from the rat liver were stored for up to 72 hr at 4 degrees C in a tissue culture medium (Liebovitz-15) at different pH values to determine how pH affects hepatocyte viability. This is a model to simulate cold storage of livers for transplantation and determine the optimal pH for maintenance of liver cell function. The cells were stored in the absence of oxygen. At the end of cold storage the percentage of the total cellular LDH released into the extracellular medium was used as a measure of hepatocyte viability. Also, lactate dehydrogenase (LDH) release was determined in hepatocytes incubated at normothermia (37 degrees C) for 90 min following 72 hr of cold storage. The results demonstrate that hepatocytes tolerate a wide range of pH values in the storage medium and that only about 10% of the total LDH was released from hepatocytes stored up to 72 hr at pH's from 5.0 to 8.0. Normothermic incubation, however, demonstrated that the pH of the storage medium affected viability. After 48 hr of storage only hepatocytes stored at pH values from 7.0 to 8.0 remained viable (LDH release similar to that of freshly incubated hepatocytes = 28 +/- 7.2%). After 72 hr of storage and 90 min of normothermic incubation, hepatocytes incubated at all pH values studied were nonviable (greater than 60% release of LDH). These results suggest that the optimal pH for storage of hepatocytes at 4 degrees C is near neutrality (7.0 to 7.4).  相似文献   

10.
Using of isolated hepatocytes for investigation of the effects of hypothermia, it has been demonstrated that sucrose-base solution provides of maintenance of the energetic parameters (level of ATP, glucose synthesis, rate of gluconeogenesis) within 48 hrs of storage at 4 degrees C. It efficiency was compared with effect on the energetic status of isolated hepatocytes widely used preservation solution--solution of University Wisconsin (UW). After long-term of cold storage of isolated hepatocytes (72 hrs) at 4 degrees C in both solutions, it has been shown sharp decrease of ATP level (on two time). Viability of the liver cells (in both cases) was practically without change.  相似文献   

11.
A mechanism suggested to cause injury to preserved organs is the generation of oxygen free radicals either during the cold-storage period or after transplantation (reperfusion). Oxygen free radicals can cause peroxidation of lipids and alter the structural and functional properties of the cell membranes. Methods to suppress generation of oxygen free radicals of suppression of lipid peroxidation may lead to improved methods of organ preservation. In this study we determined how cold storage of rat hepatocytes affected lipid peroxidation by measuring thiobarbituric acid reactive products (malondialdehyde, MDA). Hepatocytes were stored in the UW solution +/- glutathione (GSH) or +/- polyethylene glycol (PEG) for up to 96 h and rewarmed (resuspended in a physiologically balanced saline solution and incubated at 37 degrees C under an atmosphere of oxygen) after each day of storage. Hepatocytes rewarmed after storage in the UW solution not containing PEG or GSH showed a nearly linear increase in MDA production with time of storage and contained 1.618 +/- 0.731 nmol MDA/mg protein after 96 h. When the storage solution contained PEG and GSH there was no significant increase in MDA production after up to 72 h of storage and at 96 h MDA was 0.827 +/- 0.564 nmol/mg protein. When freshly isolated hepatocytes were incubated (37 degrees C) in the presence of iron (160 microM) MDA formation was maximally stimulated (3.314 +/- 0.941 nmol/mg protein). When hepatocytes were stored in the presence of PEG there was a decrease in the capability of iron to maximally stimulate lipid peroxidation. The decrease in iron-stimulated MDA production was dependent upon the time of storage in PEG (1.773 nmol/mg protein at 24 h and 0.752 nmol/mg protein at 48 h).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The objective of this study was to determine how expression and functionality of the cytoskeletal linker protein moesin is involved in hepatic hypothermic preservation injury. Mouse livers were cold stored in University of Wisconsin (UW) solution and reperfused on an isolated perfused liver (IPL) device for one hour. Human hepatocytes (HepG2) and human or murine sinusoidal endothelial cells (SECs) were cold stored and rewarmed to induce hypothermic preservation injury. The cells were transfected with: wild type moesin, an siRNA duplex specific for moesin, and the moesin mutants T558D and T558A. Tissue and cell moesin expression and its binding to actin were determined by Western blot. Liver IPL functional outcomes deteriorated proportional to the length of cold storage, which correlated with moesin disassociation from the actin cytoskeleton. Cell viability (LDH and WST-8) in the cell models progressively declined with increasing preservation time, which also correlated with moesin disassociation. Transfection of a moesin containing plasmid or an siRNA duplex specific for moesin into HepG2 cells resulted in increased and decreased moesin expression, respectively. Overexpression of moesin protected while moesin knock-down potentiated preservation injury in the HepG2 cell model. Hepatocytes expressing the T558A (inactive) and T558D (active) moesin binding mutants demonstrated significantly more and less preservation injury, respectively. Cold storage time dependently caused hepatocyte detachment from the matrix and cell death, which was prevented by the T558D active moesin mutation. In conclusion, moesin is causally involved in hypothermic liver cell preservation injury through control of its active binding molecular functionality.  相似文献   

13.
INTRODUCTION: Donor nutritional status may be a determinant of small bowel (SB) quality following storage. In this study, we investigated the effect of donor nutritional status and a proven nutrient-rich preservation solution on graft quality following cold storage. METHODS: Rats were fasted (12-14 h) or non-fasted. SB (n=6) was flushed vascularly with modified University of Wisconsin (UW) solution and flushed luminally with UW or an amino acid-rich (AA) solution as follows: Fasted. UWV, none; UWL, UW solution; AAL, AA solution. Non-fasted. UWV, none; UWL, UW solution; AAL, AA solution. Energetics, peroxidation (malondialdehyde; MDA), glutathione and histology were assessed over 24 h at 4 degrees C. RESULTS: Energetics (ATP, ATP/ADP, and energy charge) were significantly higher in AAL (fasted and non-fasted) groups than other groups. However, there were no differences in energetics parameters between fasted and non-fasted animals in all groups. MDA was higher in fasted groups than non-fasted tissues; interestingly, AAL values were up to 10-fold lower than other groups. Higher glutathione levels were detected in non-fasted AAL tissues. Mucosal integrity was markedly superior in luminally treated tissues (UWL and AAL) in fasted and non-fasted states. Most noteably, AAL tissues from fasted animals exhibited grade 2 injury (villus clefting), whereas normal mucosa was observed in non-fasted tissues (grade 0). CONCLUSION: Luminal flushing and a nutrient-rich preservation solution improve energetics, oxidative stress, and mucosal integrity during storage. Poorer donor nutritional status does not affect energetics throughout storage, but causes mucosal injury as a result of increased oxidative stress, even after a brief period of donor fasting.  相似文献   

14.
Liver cells (HepG2 and primary hepatocytes) overexpressing CYP2E1 and exposed to arachidonic acid (AA) were previously shown to lose viability together with enhanced lipid peroxidation. These events were blocked in cells pre-incubated with antioxidants (alpha-tocopherol, glutathione ethyl ester), or in HepG2 cells not expressing CYP2E1. The goal of the current study was to evaluate the role of calcium and calcium-activated hydrolases in these CYP2E1-AA interactions. CYP2E1-expressing HepG2 cells treated with AA showed an early increase in cytosolic calcium and partial depletion of ionomycin-sensitive calcium stores. These changes in calcium were blocked by alpha-tocopherol. AA activated phospholipase A2 (PLA2) in CYP2E1-expressing liver cells, and this was inhibited by PLA2 inhibitors or alpha-tocopherol. PLA2 inhibitors prevented the cell death caused by AA, without affecting CYP2E1 activity or lipid peroxidation. AA toxicity and PLA2 activation were inhibited in calcium-depleted cells, but not by removal of extracellular calcium alone. Removal of extracellular calcium inhibited the early increase in cytosolic calcium caused by AA. CYP2E1 overexpressing HepG2 cells exposed to AA showed a decrease in mitochondrial membrane potential, which was prevented by the PLA2 inhibitors. These results suggest that AA-induced toxicity to CYPE1-expressing cells: (i) is associated with release of Ca2+ from intracellular stores that depends mainly on oxidative membrane damage; (ii) is associated with activation of PLA2 that depends on intracellular calcium and lipid peroxidation; (iii) does not depend on increased influx of extracellular calcium, and (iv) depends on the effect of converging events (lipid peroxidation, intracellular calcium, activation of PLA2) on mitochondria to induce bioenergetic failure and necrosis. These interactions may play a role in alcohol liver toxicity, which requires polyunsaturated fatty acids, and involves induction of CYP2E1.  相似文献   

15.
It is known that cellular edema and functional impairment develop during anaerobic cold storage of organs. The extent of both is related to the storage time and the composition of the preservation solution used. We studied hypothermia-induced cell swelling and its effect on liver function after cold storage preservation with either Eurocollins (EC), a number of modified EC solutions in which glucose was replaced by various concentrations of raffinose, or UW solution. After 24 h storage, tissue swelling as determined by total tissue water (TTW) in rat liver tissue slices was most pronounced in slices incubated in Eurocollins, whereas the TTW was only moderately increased in slices stored in modified Eurocollins containing 90 to 120 mM raffinose. In contrast, slices incubated in UW solution had a TTW equal to normal rat liver tissue. Furthermore, intact rabbit livers preserved with Eurocollins had an increase in the whole organ weight, while there was no weight change after preservation with the modified solution containing 120 mM raffinose (M120). In contrast, a pronounced weight loss was observed after preservation with UW solution. After cold storage, the livers were reperfused for 2 h at 38 degrees C in an isolated perfusion circuit (IPL) with an acellular perfusate. Bile flow was significantly greater in livers preserved in M120 than in those preserved with the conventional Eurocollins. However, the bile flow in the livers stored in M120 was inferior to that in the livers preserved with UW solution, which in turn was equal to that in control livers. The release of alanine-aspartate-aminotransferase into the perfusate was higher in livers preserved with Eurocollins, with or without modification, than in the livers preserved with UW solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Urea cycle (UC) is the main pathway of ammonium removal. A deficiency in any of the five classical enzymes of the pathway causes a urea cycle disorder. Hepatocellular transplantation is one of the techniques applicable to treat this disorder. In the present work, we investigated the activities and the relative expression levels of two of the UC enzymes: Carbamyl phosphate synthetase I (CPSI) and ornithine transcarbamylase (OTC), in isolated hepatocytes preserved up to 120 h in University of Wisconsin (UW) solution at 0 degrees C, and during the rewarming of these suspensions. During preservation, CPSI showed differences in mRNA levels respect to time 0, while ornithine transcarbamylase remained unchanged. At the end of the rewarming, CPSI showed values of enzymatic activity and relative mRNA level comparable with the control, meanwhile, there was an increment in OTC activity. In line with these results, we found that hepatocytes cold preserved up to 120h in UW solution maintained their ability to remove an ammonium load comparable to freshly isolated hepatocytes. These data indicated that our preservation conditions up to 120h in UW solution followed by rewarming, preserves UC enzymes at levels similar to freshly isolated hepatocytes, allowing the use of these cells in bioartificial liver devices or hepatocellular transplantation.  相似文献   

17.
The success of liver grafts is currently limited by the length of time organs are cold preserved before transplant. Novel insights to improve viability of cold-stored organs may emerge from studies with animals that naturally experience low body temperatures (T(b)) for extended periods. In this study, we tested whether livers from hibernating ground squirrels tolerate cold ischemia-warm reperfusion (cold I/R) for longer times and with better quality than livers from rats or summer squirrels. Hibernators were used when torpid (T(b) < 10 degrees C) or aroused (T(b) = 37 degrees C). Livers were stored at 4 degrees C in University of Wisconsin solution for 0-72 h and then reperfused with 37 degrees C buffer in vitro. Lactate dehydrogenase (LDH) release after 60 min was increased 37-fold in rat livers after 72 h cold I/R but only 10-fold in summer livers and approximately three- to sixfold in torpid and aroused hibernator livers, despite twofold higher total LDH content in livers from hibernators compared with rats or summer squirrels. Reperfusion for up to 240 min had the least effect on LDH release in livers from hibernators and the greatest effect in rats. Compared with rats or summer squirrels, livers from hibernators after 72 h cold I/R showed better maintenance of mitochondrial respiration, bile production, and sinusoidal lining cell viability, as well as lower vascular resistance and Kupffer cell phagocytosis. These results demonstrate that the hibernation phenotype in ground squirrels confers superior resistance to liver cold I/R injury compared with rats and summer squirrels. Because hibernation-induced protection is not dependent on animals being in the torpid state, the mechanisms responsible for this effect may provide new strategies for liver preservation in humans.  相似文献   

18.
The exchange of genetically engineered mouse strains between research facilities requires transporting fresh mouse sperm under refrigerated temperatures. Although sperm generally maintains fertility for 48 h at cold temperatures, in vitro fertilization rates of C57BL/6 mouse sperm are low after 48-h cold storage. Furthermore, 48 h is often not sufficient for the specimens to reach their destinations. To increase the availability of this technology, we aimed to extend the cold storage period while maintaining sperm fertility. In this study, we determined the optimal medium for sperm preservation and evaluated the effect of reduced glutathione in the fertilization medium on sperm fertility after cold storage. We found that higher fertility levels were maintained after 72-h cold storage in the preservation medium Lifor compared with storage in paraffin oil, M2 medium, or CPS-1 medium. In addition, 1.0 mM glutathione enhanced sperm fertility. After transporting sperm from Asahikawa Medical University to our laboratory, embryos were efficiently produced from the cold-stored sperm. After transfer, these embryos developed normally into live pups. Finally, we tested the transport system using genetically engineered mouse strains and obtained similar high fertilization rates with all specimens. In summary, we demonstrated that cold storage of sperm in Lifor maintains fertility, and glutathione supplementation increased the in vitro fertilization rates of sperm after up to 96 h of cold storage. This improved protocol provides a simple alternative to transporting live animals or cryopreserved samples for the exchange of genetically engineered mouse strains among research facilities.  相似文献   

19.
《Cryobiology》2013,66(3):163-168
The exchange of genetically engineered mouse strains between research facilities requires transporting fresh mouse sperm under refrigerated temperatures. Although sperm generally maintains fertility for 48 h at cold temperatures, in vitro fertilization rates of C57BL/6 mouse sperm are low after 48-h cold storage. Furthermore, 48 h is often not sufficient for the specimens to reach their destinations. To increase the availability of this technology, we aimed to extend the cold storage period while maintaining sperm fertility. In this study, we determined the optimal medium for sperm preservation and evaluated the effect of reduced glutathione in the fertilization medium on sperm fertility after cold storage. We found that higher fertility levels were maintained after 72-h cold storage in the preservation medium Lifor compared with storage in paraffin oil, M2 medium, or CPS-1 medium. In addition, 1.0 mM glutathione enhanced sperm fertility. After transporting sperm from Asahikawa Medical University to our laboratory, embryos were efficiently produced from the cold-stored sperm. After transfer, these embryos developed normally into live pups. Finally, we tested the transport system using genetically engineered mouse strains and obtained similar high fertilization rates with all specimens. In summary, we demonstrated that cold storage of sperm in Lifor maintains fertility, and glutathione supplementation increased the in vitro fertilization rates of sperm after up to 96 h of cold storage. This improved protocol provides a simple alternative to transporting live animals or cryopreserved samples for the exchange of genetically engineered mouse strains among research facilities.  相似文献   

20.
Hypothermic preservation of hepatocytes : I. Role of cell swelling   总被引:1,自引:0,他引:1  
Hepatocytes from isolated rat livers were hypothermically incubated (5 degrees C) in an oxygenated environment with continuous shaking (to simulate organ perfusion preservation). The incubation solution was either a tissue culture medium (L-15), an organ preservation perfusate (UW gluconate), or a simple cold-storage solution used for organ preservation (UW lactobionate). Hepatocyte viability was assessed from the release of lactate dehydrogenase (LDH) into the incubation medium. Cell swelling (due to the uptake of water) was also measured. Within 24 hr, hepatocytes hypothermically stored in each of the three incubation solutions became swollen (30 to 40% water gain) and lost a significant amount of LDH (as much as 60%). The addition of polyethylene glycol (PEG; relative molecular mass 8000; 5 g%) to the solutions suppressed cell swelling and allowed the incubated hepatocytes to remain relatively well preserved (30% LDH release) for as long as 120 hr. Adding either dextran (relative molecular mass 10,000 to 78,000; 5 g%) or saccharides (100 mmol/liter) instead of PEG neither prevented cell swelling nor prevented the cells from dying. The results of this study suggest (i) there is a direct correlation (r = 0.873) between hypothermia-induced cell swelling and cell death (i.e., the suppression of cell swelling prevents cell death); (ii) the mechanism by which PEG prevents cell swelling (and thus maintains cell viability) is not related to the osmotic or oncotic properties of the molecule but instead is apparently related to some unknown interaction between PEG and the cell, an interaction that provides stability during hypothermic incubation; and (iii) hypothermia-induced cell swelling must be prevented if isolated hepatocytes are to be used as a model for studying the mechanism by which cell damage occurs during hypothermic organ preservation. By eliminating cell death due to cell swelling, the biochemical mechanisms of cell death can be studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号