首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of a vacuolar-type ATPase in Malpighian tubules of the ant Formica polyctena was investigated immunocytochemically, using antibodies to vacuolar ATPases of Manduca sexta midgut and bovine kidney. Specific labelling was observed at the brush border of the epithelium extending along the entire length of the tubules. These findings agree with the current view that a vacuolar ATPase is situated at the apical membrane of Malpighian tubule cells and other insect epithelial cells, being the energizing element of an electrogenic potassium pump. When antibodies were tested on tubules in different secretion conditions prior to fixation, no differences were observed in the distribution of the vacuolar ATPase.This work was supported by grants from the European Community (SCI-CT90-0480), from the Ministerio de Educación y Ciencia DGICYT, Spain (CE 91-0002), and from the Deutsche Forschungsgemeinschaft (Wi 698-3).  相似文献   

2.
Summary The lepidopteran midgut is a model for the oxygendependent, electrogenic K+ transport found in both alimentary and sensory tissues of many economically important insects. Structural and biochemical evidence places the K+ pump on the portasome-studded apical plasma membrane which borders the extracellular goblet cavity. However, electrochemical evidence implies that the goblet cell K+ concentration is less than 50mm. We used electron probe X-ray microanalysis of frozenhydrated cryosections to measure the concentration of Na, Mg, P, S, Cl, K, Ca and H2O in several subcellular sites in the larval midgut ofManduca sexta under several experimental regimes. Na is undetectable at any site. K is at least 100mm in the cytoplasm of all cells. Typicalin vivo values (mm) for K were: blood, 25; goblet and columnar cytoplasm, 120; goblet cavity, 190; and gut lumen, 180. The high K concentration in the apically located goblet cavity declined by 100mm under anoxia. Both cavity and gut fluid are Cl deficient, but fixed negative charges may be present in the cavity. We conclude that the K+ pump is sited on the goblet cell apical membrane and that K+ follows a nonmixing pathway via only part of the goblet cell cytoplasm. The cavity appears to be electrically isolated in alimentary tissues, as it is in sensory sensilla, thereby allowing a PD exceeding 180 mV (lumen positive) to develop across the apical plasma membrane. This PD appears to couple K+ pump energy to nutrient absorption and pH regulation.  相似文献   

3.
In this paper we demonstrate that a vacuolar-type H(+)-ATPase energizes secondary active transport in an insect plasma membrane and thus we provide an alternative to the classical concept of plasma membrane energization in animal cells by the Na+/K(+)-ATPase. We investigated ATP-dependent and -independent vesicle acidification, monitored with fluorescent acridine orange, in a highly purified K(+)-transporting goblet cell apical membrane preparation of tobacco hornworm (Manduca sexta) midgut. ATP-dependent proton transport was shown to be catalyzed by a vacuolar-type ATPase as deduced from its sensitivity to submicromolar concentrations of bafilomycin A1. ATP-independent amiloride-sensitive proton transport into the vesicle interior was dependent on an outward-directed K+ gradient across the vesicle membrane. This K(+)-dependent proton transport may be interpreted as K+/H+ antiport because it exhibited the same sensitivity to amiloride and the same cation specificity as the K(+)-dependent dissipation of a pH gradient generated by the vacuolar-type proton pump. The vacuolar-type ATPase is exclusively a proton pump because it could acidify vesicles independent of the extravesicular K+ concentration, provided that the antiport was inhibited by amiloride. Polyclonal antibodies against the purified vacuolar-type ATPase inhibited ATPase activity and ATP-dependent proton transport, but not K+/H+ antiport, suggesting that the antiporter and the ATPase are two different molecular entities. Experiments in which fluorescent oxonol V was used as an indicator of a vesicle-interior positive membrane potential provided evidence for the electrogenicity of K+/H+ antiport and suggested that more than one H+ is exchanged for one K+ during a reaction cycle. Both the generation of the K+ gradient-dependent membrane potential and the vesicle acidification were sensitive to harmaline, a typical inhibitor of Na(+)-dependent transport processes including Na+/H+ antiport. Our results led to the hypothesis that active and electrogenic K+ secretion in the tobacco hornworm midgut results from electrogenic K+/nH+ antiport which is energized by the electrical component of the proton-motive force generated by the electrogenic vacuolar-type proton pump.  相似文献   

4.
Summary (1) The basiconic sensilla on the antennae of Calliphora resemble other insect epidermal sensilla; one or several bipolar sense cells are surrounded by three non-neural cells. (2) The apical cell membrane of the tormogen cell(one of the three accessory cells) forms microvilli coated internally with particles. (3) In the (extracellular) outer receptor-lymph space hyaluronic acid can be demonstrated histochemically. (4) Demonstration of non-specific alkaline phosphatase, Mg2+-activated ATPase, and the presence of mitochondria in the apical part of the tormogen cell suggest active transport processes through these cells into the outer receptor-lymph space.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

5.
The calmodulin-stimulated ATPase of maize (Zea mays L.) coleoptiles has been purified by calcium-dependent binding to a calmodulin affinity column. In the presence of protease inhibitors (phenylmethylsulfonylfluoride and chymostatin) a polypeptide of relative molecular mass (Mr) 140000 (±10000) is obtained on sodium-dodecylsulphate polyacrylamide gels. This polypeptide is recognised specifically by an affinity-purified polyclonal antibody to mammalian calmodulin-stimulated calcium-pumping ATPases and is of similar Mr to the erythrocyte-membrane calcium pump (138000 Mr).Abbreviations EGTA ethylene glycol-bis(-aminoethylether)-N,N,N,N-tetraacetic acid - Mr apparent molecular mass - SDS sodium dodecyl sulphate  相似文献   

6.
The acinous salivary glands of the cockroach (Periplaneta americana) consist of four morphologically different cell types with different functions: the peripheral cells are thought to produce the fluid component of the primary saliva, the central cells secrete the proteinaceous components, the inner acinar duct cells stabilize the acini and secrete a cuticular, intima, whereas the distal duct cells modify the primary saliva via the transport of water and electrolytes. Because there is no direct information available on the distribution of ion transporting enzymes in the salivary glands, we have mapped the distribution of two key transport enzymes, the Na+/K+-ATPase (sodium pump) and a vacuolar-type H+-ATPase, by immunocytochemical techniques. In the peripheral cells, the Na+/K+-ATPase is localized to the highly infolded apical membrane surface. The distal duct cells show large numbers of sodium pumps localized to the basolateral part of their plasma membrane, whereas their highly folded apical membranes have a vacuolar-type H+-ATPase. Our immunocytochemical data are supported by conventional electron microscopy, which shows electrondense 10-nm particles (portasomes) on the cytoplasmic surface of the infoldings of the apical membranes of the distal duct cells. The apically localized Na+/K+-ATPase in the peripheral cells is probably directly involved in the formation of the Na+-rich primary saliva. The latter is modified by the distal duct cells by transport mechanisms energized by the proton motive force of the apically localized V-H+-ATPase.  相似文献   

7.
Summary A membrane bound, potassium sensitive ATPase which occurs in the proboscis ofProtophormia terraenovae (Diptera, Calliphoridae) is described. This ATPase activity is found only in the sensilla-rich labella but not in the haustella which contain few sensilla. Density gradient centrifugation shows that the enzyme is not of mitochondrial origin. It is insensitive to sodium azide, a specific inhibitor of mitochondrial ATPases, and has a relatively low affinity to potassium: half maximal activation is reached at approximately 70 mmol/l potassium.It is suggested that the potassium activated ATPase in the labellum of the fly is an integral constituent of the electrogenic potassium pump, which may be important for the generation of receptor currents.Abbreviation TEV transepithelial voltage Supported by the Deutsche Forschungsgemeinschaft SFB 4/C4  相似文献   

8.
Splenocytes, derived from mice that had been immunized with protoplasts prepared from suspension cultures of root cells of Glycine max (L.) Merr. (SB-1 cell line), were fused with a murine myeloma cell line. The resulting hybridoma cultures were screened for the production of antibodies directed against the soybean protoplasts and were then cloned. One monoclonal antibody, designated MVS-1, was found to bind to the outer surface of the plasma membrane on the basis of several criteria: (a) agglutination of the protoplasts; (b) binding of fluorescence-labeled immunoglobulin on protoplasts yielding a ring staining pattern with prominent intensity at the edges; and (c) saturable binding by protoplasts of 125I-labeled Antibody MVS-1. The antigenic target of Antibody MVS-1, identified by immunoblotting techniques, contained a polypeptide of relative molecular mass (Mr) approx. 400000 under both reducing and non-reducing conditions. When the antigenic target of Antibody MVS-1 was chromatographed in potassium phosphate buffer, the position of elution corresponded to that of a high-molecular-weight species (Mr 400000). These results provide the protein characterization required for the analysis of the mobility of Antibody MVS-1 bound to the plasma membrane of SB-1 cells.Abbreviations D diffusion coefficient - Mr relative molecular mass - PBS phosphate-buffered saline (8.00 g NaCl, 1.15 g Na2HPO4, 0.20 g NaH2PO4 per 1 L, pH 7.2) - TPBS phosphate-buffered saline containing 0.5% Tween-20 - TX-100, TX-114 Triton X-100, X-114 - SDS sodium dodecyl sulfate  相似文献   

9.
Mg-ATP dependent electrogenic proton transport, monitored with fluorescent acridine orange, 9-aminoacridine, and oxonol V, was investigated in a fraction enriched with potassium transporting goblet cell apical membranes of Manduca sexta larval midgut. Proton transport and the ATPase activity from the goblet cell apical membrane exhibited similar substrate specificity and inhibitor sensitivity. ATP and GTP were far better substrates than UTP, CTP, ADP, and AMP. Azide and vanadate did not inhibit proton transport, whereas 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide were inhibitors. The pH gradient generated by ATP and limiting its hydrolysis was 2-3 pH units. Unlike the ATPase activity, proton transport was not stimulated by KCl. In the presence of 20 mM KCl, a proton gradient could not be developed or was dissipated. Monovalent cations counteracted the proton gradient in an order of efficacy like that for stimulation of the membrane-bound ATPase activity: K+ = Rb+ much greater than Li+ greater than Na+ greater than choline (chloride salts). Like proton transport, the generation of an ATP dependent and azide- and vanadate-insensitive membrane potential (vesicle interior positive) was prevented largely by 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide. Unlike proton transport, the membrane potential was not affected by 20 mM KCl. In the presence of 150 mM choline chloride, the generation of a membrane potential was suppressed, whereas the pH gradient increased 40%, indicating an anion conductance in the vesicle membrane. Altogether, the results led to the following new hypothesis of electrogenic potassium transport in the lepidopteran midgut. A vacuolar-type electrogenic ATPase pumps protons across the apical membrane of the goblet cell, thus energizing electroneutral proton/potassium antiport. The result is a net active and electrogenic potassium flux.  相似文献   

10.
Summary The current-voltage curve of theChara membrane was obtained by applying a slow ramp depo- and hyperpolarization by use of voltage clamp. With the progress of poisoning by DCCD (dicyclohexylcarbodiimide) theI–V curve moved by about 50 mV (depolarization) along the voltage axis, reducing its slope, and finally converged to thei d -V curve of the passive diffusion channel. Changes ofi p -V curve of the electrogenic pump channel could be obtained by subtracting the latter from the former.The sigmoidali p -V curve could be simulated satisfactorily by adopting a simple reaction kinetic model. Kinetic parameters of the successive changes of state of the H+ ATPase could be evaluated. Changes of these kinetic parameters during inhibition gave useful information about the molecular mechanism of the electrogenic pump.Depolarization of the membrane potential, decrease of membrane conductance, and decrease of pump current during inhibition of the pump with DCCD are caused mainly by the decrease of conductance of the pump channel. The decrease of this pump conductance is caused principally by a marked decrease of the rate constant for releasing H+ to the outside.  相似文献   

11.
Murine monoclonal antibodies to protoplast membrne antigens were generated using mouse myelomas and spleen cells from mice immunized with Nicotiana tabacum L. leaf protoplasts. For selecting antibody-secreting clones, a sensitive and rapid enzyme-linked immunosorbent assay (ELISA) for monoclonal antibody binding to immobilized cellular membrane preparations or immobilized protoplasts was developed. With intact protoplasts as immobilized antigen, the ELISA is selective for antibodies that bind to plasma-membrane epitopes present on the external surface of protoplasts. Using the membrane ELISA, a total of 24 hybridoma lines were identified that secreted antibodies to plant membrane epitopes. The protoplast ELISA and subsequent immunofluorescence studies identified four hybridoma lines as secreting antibodies which bound to the external surface of protoplasts and cells. The corresponding antigens were not species- or tissue-specific, were periodatesensitive, and were located in membranes which equilibrated broadly throughout a linear sucrose gradient. When protein blots of electrophoretically separated membrane proteins were probed with these antibodies, a band of Mr 14 kilodaltons (kDa) and a smear of bands of Mr 45–120 kDa were labeled. An additional set of three antibodies appeared by immunofluorescence to bind to the plasma membrane of broken but not intact protoplasts and labeled membranes equilibrating at a density of approx. 1.12 kg·l-1 in a linear sucrose density gradient. These classes of monoclonal antibodies enlarge the library of monoclonal antibodies (Norman et al. 1986, Planta 167, 452–459) available for the study of plant plasma-membrane structure and function.Abbreviations ELISA Enzyme-linked immunosorbent assay - Ig immunoglobulin - kDa kilodalton - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

12.
13.
Monoclonal antibodies have been raised against haustorial complexes isolated from pea (Pisum sativum L.) leaves infected by the biotrophic powdery mildew fungus Erysiphe pisi D.C. Immuno-localisation studies, using isolated haustorial complexes and infected pea leaf material, have shown that one of the antibodies, designated UB7, binds to fungal wall and plasma membranes present in both haustoria and mycelia. However, a second antibody, UB8, binds specifically to the haustorial plasma membrane, and does not label fungal plasma membranes in mycelia. Western blotting and antigen-modification techniques have shown that UB8 recognises a protein epitope of a 62-kDa antigen. A reduction in molecular weight of this component after endo-F treatment indicates that the antigen is an N-linked glycoprotein. UB7 also recognises a 62-kDa glycoprotein, which is susceptible to endo-F treatment, and the antibody binds to a carbohydrate epitope. Differences in molecular weights of the products after endo-F treatment of antigens show that the 62-kDa glycoproteins recognised by the antibodies are distinct molecules, in accordance with the localisation results. Overall, the results provide evidence for molecular differentiation associated with the development of haustoria in a biotrophic infection.Abbreviations ehm extrahaustorial membrane - ELISA enzyme-linked immunosorbent assay - HC haustorial complex - hpm haustorial plasma membrane - IIF indirect immunofluorescence - MAb monoclonal antibody - Mr apparent molecular weight - PMSF phenylmethylsulfonyl fluoride - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis We thank Mr. D. Mills and Mr. P. Stanley for help with the EM immunogold techniques. This work was supported by an Agricultural and Food Research Council grant and a studentship from the Science and Engineering Research Council.  相似文献   

14.
By immunizing mice with homogenized brains, heads, or a mixture of heads and antennae of D. melanogaster, we obtained six monoclonal antibodies (mabs) that bind to the olfactory system of Drosophila with various degrees of specificity. They can be divided into three groups with respect to their staining pattern: (1) The antibodies ca51/2, na21/2, and nb230 label both in the third (olfactory) antennal segment and in the visual ganglia. All of them bind to antennal structures that can be correlated with basiconic sensilla. The antibody ca51/2 labels sensory neurons of these sensilla. In the antenna of the lozenge 3 mutant, which lacks basiconic sensilla, no labeling is present. In Western blots ca51/2 recognizes in the antenna an antigen of 43.5 kDa, which is expressed in the antenna only in the presence of basiconic sensilla. The antibody na21/2 binds to basiconic and coeloconic sensilla, most likely to the apical part of sheath cells. In immunoblots it recognizes in the antenna two antigens of 42.2 kDa and 46.7 kDa. The latter appears to be correlated in the antenna with the presence of basiconic sensilla. (2) The staining pattern of antibody nc10 is associated with the sheath cells of basiconic and coeloconic sensilla. Moreover, nc10 binds to a subset of glomeruli in the antennal lobe. (3) The staining pattern of the antibodies VG2 and I24B5 is restricted to the antenna. I24B5 recognizes coeloconic sensilla and VG2 recognizes both coeloconic and basiconic sensilla. Staining patterns in both cases include sheath cells.  相似文献   

15.
Tobacco hornworm, Manduca sexta, is a model insect for studying the action of Bacillus thuringiensis (Bt) Cry toxins on lepidopterans. The proteins, which bind Bt toxins to midgut epithelial cells, are key factors involved in the insecticidal functions of the toxins. Three Cry1A-binding proteins, viz., aminopeptidase N (APN), the cadherin-like Bt-R1, and membrane-type alkaline phosphatase (m-ALP), were localized, by immunohistochemistry, in sections from the anterior, middle, and posterior regions of the midgut from second instar M. sexta larvae. Both APN and m-ALP were distributed predominantly along microvilli in the posterior region and to a lesser extent on the apical tip of microvilli in the anterior and middle regions. Bt-R1 was localized at the base of microvilli in the anterior region, over the entire microvilli in the middle region, and at both the apex and base of microvilli in the posterior region. The localization of rhodamine-labeled Cry1Aa, Cry1Ab, and Cry1Ac binding was determined on sections from the same midgut regions. Cry1Aa and Cry1Ab bound to the apical tip of microvilli almost equally in all midgut regions. Binding of Cry1Ac was much stronger in the posterior region than in the anterior and middle regions. Thus, binding sites for Bt proteins and Cry1A toxins are co-localized on the microvilli of M. sexta midgut epithelial cells.  相似文献   

16.
Purification of glycollate oxidase from greening cucumber cotyledons   总被引:7,自引:0,他引:7  
Glycollate oxidase (glycollate: oxygen oxidoreductase, EC 1.1.3.1) was purified to apparent homogeneity from crude extracts of greening cucumber cotyledons (Cucumis sat vus). Molecular sieving and chromatofocusing resulted in 700-fold purification and specific activity of 1 kat mg-1 protein. The enzyme exhibited a Mr of 180,000, or 700,000, respectively, and is a tetramer or 16-mer made of identical subunits of Mr 43,000. Monospecific antibodies were raised against the homogeneous protein.  相似文献   

17.
This article deals with cell physiological aspects of the plasma membrane electrogenic proton (H+) pump and emphasizes the contribution of the giant algal cells of the Characeae in elucidating the mechanism of the pump. First, a history of the development of intracellular perfusion techniques in characean internodal cells is described, including preparation of tonoplast-free cells. Then, an outline of the hypothesis of the electrogenic H+ pump proposed by Kitasato is introduced, who prophesied the existence of an electric potential generated by an active H+ efflux. Subsequently, a history of finding ATP as the direct energy source of the electrogenic ion pump is presented. Quantitative agreement between the pump current and the ATP-dependent H+ efflux supports the notion that the ion carried by the electrogenic ion pump is H+. The role of the H+ pump in regulation of the cytosolic pH is discussed. Mechanisms of light-induced potential change through photosynthesis-controlled activation of the H+ pump are discussed in terms of changes in the levels of adenine nucleotides and in modulation of the Km value for the ATP of H+-ATPase. Recent progress in the molecular mechanism of the blue-light-induced activation of the H+-ATPase in guard cells is presented. However, there are cases where H+-ATPase activity is inhibited by blue light, indicating the flexibility of the control mechanisms of H+-ATPase activity. Finally, modulation of H+-pumping or H+-ATPase activities in response to environmental factors, such as anoxia, membrane excitation, osmotic and salt stresses, nutrient deficiencies and aluminum toxicity are described. Discussions are presented on the regulation of the electrogenic H+ pump.  相似文献   

18.
Summary The apical surface of the retinal pigment epithelium (RPE) faces the neural retina whereas its basal surface faces the choroid. Taurine, which is necessary for normal vision, is released from the retina following light exposure and is actively transported from retina to choroid by the RPE. In these experiments, we have studied the effects of taurine on the electrical properties of the isolated RPE of the bullfrog, with a particular focus on the effects of taurine on the apical Na+–K+ pump.Acute exposure of the apical, but not basal, membrane of the RPE to taurine decreased the normally apical positive transepithelial potential (TEP). This TEP decrease was generated by a depolarization of the RPE apical membrane and did not occur when the apical bath contained sodium-free medium. With continued taurine exposure, the initial TEP decrease was sometimes followed by a recovery of the TEP toward baseline. This recovery was abolished by strophanthidin or ouabain, indicating involvement of the apical Na+–K+ pump.To further explore the effects of taurine on the Na+–K+ pump, barium was used to block apical K+ conductance and unmask a stimulation of the pump that is produced by increasing apical [K+] 0 . Under these conditions, increasing [K+] 0 hyperpolarized the apical membrane and increased TEP. Taurine reversibly doubled these responses, but did not change total epithelial resistance or the ratio of apical-to-basal membrane resistance, and ouabain abolished these responses.Collectively, these findings indicate the presence of an electrogenic Na+/taurine cotransport mechanism in the apical membrane of the bullfrog RPE. They also provide direct evidence that taurine produces a sodium-dependent increase in electrogenic pumping by the apical Na+–K+ pump.  相似文献   

19.
Summary In an attempt to identify and localize the components of voltage sources involved in sensory transduction in insect sensilla, the thermo-/hygrosensitive sensilla of the moth Antheraea pernyi were probed with a polyclonal antiserum against Na+,K+-ATPase in cryofixed and freeze-substituted preparations. The antiserum recognized epitopes on the cytoplasmic membranes of the dendritic inner segments and somata of the sensory cells and also on the cytoplasmic membranes of glial cells surrounding the initial axon segments. The findings support the current concept that ion pumps in the cytoplasmic membranes of the dendritic inner segments and somata of the sensory cells contribute to the maintenance of the resting potential of the sensory cells and to the driving forces generating the receptor currents in response to stimulation of the sensillum. Morphological features and immunohistochemical characteristics of the region of the initial axon segment are also discussed with respect to the initiation of action potentials in these sensilla.  相似文献   

20.
The intracellular compartmentation of carbonic anhydrase (CA; EC 4.2.1.1), an enzyme that catalyses the reversible hydration of CO2 to bicarbonate, has been investigated in potato (Solanum tuberosum L.) leaves. Although enzyme activity was mainly located in chloroplasts (87% of total cellular activity), significant activity (13%) was also found in the cytosol. The corresponding CA isoforms were purified either from chloroplasts or crude leaf extracts, respectively. The cytosolic isoenzyme has a molecular mass of 255 000 and is composed of eight identical subunits with an estimated M r of 30000. The chloroplastic isoenzyme (M r 220000) is also an octamer composed of two different subunits with M r estimated at 27 000 and 27 500, respectively. The N-terminal amino acid sequences of both chloroplastic CA subunits demonstrated that they were identical except that the M r-27 000 subunit was three amino acids shorter than that of the M r-27 500 subunit. Cytosolic and chloroplastic CA isoenzymes were found to be similarly inhibited by monovalent anions (Cl, I, N 3 - and NO 3 - ) and by sulfonamides (ethoxyzolamide and acetozolamide). Both CA isoforms were found to be dependent on a reducing agent such as cysteine or dithiothreitol in order to retain the catalytic activity, but 2-mercaptoethanol was found to be a potent inhibitor. A polyclonal antibody directed against a synthetic peptide corresponding to the N-terminal amino acid sequence of the chloroplastic CA monomers also recognized the cytosolic CA isoform. This antibody was used for immunocytolocalization experiments which confirmed the intracellular compartmentation of CA: within chloroplasts, CA is restricted to the stroma and appears randomly distributed in the cytosol.Abbreviations BSA bovine serum albumin - CA carbonic anhydrase - PMSF phenylmethylsulphonyl fluoride - BAM benzamidine - DTT dithiothreitol - 2-ME 2-mercaptoethanol - PVDF polyvinylidene difluoride The authors thanks P. Carrier and Dr. B. Dimon for technical assistance with the mass-spectrometry measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号