首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In an attempt to identify and localize the components of voltage sources involved in sensory transduction in insect sensilla, the thermo-/hygrosensitive sensilla of the moth Antheraea pernyi were probed with a polyclonal antiserum against Na+,K+-ATPase in cryofixed and freeze-substituted preparations. The antiserum recognized epitopes on the cytoplasmic membranes of the dendritic inner segments and somata of the sensory cells and also on the cytoplasmic membranes of glial cells surrounding the initial axon segments. The findings support the current concept that ion pumps in the cytoplasmic membranes of the dendritic inner segments and somata of the sensory cells contribute to the maintenance of the resting potential of the sensory cells and to the driving forces generating the receptor currents in response to stimulation of the sensillum. Morphological features and immunohistochemical characteristics of the region of the initial axon segment are also discussed with respect to the initiation of action potentials in these sensilla.  相似文献   

2.
Summary Two types of insect sensilla, mechanosensitive scolopidia and thermo-/hygrosensitive poreless sensilla contain a scolopale, which consists of numerous microtubules embedded in bundles of filaments (7–10 nm in diameter). The bundles are readily seen in the electron microscope in cryofixed (high-pressure freezing and rapid injection) and substituted samples. The filaments can be identified as actin filaments by using fluorescent phalloidins. Both electron microscopy and Triton-extraction exeriments reveal mechanical linkage between the main components in both types of sensilla. Since myosin appears to be absent in the scolopale, the actin filaments are unlikely to be involved in any contraction mechanism; these filaments more probably provide mechanical stability. The functional properties of the scolopale are discussed.  相似文献   

3.
The presence of a vacuolar-type ATPase in Malpighian tubules of the ant Formica polyctena was investigated immunocytochemically, using antibodies to vacuolar ATPases of Manduca sexta midgut and bovine kidney. Specific labelling was observed at the brush border of the epithelium extending along the entire length of the tubules. These findings agree with the current view that a vacuolar ATPase is situated at the apical membrane of Malpighian tubule cells and other insect epithelial cells, being the energizing element of an electrogenic potassium pump. When antibodies were tested on tubules in different secretion conditions prior to fixation, no differences were observed in the distribution of the vacuolar ATPase.This work was supported by grants from the European Community (SCI-CT90-0480), from the Ministerio de Educación y Ciencia DGICYT, Spain (CE 91-0002), and from the Deutsche Forschungsgemeinschaft (Wi 698-3).  相似文献   

4.
Summary The morphogenesis of the thermo- and hygro-sensitive sensilla styloconica of Antheraea pernyi was studied, exclusively by cryomethods, during the second half of pupal development. The three major processes taking place during this period are (1) the differentiation of the dendritic outer segments of the sensory cells, especially of the lamellated type-2 receptor, (2) the formation of the receptor-lymph cavities, (3) the formation of tubular structures of unknown function in the inner receptor-lymph cavity, and (4) the elongation of the dendrite sheath. The formation of lamellae in the type-2 dendritic outer segment is achieved by the enfolding of its originally cylindrical cytoplasmic membrane. Autocellular junctions, previously described in the sensilla of adult animals, are found to join the forming lamellae. Close similarities between the junctions and smooth septate junctions are demonstrated. Both the extensive inner and outer receptor-lymph cavities are formed by invagination and folding of the apical cytoplasmic membranes of the three enveloping cells. Formation starts at the most apical projection of the cells and proceeds in a proximal direction. Up to 4-m-long tubular structures appear, exclusively in developmental stages, in the inner receptor-lymph cavity. They are composed of plasma membranes whose inner surface is studded with regularly spaced electron-dense particles. Contacts with the cytoplasmic membrane of the innermost enveloping cell demonstrate that the structures are composed of lipid membranes. During elongation of the dendrite sheath, which in these sensilla is apically attached to the hair wall, an 2-m-long growth-zone is observed at its proximal end. By addition of sheath-forming material to the growth-zone, the latter continuously moves proximally until the sheath is completed.  相似文献   

5.
Summary The thermo-/hygroreceptive sensilla styloconica of the silkmoth Bombyx mori are located on the tips of the antennal branches. A small poreless cuticular peg is innervated by three sensory cells. The outer dendritic segments of two type-1 receptor cells, the presumed hygroreceptors, almost completely fill the peg lumen and are in close contact with each other. The outer dendritic segment of the third (type-2) receptor cell, the presumed thermoreceptor, forms lamellae below the peg base. The membranes of these lamellae are studded with knobs in orthogonal array, protruding into the extracellular space with the same orientation on facing lamellae. This Bossy Orthogonal Surface Substructure (BOSS) is assumed to play a role in thermoreceptor function. Contacts are observed between the outer dendritic segments, between the inner dendritic segments immediately below the ciliary segments, and between the sensory cell somata. These contacts, which are not found in the olfactory sensilla (s. trichodea and basiconica) of this species, indicate electrical interactions between the three sensory cells of the styloconic sensillum and possibly are involved in the antagonistic and/or bimodal response characteristics of thermo-/hygroreceptor cells.  相似文献   

6.
The hygro- and thermoreceptive tarsal organ in the wandering spider Cupiennius salei is located on the tarsus of each walking leg and pedipalp, and consists of a tiny air-filled capsule in the cuticle. This capsule communicates with the outside world through a small aperture and contains seven nipple-shaped sensilla, each with a pore at its tip. In both their external morphology and internal structure, the sensilla are indistinguishable, although one sensillum is innervated by only two sensory cells, whereas the other six sensilla contain three sensory cells. Their dendrites are unbranched and terminate at the tip-pore, where they are enveloped by amorphous material that appears to limit their exposure to the atmosphere. Cobalt fillings reveal that each tarsal organ projects to three different areas within the suboesophageal ganglionic mass: (1) the sensory longitudinal tract 3 and 4; (2) the corresponding pedipalpal or leg ganglion; (3) a structured neuropil (here termed the Blumenthal neuropil) beneath the oesophagus. The multiple representation of sensory afferents from each tarsal organ in different regions of the suboesophageal ganglionic mass suggests parallel processing of hygro-/thermoreceptive information.  相似文献   

7.
Summary By combined enzymatic and mechanical treatment, it was possible to dissociate the sensory epithelium of developing antennae of male Antheraea polyphemus and A. pernyi silkmoths from the stage of separation of the antennal branches up to the early stages of cuticle deposition. Large numbers of entire developing trichoid sensilla were isolated. These are characterized by a large trichogen cell with a long apical, hair-forming process and a large nucleus. A cluster of 2–3 sensory neurons, enclosed by the thecogen cell, is situated in the basal region. The dendrites run past the nucleus of the trichogen cell into the apical process from which they protrude laterally. The nuclei of the tormogen and a 4th enveloping cell can be distinguished near the base of the prospective hair. After further dissociation, only the neuron clusters remain, still enclosed by their thecogen cell and often attached to the antennal branch nerve via their axons. It is finally possible to disrupt the thecogen cells and the axons, leaving the sensory neurons with inner dendritic segments and axon stumps. The majority of these neurons can be expected to be olfactory.  相似文献   

8.
Summary The thermo-/hygrosensitive sensilla styloconica of the silk moth Bombyx mori were studied using cryofixation and freez-substitution. These sensilla are characterized by a short poreless cuticular peg, which is double-walled in its distal part. The central lumen is innervated by the unbranched outer dendritic segments of the two presumed hygroreceptor cells. The presumed thermoreceptor cell displays lamellae below the peg base. Within the peg lumen, the dendrites are surrounded by the peridendritic dense coat and the lowdensity matrix. Below the peg base, these structures continue as the dendrite sheath, which is separated from the outer sensillum-lymph space by a layer of the trichogen cell. The central lumen, therefore, is only connected with the inner sensillum-lymph space, but the appearance of the low-density matrix, within the peg, differs from that of the sensillum lymph below the peg. In moist-adapted (24 h) sensilla, the two hygroreceptor dendrites invade the peg for three quarters and one half of its length, respectively, and fill the cross-sectional area of the lumen by 50–80%. In dry-adapted (24 h) sensilla, the dendrites terminate more proximally and fill the cross-section by 35%. The volume of the low-density matrix increases under dry conditions and decreases under humid conditions. At intermediate ambient humidity, the morphology of these sensilla is halfway between the dry-adapted and the moist-adapted state. The effect of dry-adaptation is reversible, so that sensilla that were first dry-adapted and then moist-adapted (24 h each) before cryofixation cannot be distinguished from moist-adapted sensilla. The reduction of the exposed length of the dendrites is interpreted as a shift of the working range of the receptors and/or protection against desiccation. The current theories of sensory transduction in hygroreceptors, in particular the hygrometer and evaporimeter hypotheses, are discussed with respect to the present findings.  相似文献   

9.
Summary The thermo/hygroreceptive sensilla styloconica of the silkmoths Bombyx mori, Antheraea pernyi, and A. polyphemus were reconstructed from serial sections of cryofixed and chemically fixed specimens. The volume and surface area of the different sensillar cells were calculated from the area and circumference of consecutive section profiles. In addition, data are provided on the length and diameter of the outer and inner dendritic segments of the receptor cells. The morphometric data obtained from the three species are highly consistent and significantly different from those of olfactory sensilla trichodea of the same species. In each sensillum two type-1 receptor cells (hygroreceptors) are associated with one type-2 cell with a lamellated outer dendritic segment, a comparatively thick inner dendritic segment, and a particularly large soma (thermoreceptor). In contrast to olfactory sensilla, the thecogen cell is the largest auxiliary cell forming an extensive apical labyrinth bordering the inner sensillum-lymph space, whereas an inconspicuous trichogen cell and a medium-sized tormogen cell border a comparatively small outer sensillum-lymph cavity. Moreover, both sensillum-lymph spaces are separated from each other not only by the dendrite sheath, but also by the trichogen cell. The results are discussed with regard to recent electrophysiological observations and current hypotheses on the function of sensilla.  相似文献   

10.
Sensilla lining the inner walls of the sacculus on the third antennal segment of Drosophila melanogaster were studied by light and transmission electron microscopy. The sacculus consists of three chambers: I, II and III. Inside each chamber morphologically distinct groups of sensilla having inflexible sockets were observed. Chamber I contains no-pore sensilla basiconica (np-SB). The lumen of all np-SB are innervated by two neurons, both resembling hygroreceptors. However, a few np-SB contain one additional neuron, presumed to be thermoreceptive. Chamber II houses no-pore sensilla coeloconica (np-SC). All np-SC are innervated by three neurons. The outer dendritic segments of two of these neurons fit tightly to the wall of the lumen and resemble hygroreceptor neurons. A third, more electron-dense sensory neuron, terminates at the base of the sensillum and resembles a thermoreceptor cell. Chamber III of the sacculus is divided into ventral and dorsal compartments, each housing morphologically distinct grooved sensilla (GS). The ventral compartment contains thick GS1, and the dorsal compartment has slender sensilla GS2. Ultrastructurally, both GS1 and GS2 are doublewalled sensilla with a longitudinal slit-channel system and are innervated by two neurons. The dendritic outer segment of one ofthe two neurons innervates the lumen of the GS and branches. On morphological criteria, we infer this neuron to be olfactory. The other sensory neuron is probably thermoreceptive. Thus, the sacculus in Drosophila has sensilla that are predominantly involved in hygroreception, thermoreception, and olfaction. We have traced the sensory projections of the neurons innervating the sacculus sensilla of chamber III using cobaltous lysine or ethanolic cobalt (II) chloride. The fibres project to the antennal lobes, and at least four glomeruli (VM3, DA3 and DL2-3) are projection areas of sensory neurons from these sensilla. glomerulus DL2 is a common target for the afferent fibres of the surface sensilla coeloconica and GS, whereas the VM3, DA3 and DL3 glomeruli receive sensory fibres only from the GS.  相似文献   

11.
The ATPase activity present in plasmalemma-enriched preparations from maize coleoptiles shows an optimum at pH 6, a strong dependence on Mg2+, and is stimulated by K+ and other monovalent cations, both organic and inorganic. The activation of ATPase by K+ obeys Michaelis Menten kinetics, saturation being reached at 50 mM K+ concentration. K+, Mg2+-stimulated ATPase activity is strongly inhibited by N,N-dicyclohexylcarbodiimide and by diethylstilbestrol and, to a lesser extent, by octylguanidine.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - DES diethylstilbestrol - DTE dithioerythritol - Ellmans r 5-5 dithiobis (2 nitrobenzoic) acid - FC fusicoccin - NPA naphthylphthalamic acid - OG octylguanidine - PCMBS p-chloromercuribenzensulphonate  相似文献   

12.
Summary The structure and embryonic development of the two types (A, B) of basiconic sensilla on the antennae of Locusta migratoria were studied in material that had been cryofixed and freeze-substituted, or chemically fixed and dehydrated. Both types are single-walled wall-pore sensilla. Type-A sensilla comprise 20–30 sensory and 7 enveloping cells. One enveloping cell (thecogen cell secretes the dendrite sheath); four are trichogen cells, projections of which form the trichogen process during the 2nd embryonic molt. The trichogen cells form two concentric pairs proximally. Two tormogen cells secrete the cuticular socket of the sensillum. The dendritic outer segments of the sensory cells are branched. Bifurcate type-A sensilla have also been observed. Type-B sensilla comprise three sensory and four enveloping cells (one thecogen, two trichogen and one tormogen). The trichogen process is formed by the two trichogen cells, each of which gives rise to two projections. The trichogen cells are concentrically arranged. The dendritic outer segments of the sensory cells are unbranched. In the fully developed sensillum, all trichogen and tormogen cells border on the outer receptor lymph cavity. It is suggested that the multicellular organization of the type-A sensilla can be regarded as being advanced rather than primitive.Supported by the Dcutschc Forschungsgemeinschaft (SFB 4/G1)  相似文献   

13.
Summary The cytochemical localization of ATPase activity has been investigated in maize root cells using both lead and cerium-based capture methods. With both methods, staining at the plasma membrane was observed in all cells of the root, although the precipitate obtained with cerium was more uniform and granular than that with lead. Controls using no substrate or no magnesium, -glycerophosphate to replace ATP, vanadate or boiled tissue generally showed little or no staining. However, biochemical studies on purified plasma membrane fractions showed that ATPase activity was markedly inhibited by fixation, particularly by glutaraldehyde, and also by lead and cerium ions. Non-enzymic hydrolysis of ATP by cerium was greater than that by lead. The value and limitations of these procedures for the localization of plasma membrane H+-ATPase activity are summarized in relation to previous criticisms of these methods.Abbreviations DTT dithiothreitol - EDTA ethylene diaminetetraacetic acid - GP B-glycerophosphate - PCMBS p-chloromercuribenzene sulphonic acid - PMSF phenylmethylsulphonyl fluoride  相似文献   

14.
Immunohistochemical and physiological studies on various insect photoreceptors have demonstrated that the Na,K-ATPase (sodium pump) is restricted to the nonreceptive nonmicrovillar area of the plasma membrane. Here, we examined the distribution of the Na,K-ATPase in photoreceptor cells of the superposition-type compound eye in the moth Manduca sexta. Using immunofluorescent and immunogold cytochemistry, we show that the Na,K-ATPase is localized to both the nonmicrovillar and the microvillar parts of the plasma membrane. Manduca photoreceptors thus deviate from the common concept that the sodium pump and the molecular components of the photoreceptive machinery reside on different domains of the plasma membrane.  相似文献   

15.
The prime plasmalemma ATPase of the halophilic green alga Dunaliella bioculata has been solubilized by Triton X-100 from a plasmalemma-rich membrane fraction and purified by anion-exchange chromatography. Vanadate-sensitive ATPase activity was totally enriched about 230-fold to a specific activity of approx. 250 nkat·mg protein–1. The presence of Mg2+ or Mn2+ is essential for ATP hydrolysis by the enzyme. In addition to an equimolar requirement (11 Mg2+: ATP), there is further stimulation by Mg2+ (up to 20 mM) and by (100 mM) monovalent cations (K+ NH 4 + >Rb+ -Na+ >Cs+ >Li+-choline+). Most anions have no or little effect. With a molecular mass of about 105 kDa for the single subunit, sensitivity to vanadate and N,N-dicyclohexylcarbodiimide (50% inhibition at about 1 M and 0.3 mM, respectively), strict ATP-specificity, and an acidic pH optimum, this enzyme shows the typical characteristics of the common type of H+-ATPase in the plasmalemma of higher plants and fungi. These results undermine the hypothesis of a wider distribution of a special (high salt) type of plasmalemma ATPase as found in the marine alga Acetabularia.Abbreviations BTP 1,3-bis[tris(hydroxymethyl)-methylamino]propane - DCCD N,N-dicyclohexylcarbodiimide - DES diethylstilbestrol - Mega-9 nonanoyl-N-methyl-glucamide - Mes N-morpholinoethanesulfonic acid - Mops N-morpholinopropanesulfonic acid - PAGE polyacrylamide-gel electrophoresis - PM plasmalemma-enriched membrane fraction - SDS sodium dodecyl sulfate This work was supported by the Deutsche Forschungsgemeinschaft; we thank Drs. M. Ikeda and D. Oesterhelt (MPI für Biochemie, Martinsried, FRG) for generous and valuable information about their work prior to publication.  相似文献   

16.
The glial cells of the prothoracic ganglion of the hawk moth Manduca sexta were studied in histological sections of several postembryonic stages and classified according to cell morphology, size, staining properties, and topographical relationships. In general, each glial cell type was found to be confined to one of the major ganglionic domains and each of these domains (i.e., perineurium, cell body rind, glial cover of the neuropil, and neuropil) was found to comprise specific cell types. Some types of glia were recognized in both larval and later stages, but other types were found exclusively from late pupal stages. It is proposed that the higher morphological diversity expressed by the glia of the pharate adult is attained by differentiation of new cell types during metamorphosis. Before the differentiation of new cell types, extensive cell death and cell proliferation seem to occur within some glial subpopulations.  相似文献   

17.
The response of V(1) ATPase of the tobacco hornworm Manduca sexta to Mg(2+) and nucleotide binding in the presence of the enhancer methanol has been studied by CuCl(2)-induced disulfide formation, fluorescence spectroscopy, and small-angle X-ray scattering. When the V(1) complex was supplemented with CuCl(2) nucleotide-dependence of A-B-E and A-B-E-D cross-linking products was observed in absence of nucleotides and presence of MgADP+Pi but not when MgAMP.PNP or MgADP were added. A zero-length cross-linking product of subunits D and E was formed, supporting their close proximity in the V(1) complex. The catalytic subunit A was reacted with N-4[4-[7-(dimethylamino)-4-methyl]coumarin-3-yl]maleimide (CM) and spectral shifts and changes in fluorescence intensity were detected upon addition of MgAMP.PNP, -ATP, -ADP+Pi, or -ADP. Differences in the fluorescence emission of these nucleotide-binding states were monitored using the intrinsic tryptophan fluorescence. The structural composition of the V(1) ATPase from M. sexta and conformational alterations in this enzyme due to Mg(2+) and nucleotide binding are discussed on the basis of these and previous observations.  相似文献   

18.
Summary Deficiency of the photopigment chromophore, resulting from carotenoid/retinoid (vitamin A) deprivation, that severely impairs the visual function of Manduca sexta also leads to the hypertrophy of smooth endoplasmic reticulum in the photoreceptors. The excess endomembrane accumulates in the stacked cisternae of myeloid bodies. Although 11-cis retinal promotes substantial recovery of function in the retinas of deprived moths maintained in darkness, the myeloid bodies remain. When such recovering photoreceptors were exposed to light of moderate intensities, the amount of endomembrane diminished to normal levels over a period of several hours, while rhabdomeres grew larger. Since there was no endocytolysis, the myeloid bodies must have provided the membrane for rhabdomere enlargement. Bright light similarly mobilized the myeloid bodies in deprived receptors. Thus the persistence of myeloid bodies in moderately illuminated chromophoredeficient receptors is a consequence of their insensitivity. However, the initial hypertrophy of endomembrane does not appear to result from the lack of adequate stimulation: normal, chromophore-replete photoreceptors maintained in darkness from before the period of retinal development had large rhabdomeres and no myeloid bodies. The development of myeloid bodies during the differentiation of vitamin A-deprived photoreceptors appears to entail an influence of the chromophore at another level of receptor cell function.  相似文献   

19.
Immunocytochemistry with monoclonal antibodies was used to investigate the locations of muscarinic acetylcholine receptors (mAChR) and choline acetyltransferase (ChAT) in sections of the developing antennae of the moth Manduca sexta. The results were correlated with a previous morphological investigation in the developing antennae which allowed us to locate different cell types at various stages of development. Our findings indicated that the muscarinic cholinergic system was not restricted to the sensory neurons but was also present in glial and epidermal cells. By day 4–5 of adult development, immunoreactivity against both antibodies was present in the axons of the antennal nerve, and more intense labeling was present in sections from older pupae. At days 4–9, the cell bodies of the sensory neurons in the basal part of the epidermis were also intensely immunolabeled by the anti-mAChR antibody. In mature flagella, large numbers of cells, some with processes into hairs, were strongly labeled by both antibodies. Antennal glial cells were intensely immunolabeled with both antibodies by days 4–5, but in later stages, it was not possible to discriminate between glial and neural staining. At days 4–9, we observed a distinctly labeled layer of epidermal cells close to the developing cuticle. The expression of both ChAT and mAChRs by neurons in moth antennae may allow the regulation of excitability by endogenous ACh. Cholinergic communication between neurons and glia may be part of the system that guides axon elongation during development. The cholinergic system in the apical part of the developing epidermis could be involved in cuticle formation.This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Innovation, and the Nova Scotia Research and Innovation Trust to P.H.T. and a NSERC postdoctoral fellowship to J.C.  相似文献   

20.
The two sensillum lymph cavities of contact chemosensitive sensilla of insects are separated by the dendrite sheath. The composition of the dendrite sheath in the contact chemosensitive sensilla of the ventral sensory field on the maxillary palps of Periplaneta americana L. has been studied using lectin cytochemistry. The dendrite sheaths can be isolated from the surrounding tissue and the autofluorescent cuticle by incubation of cryostat sections in phosphate-buffered saline containing 1% Triton X-100. Various lectins bind specifically to the dendrite sheath indicating the presence of sugar residues. Enzymatic digestion with hyaluronidase or trypsin prior to lectin cytochemistry decreases staining intensity, whereas treatment with neuraminidase and chitinase causes no visible change. The material of the dendrite sheath can thus be assumed to contain acid mucopolysaccharides that probably are similar to those of the receptor lymph cavities. The negatively charged, hydrophilic acid mucopolysaccharides may make the dendrite sheath permeable for small cations. These findings are discussed in the context of the functional significance of the dendrite sheath in contact chemosensory sensilla of insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号