首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Li J  Poi MJ  Qin D  Selby TL  Byeon IJ  Tsai MD 《Biochemistry》2000,39(4):649-657
We report the first detailed structure-function analyses of p18INK4C (p18), which is a homologue of the important tumor suppressor p16INK4A (p16). Twenty-four mutants were designed rationally. The global conformations of the mutants were characterized by NMR, while the function was assayed by inhibition of cyclin-dependent kinase 4 (CDK4). Most of these mutants have unperturbed global structures, thus the changes in their inhibitory abilities can be attributed to the mutated residues. The important results are summarized as follows: (a) some residues at loops 1 and 2, but not 3, are important for the inhibitory function of p18, similar to the results for p16; (b) two residues at the first helix-turn-helix motif and two at the third are important for inhibition; (c) while the results generally agree with the prediction based on the crystal structures of p16-CDK6 and p19-CDK6 binary complexes, there are significant differences in a few residues, suggesting that the interactions in the binary complexes may not accurately represent the interactions in the ternary complexes (in the presence of cyclin D2); (d) most importantly, the extra loop of p18 appears to contribute to the function of p18, even though the crystal structure of the p19INK4D-CDK6 complex indicates no interactions involving this loop; (e) detailed analyses of the crystal structures and the functional results suggest that there are notable differences in the interactions between different members of the INK4 family and CDKs.  相似文献   

3.
4.
Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19INK4d. p19INK4d induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19INK4d by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19INK4d in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19INK4d throughout the investigated period indicates that p19INK4d plays active role during human tooth development. Furthermore, comparison of expression domains of p19INK4d with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.  相似文献   

5.
6.
7.
8.
9.
Cell cycle progression is under the control of cyclin-dependent kinases (cdks), the activity of which is dependent on the expression of specific cdk inhibitors. In this paper we report that the two cdk inhibitors, p27(Kip1) and p18(INK4c), are differently expressed and control different steps of human B lymphocyte activation. Resting B cells contain large amounts of p27(Kip1) and no p18(INK4c). In vitro stimulation by Staphylococcus aureus Cowan 1 strain or CD40 ligand associated with IL-10 and IL-2 induces a rapid decrease in p27(Kip1) expression combined with cell cycle entry and progression. In contrast, in vitro Ig production correlates with specific expression of p18(INK4c) and early G(1) arrest. This G(1) arrest is associated with inhibition of cyclin D3/cdk6-mediated retinoblastoma protein phosphorylation by p18(INK4c). A similar contrasting pattern of p18(INK4c) and p27(Kip1) expression is observed both in B cells activated in vivo and in various leukemic cells. Expression of p18(INK4c) was also detected in various Ig-secreting cell lines in which both maximum Ig secretion and specific p18(INK4c) expression were observed during the G(1) phase. Our study shows that p27(Kip1) and p18(INK4c) have different roles in B cell activation; p27(Kip1) is involved in the control of cell cycle entry, and p18(INK4c) is involved in the subsequent early G(1) arrest necessary for terminal B lymphocyte differentiation.  相似文献   

10.
11.
12.
Calpains are a large family of Ca2+-dependent cysteine proteases that are ubiquitously distributed across most cell types and vertebrate species. Calpains play a role in cell differentiation, apoptosis, cytoskeletal remodeling, signal transduction and the cell cycle. The cell cycle proteins cyclin D1 and p21(KIP1), for example, have been shown to be affected by calpains. However, the rules that govern calpain cleavage specificity are poorly understood. We report here studies on the pattern of mu-calpain proteolysis of the p19(INK4d) protein, a cyclin-dependent kinase 4/6 inhibitor that negatively regulates the mammalian cell cycle. Our data show new characteristics of calpain action: mu-calpain cleaves p19(INK4d) immediately after the first and second ankyrin repeats that are structurally less stable compared to the other repeats. This is in contrast to features observed so far in the specificity of calpains for their substrates. These results imply that calpain may be involved in the cell cycle by regulating the cell cycle regulatory protein turnover through CDK inhibitors and cyclins.  相似文献   

13.
14.
Indole-3-carbinol (I3C) is a naturally occurring compound found in vegetables such as broccoli and cauliflower, and has been shown to arrest human tumor cells in the G1 phase of the cell cycle. However, the molecular mechanism responsible for this effect has not been sufficiently elucidated. We report here that I3C activates the cyclin-dependent kinase (CDK) inhibitor p15INK4b gene through its promoter, accompanied by cell growth inhibition in HaCaT cells. Treatment with I3C almost did not affect the expressions of the other CDK inhibitors such as p19INK4d, p21WAF1 and p27Kip1. These results suggest that p15INK4b is an important molecular target of I3C among CDK inhibitors.  相似文献   

15.
16.
17.
18.
19.
The regulation of the vertebrate cell cycle is controlled by the function of cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors. The Xenopus laevis kinase inhibitor, p27(Xic1) (Xic1) is a member of the p21(Cip1)/p27(Kip1)/p57(Kip2) CDK inhibitor family and inhibits CDK2-cyclin E in vitro as well as DNA replication in Xenopus egg extracts. Xic1 is targeted for degradation in interphase extracts in a manner dependent on both the ubiquitin conjugating enzyme, Cdc34, and nuclei. Here we show that ubiquitination of Xic1 occurs exclusively in the nucleus and that nuclear localization of Xic1 is necessary for its degradation. We find that Xic1 nuclear localization is independently mediated by binding to CDK2-cyclin E and by nuclear localization sequences within the C terminus of Xic1. Our results also indicate that binding of Xic1 to CDK2-cyclin E is dispensable for Xic1 ubiquitination and degradation. Moreover, we show that amino acids 180-183 of Xic1 are critical determinants of Xic1 degradation. This region of Xic1 may define a motif of Xic1 essential for recognition by the ubiquitin conjugation machinery or for binding an alternate protein required for degradation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号