首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Li A  Xiong S  Lin Y  Liu R  Chu Y 《DNA and cell biology》2011,30(11):883-892
The NV epitope, a dominant helper determinant from the circumsporozoite antigen of Plasmodium falciparum, is strongly immunogenic and can provide help for cytotoxic T-lymphocyte (CTL) activation. In this study, we evaluated whether the addition of NV peptide can augment the efficacy of peptide-pulsed dendritic cell (DC) immunization in vivo. Using B16 melanoma as tumor model, we demonstrated that DCs pulsed with both NV and gp100 (a melanoma-specific antigen) peptide enhanced immune priming and protection from tumor challenge in vivo. Further, we showed the mechanisms of the NV epitope that help CTL activation; MHC-II-restricted NV peptide induced dramatically more effective helper cells, with a higher level of CD40L expression and IFN-γ production, which, in turn, more effectively conditioned DCs for CTL activation. The improved helper cells also induced greater IL-12 production by DCs, accounting for the reciprocal T-helper polarization to Th1, and increased the expression of costimulatory molecules. Collectively, these findings demonstrate that NV peptide in addition to tumor antigen-pulsed DC immunizations augment helper cell activation, which in turn promotes maturation of DC, and enhance in vivo antitumor activity.  相似文献   

3.
A first-line chemotherapeutic drug for non-small cell lung cancer (NSCLC), cisplatin (CDDP), fails to induce immunogenic cell death (ICD) because it fails to induce calreticulin (CRT) exposure on the cell surface. We investigated the potential of ischemia and reperfusion injury (I/R) combined with CDDP to induce ICD in lung cancer cells. The in vitro model of I/R, oxygen-glucose deprivation and reperfusion (OGD/R), effectively induced CRT exposure, ATP secretion, high mobility group box 1 (HMGB1) release and eIF2α phosphorylation in both Lewis lung carcinoma (LLC) and A549 cells when combined with CDDP. By using a vaccine assay and coculture with bone marrow-derived dendritic cells (BMDCs), we showed that OGD/R restored the immunogenicity of CDDP by phosphorylating eIF2α and demonstrated that OGD/R + CDDP (O + C) is an ICD inducer. Using the inguinal tumor model, we found that I/R significantly enhanced the tumor-killing effect of CDDP and Mitomycin C, and this effect relied on adaptive antitumor immunity. Consistently, I + C altered the ratio of interferon-gamma-secreting T lymphocytes, thus overcoming the immunosuppressive effect induced by CDDP. In conclusion, our research presents a new combination strategy and indicates that I/R is a potential anticancer immunogenic modality when combined with nonimmunogenic chemotherapy.Subject terms: Cancer immunotherapy, Chemotherapy  相似文献   

4.
Dendritic cell (DC)-based antitumor immunotherapy is a promising cancer therapy. We have previously shown that tumor-derived TGF-beta limits the efficacy of the DC/tumor fusion vaccine in mice. In the current study we investigated the effect of neutralizing tumor-derived TGF-beta on the efficacy of the DC/tumor fusion vaccine. An adenovirus encoding human TGF-beta receptor type II fused to the Fc region of human IgM (Adv-TGF-beta-R) or a control adenovirus encoding LacZ (Adv-LacZ) was used to express a soluble form of the neutralizing TGF-beta receptor (TGF-beta-R). Murine breast carcinoma cells, 4T1, but not bone marrow-derived DCs, were successfully transfected with Adv-TGF-beta-R (4T1+Adv-TGF-beta-R) using a multiplicity of infection of 300. Immunization with irradiated 4T1+Adv-TGF-beta-R tumor cells conferred enhanced antitumor immunity compared with immunization with irradiated 4T1+Adv-LacZ tumor cells. The DC/4T1+Adv-TGF-beta-R fusion vaccine offered enhanced protective and therapeutic efficacy compared with the DC/4T1-Adv-LacZ fusion vaccine. Because TGF-beta is known to induce regulatory T cells (Tregs), we further showed that the DC/4T1+Adv-TGF-beta-R fusion vaccine induced fewer CD4(+)CD25(+)Foxp3(+) Tregs than the DC/4T1+Adv-LacZ fusion vaccine in vitro and in vivo. The suppressive role of splenic CD4(+)CD25(+) Tregs isolated from mice immunized with DC/4T1+Adv-LacZ was demonstrated using a CTL killing assay. Similar enhanced therapeutic efficacy was observed in murine renal cell carcinoma, RenCa, which expresses a high level of TGF-beta. We conclude that the blockade of tumor-derived TGF-beta reduces Treg induction by the DC/tumor fusion vaccine and enhances antitumor immunity. This may be an effective strategy to enhance human DC-based antitumor vaccines.  相似文献   

5.
The absence of surface costimulatory molecules explains in part the lack of an effective anti-tumor immune response in tumor-bearing animals, even though unique tumor antigens may be presented by class I MHC. We determined that the immunogenicity of a murine neuroblastoma, Neuro-2a, which lacks surface costimulatory molecules, could be increased by electrically induced fusion with dendritic cells. Electrofusion induced a higher level of cell fusion than polyethylene glycol, and tumor/dendritic cell heterokaryons expressed high levels of costimulatory molecules. While Neuro-2a was unable to induce the proliferation of syngeneic or allogeneic T cells in vitro, fused cells were able to induce T cell responses both in vitro and in vivo. When fused dendritic tumor cells were used as a cancer vaccine, immunized mice were significantly protected from challenge with Neuro-2a. We propose that electrofusion with patient-derived tumor and dendritic cells may provide a rapid means to produce patient-specific tumor vaccines.  相似文献   

6.
Recently, cytokine-based pro-tumourigenic signalling has been found to play a major role in the immune system's pro-tumourigenic activity. On the other hand, other recent findings have shown that immunogenic cancer cell death triggered by certain anticancer modalities might reset the dysfunctional immune system towards the activation of a long-lasting protective anti-tumour response. Therefore, using inducers of immunogenic cell death (ICD) that can prevent or impede tumour-promoting cytokine signalling is one of the best ways of instigating or restoring efficient anti-tumour immunity. In this review it is discussed, how the different ICD inducers interact with the immune system and influence cytokine-based pro-tumourigenic signalling. We believe that it is crucial to discover or develop new anti-cancer therapeutic modalities that can induce ICD and impede tumour-promoting cytokine signalling.  相似文献   

7.
The programmed cell death inducing effect of the EGF receptor tyrosine kinase inhibitor α-cyano-3,4-dihydroxycinnamthioamide (AG213) was investigated in vitro on HT-29 human colon tumor. AG213 at concentrations between 45 to 450 μM blocks the proliferation of HT-29 cells. Morphological findings suggest that the selective tyrosine kinase inhibitor AG213 induces Clarke III type (non-lysosomal vesiculate cytoplasmic) programmed cell death; unlike ATP analog non-selective tyrosine kinase inhibitors like Genistein which were found to induce apoptosis. Cycloheximide and Actinomycin-D reduced the effect of AG213 pointing to the fact that protein and RNA synthesis are also needed for this form of cell death. Acid phosphatase activity was found in the Golgi and in the newly formed intracytoplasmic vacuoles 3 hours after AG213 treatment which disappeared by 6 hours. The induction of Clarke III cell death by tyrosine kinase inhibitors may open a new modality to selective killing of tumor cells.  相似文献   

8.
Apoptotic cell death is initiated by a morphologically homogenous entity that was considered to be non-immunogenic and non-inflammatory in nature. However, recent advances suggest that apoptosis, under certain circumstances, can be immunogenic. In particular, some characteristics of the plasma membrane, acquired at preapoptotic stage, can cause immune effectors to recognize and attack preapoptotic tumor cells. The signals that mediate the immunogenicity of tumor cells involve elements of the DNA damage response (such as ataxia telangiectasia mutated and p53 activation), elements of the endoplasmic reticulum stress response (such as eukaryotic initiation factor 2alpha phosphorylation), as well as elements of the apoptotic response (such as caspase activation). Depending on the signal-transduction pathway, tumor cells responding to chemotherapy or radiotherapy can express 'danger' and 'eat me' signals on the cell surface (such as NKG2D ligands, heat-shock proteins and calreticulin) or can secrete/release immunostimulatory factors (such as cytokines and high-mobility group box 1) to stimulate innate immune effectors. Likewise, the precise sequence of such events influences the 'decision' of the immune system to mount a cognate response or not. We therefore anticipate that the comprehension of the mechanisms governing the immunogenicity of cell death will have a profound impact on the design of anticancer therapies.  相似文献   

9.

Background

Shikonin, a phytochemical purified from Lithospermum erythrorhizon, has been shown to confer diverse pharmacological activities, including accelerating granuloma formation, wound healing, anti-inflammation and others, and is explored for immune-modifier activities for vaccination in this study. Transdermal gene-based vaccine is an attractive approach for delivery of DNA transgenes encoding specific tumor antigens to host skin tissues. Skin dendritic cells (DCs), a potent antigen-presenting cell type, is known to play a critical role in transmitting and orchestrating tumor antigen-specific immunities against cancers. The present study hence employs these various components for experimentation.

Method

The mRNA and protein expression of RANTES were detected by RT-PCR and ELISA, respectively. The regional expression of RANTES and tissue damage in test skin were evaluated via immunohistochemistry assay. Fluorescein isothiocyanate sensitization assay was performed to trace the trafficking of DCs from the skin vaccination site to draining lymph nodes. Adjuvantic effect of shikonin on gene gun-delivered human gp100 (hgp100) DNA cancer vaccine was studied in a human gp100-transfected B16 (B16/hgp100) tumor model.

Results

Among various phytochemicals tested, shikonin induced the highest level of expression of RANTES in normal skin tissues. In comparison, mouse RANTES cDNA gene transfection induced a higher level of mRANTES expression for a longer period, but caused more extensive skin damage. Topical application of shikonin onto the immunization site before gene gun-mediated vaccination augmented the population of skin DCs migrating into the draining lymph nodes. A hgp100 cDNA gene vaccination regimen with shikonin pretreatment as an adjuvant in a B16/hgp100 tumor model increased cytotoxic T lymphocyte activities in splenocytes and lymph node cells on target tumor cells.

Conclusion

Together, our findings suggest that shikonin can effectively enhance anti-tumor potency of a gene-based cancer vaccine via the induction of RANTES expression at the skin immunization site.  相似文献   

10.
Abstract

Background: Platinum compounds are commonly used for lung cancer treatment. However, the severe side effects and relatively poor prognosis limit their therapeutic effect. Therefore, developing novel platinum derivative and treatment strategy are critical for current lung cancer therapy.

Methods: Flow cytometry, HMGB1 and ATP release, and immunoblotting were performed to evaluate the Oxaliplatin-induced immunogenic cell death (ICD) in two lung carcinoma cells. Vaccination approach and subcutaneous tumor models were created to analyze the tumor regression effect of Oxaliplatin. PD-L1 mRNA and protein levels were detected in LLC (Lewis lung carcinoma). Enhanced therapeutic efficacy of LLC was assessed by co-administration Oxaliplatin and aPD-L1 in murine lung tumor model.

Results: Oxaliplatin induced robust ICD in LLC cells, activated dendritic cells (DCs, CD80+CD86+) and enhanced cytotoxic T cells (CD8+) in LLC tumor tissues, which resulted in tumor regression. Co-administration of Oxaliplatin and checkpoint inhibitor, aPD-L1, could enhance the therapeutic efficacy of LLC in murine lung carcinoma.

Conclusion: This study reveals Oxaliplatin can induce robust ICD in tumor tissues and suppress tumor growth by activating DCs and enhancing T-cell infiltration. Notably, the Oxaliplatin-induced ICD provides an immunogenic microenvironment, which enhances the checkpoint inhibitor therapeutic efficacy of LLC.  相似文献   

11.
The elimination of tumor cells by apoptosis is the main mechanism of action of chemotherapeutic drugs. More recently, autophagic cell death has been shown to trigger a nonapoptotic cell death program in cancer cells displaying functional defects of caspases. Fenretinide (FenR), a synthetic derivative of retinoic acid, promotes growth inhibition and induces apoptosis in a wide range of tumor cell types. The present study was designed to evaluate the ability of fenretinide to induce caspase-independent cell death and to this aim we used the human mammary carcinoma cell line MCF-7, lacking functional caspase-3 activity. We demonstrated that in these cells fenretinide is able to trigger an autophagic cell death pathway. In particular we found that fenretinide treatment resulted in the increase in Beclin 1 expression, the conversion of the soluble form of LC3 to the autophagic vesicle-associated form LC3-II and its shift from diffuse to punctate staining and finally the increase in lysosomes/autophagosomes. By contrast, caspase-3 reconstituted MCF-7 cell line showed apoptotic cell death features in response to fenretinide treatment. These data strongly suggest that fenretinide does not invariably elicit an apoptotic response but it is able to induce autophagy when apoptotic pathway is deregulated. The understanding of the molecular mechanisms involved in fenretinide action is important for the future design of therapies employing this retinoid in breast cancer treatment.  相似文献   

12.
《Autophagy》2013,9(4):435-441
The elimination of tumour cells by apoptosis is the main mechanism of action of chemotherapeutic drugs. More recently, autophagic cell death has been shown to trigger a nonapoptotic cell death program in cancer cells displying functional defects of caspases. Fenretinide (FenR), a synthetic derivative of retinoic acid, promotes growth inhibition and induces apoptosis in a wide range of tumour cell types. The present study was designed to evaluate the ability of fenretinide to induce caspase-independent cell death and to this aim we used the human mammary carcinoma cell line MCF-7, lacking functional caspase-3 activity. We demonstrated that in these cells fenretinide is able to trigger an autophagic cell death pathway. In particular we found that fenretinide treatment resulted in the increase in Beclin 1 expression, the conversion of the soluble form of LC3 to the autophagic vesicle-associated form LC3-II and its shift from diffuse to punctate staining and finally the increase in lysosomes/autophagosomes. By contrast, caspase-3 reconstituted MCF-7 cell line showed apoptotic cell death features in response to fenretinide treatment. These data strongly suggest that fenretinide does not invariably elicit an apoptotic response but it is able to induce autophagy when apoptotic pathway is deregulated. The understanding of the molecular mechanisms involved in fenretinide action is important for the future design of therapies employing this retinoid in breast cancer treatment.  相似文献   

13.
《Autophagy》2013,9(9):1292-1307
Calreticulin surface exposure (ecto-CALR), ATP secretion, maturation of dendritic cells (DCs) and stimulation of T cells are prerequisites for anticancer therapy-induced immunogenic cell death (ICD). Recent evidence suggests that chemotherapy-induced autophagy may positively regulate ICD by favoring ATP secretion. We have recently shown that reactive oxygen species (ROS)-based endoplasmic reticulum (ER) stress triggered by hypericin-mediated photodynamic therapy (Hyp-PDT) induces bona fide ICD. However, whether Hyp-PDT-induced autophagy regulates ICD was not explored. Here we showed that, in contrast to expectations, reducing autophagy (by ATG5 knockdown) in cancer cells did not alter ATP secretion after Hyp-PDT. Autophagy-attenuated cancer cells displayed enhanced ecto-CALR induction following Hyp-PDT, which strongly correlated with their inability to clear oxidatively damaged proteins. Furthermore, autophagy-attenuation in Hyp-PDT-treated cancer cells increased their ability to induce DC maturation, IL6 production and proliferation of CD4+ or CD8+ T cells, which was accompanied by IFNG production. Thus, our study unravels a role for ROS-induced autophagy in weakening functional interaction between dying cancer cells and the immune system thereby helping in evasion from ICD prerequisites or determinants.  相似文献   

14.
15.
Autophagic cell death or abortive autophagy has been proposed to eliminate damaged as well as cancer cells, but there remains a critical gap in our knowledge in how this process is regulated. The goal of this study was to identify modulators of the autophagic cell death pathway and elucidate their effects on cellular signaling and function. The result of our siRNA library screenings show that an intact coatomer complex I (COPI) is obligatory for productive autophagy. Depletion of COPI complex members decreased cell survival and impaired productive autophagy which preceded endoplasmic reticulum stress. Further, abortive autophagy provoked by COPI depletion significantly altered growth factor signaling in multiple cancer cell lines. Finally, we show that COPI complex members are overexpressed in an array of cancer cell lines and several types of cancer tissues as compared to normal cell lines or tissues. In cancer tissues, overexpression of COPI members is associated with poor prognosis. Our results demonstrate that the coatomer complex is essential for productive autophagy and cellular survival, and thus inhibition of COPI members may promote cell death of cancer cells when apoptosis is compromised.  相似文献   

16.
17.
To investigate the effects of chloroquine diphosphate (CQ) on lung cancer cell growth, we treated A549 cells, a lung cancer cell line, with the drug at various concentrations (0.25-128 microM) for 24-72 h. The results showed that, at lower concentrations (from 0.25 to 32 microM), CQ inhibited the growth of A549 cells and, at the same time, it induced vacuolation with increased volume of acidic compartments (VAC). On the other hand, at higher concentrations (64-128 microM), CQ induced apoptosis at 24 h, while its effect of inducing vacuolation declined. The lactate dehydrogenase (LDH) assay showed that with the treatment of CQ 32-64 microM for 72 h or 128 microM for 48 h, CQ induced necrosis of A549 cells. To understand the possible mechanism by which CQ acts in A549 cells, we further incubated the cells with this drug at the concentrations of 32 or 128 microM in the presence of D609, a specific inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC). The results showed that D609 (50 microM) could inhibit the effects of CQ 32 microM on the viability and VAC, but it could not change the effects of CQ 128 microM on the same. Our data suggested that CQ inhibited A549 lung cancer cell growth at lower concentrations by increasing the volume of lysosomes and that PC-PLC might be involved in this process. The data also indicated that, at higher concentrations, CQ induced apoptosis and necrosis, but at this time its ability to increase the volume of lysosome gradually declined, and PC-PLC might not be implicated in the process.  相似文献   

18.
Tetrazolium violet (TV), a tetrazolium salt, has been applied in several fields, including estimating respiration rate, as a redox indicator of microbial growth, and for estimating the number of viable animal cells. It has recently been found that TV is capable of inducing apoptosis in rat glioblastoma cells by way of an elusive mechanism. In this study, we demonstrated that TV also induced apoptosis in mouse breast tumor C127 cells as evidenced by nucleus condensation and nucleus fragmentation. Our data showed that TV caused activation of caspase-3 and caspase-8, but not caspase-9. An enhancement in Fas and its two ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), might be responsible for the apoptotic effect induced by TV. Also, the results first reported that TV not only inhibited C127 cells proliferation but also blocked cell cycle progression in the G1 and G2 phase, determined by MTT assay and flow cytometry analysis. Immunofluorescence assay demonstrated that TV significantly increased the expression of p53 protein, which caused cell cycle arrest. Taken together, p53, Fas/FasL, and the caspase apoptotic system may participate in the antiproliferative activity of TV in C127 cells.  相似文献   

19.

Background

Curcumin inhibits the growth of esophageal cancer cell lines; however, the mechanism of action is not well understood. It is becoming increasingly clear that aberrant activation of Notch signaling has been associated with the development of esophageal cancer. Here, we have determined that curcumin inhibits esophageal cancer growth via a mechanism mediated through the Notch signaling pathway.

Methodology/Principal Findings

In this study, we show that curcumin treatment resulted in a dose and time dependent inhibition of proliferation and colony formation in esophageal cancer cell lines. Furthermore, curcumin treatment induced apoptosis through caspase 3 activation, confirmed by an increase in the ratio of Bax to Bcl2. Cell cycle analysis demonstrated that curcumin treatment induced cell death and down regulated cyclin D1 levels. Curcumin treatment also resulted in reduced number and size of esophagospheres. Furthermore, curcumin treatment led to reduced Notch-1 activation, expression of Jagged-1 and its downstream target Hes-1. This reduction in Notch-1 activation was determined to be due to the down-regulation of critical components of the γ-secretase complex proteins such as Presenilin 1 and Nicastrin. The combination of a known γ-secretase inhibitor DAPT and curcumin further decreased proliferation and induced apoptosis in esophageal cancer cells. Finally, curcumin treatment down-regulate the expressions of Notch-1 specific microRNAs miR-21 and miR-34a, and upregulated tumor suppressor let-7a miRNA.

Conclusion/Significance

Curcumin is a potent inhibitor of esophageal cancer growth that targets the Notch-1 activating γ-secretase complex proteins. These data suggest that Notch signaling inhibition is a novel mechanism of action for curcumin during therapeutic intervention in esophageal cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号