首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hwang SL  Chung NP  Chan JK  Lin CL 《Cell research》2005,15(3):167-175
Indoleamine 2, 3-dioxygenase (IDO) is a rate-limiting enzyme for the tryptophan catabolism. In human and murine cells, IDO inhibits antigen-specific T cell proliferation in vitro and suppresses T cell responses to fetal alloantigens during murine pregnancy. In mice, IDO expression is an inducible feature of specific subsets of dendritic cells (DCs),and is important for T cell regulatory properties. However, the effect of IDO and tryptophan deprivation on DC functions remains unknown. We report here that when tryptophan utilization was prevented by a pharmacological inhibitor of IDO, 1-methyl tryptophan (1MT), DC activation induced by pathogenic stimulus lipopolysaccharide (LPS) or inflammatory cytokine TNF-α was inhibited both phenotypically and functionally. Such an effect was less remarkable when DC was stimulated by a physiological stimulus, CD40 ligand. Tryptophan deprivation during DC activation also regulated the expression of CCR5 and CXCR4, as well as DC responsiveness to chemokines. These results suggest that tryptophan usage in the microenvironment is essential for DC maturation, and may also play a role in the regulation of DC migratory behaviors.  相似文献   

2.
Blockade of IDO inhibits nasal tolerance induction   总被引:1,自引:0,他引:1  
The amino acid tryptophan is essential for the proliferation and survival of cells. Modulation of tryptophan metabolism has been described as an important regulatory mechanism for the control of immune responses. The enzyme IDO degrades the indole moiety of tryptophan, not only depleting tryptophan but also producing immunomodulatory metabolites called kynurenines, which have apoptosis-inducing capabilities. In this study, we show that IDO is more highly expressed in nonplasmacytoid dendritic cells of the nose draining lymph nodes (LNs), which form a unique environment to induce tolerance to inhaled Ags, when compared with other peripheral LNs. Upon blockade of IDO during intranasal OVA administration, Ag-specific immune tolerance was abrogated. Analysis of Ag-specific T cells in the LNs revealed that inhibition of IDO resulted in enhanced survival at 48 h after antigenic stimulation, although this result was not mediated through alterations in apoptosis or cell proliferation. Furthermore, no differences were found in CD4(+) T cells expressing FoxP3. Our data suggest that the level of IDO expression in dendritic cells, present in nose draining LNs, allows for the generation of a sufficient number of regulatory T cells to control and balance effector T cells in such a way that immune tolerance is induced, whereas upon IDO blockade, effector T cells will outnumber regulatory T cells, leading to immunity.  相似文献   

3.
Objectives  Indoleamine-2,3-Dioxygenase (IDO) is an immunosuppressive molecule inducible in various cells. In addition to classic IDO (IDO1), a new variant, IDO2, has recently been described. When expressed in dendritic cells (DCs) or cancer cells, IDO was thought to suppress the immune response to tumors. A novel therapeutic approach in cancer envisages inhibition of IDO with 1-methyl-tryptophan (1MT). The levo-isoform (l-1MT) blocks IDO1, whereas dextro-1MT (d-1MT), which is used in clinical trials, inhibits IDO2. Here we analyze IDO2 expression in human cancer cells and the impact of both 1-MT isoforms on IDO activity. Methods  Surgically extirpated human primary tumors as well as human cancer cell lines were tested for IDO1 and IDO2 expression by RT-PCR. IDO1 activity of Hela cells was blocked by transfection with IDO1-specific siRNA and analysed for tryptophan degradation by RP-HPLC. The impact of d-1MT and l-1MT on IDO activity of Hela cells and protein isolates of human colon cancer were studied. Results  Human primary gastric, colon and renal cell carcinomas constitutively expressed both, IDO1 and IDO2 mRNA, whereas cancer cells lines had to be induced to by Interferon-gamma (IFN-γ). Treatment of Hela cells with IDO1-specific siRNA resulted in complete abrogation of tryptophan degradation. Only l-1MT, and not d-1MT, was able to block IDO activity in IFN-γ-treated Hela cells as well as in protein isolates of primary human colon cancer. Conclusions  Although IDO2 is expressed in human tumors, tryptophan degradation is entirely provided by IDO1. Importantly, d-1MT does not inhibit the IDO activity of malignant cells. If ongoing clinical studies show a therapeutic effect of d-1MT, this cannot be attributed to inhibition of IDO in tumor cells.  相似文献   

4.
Indoleamine 2, 3-dioxygenase (IDO)-mediated regulation of tryptophan metabolism plays an important role in immune tolerance in transplantation, but it has not been elucidated which mechanism specifically induces the occurrence of immune tolerance. Our study revealed that IDO exerts immunosuppressive effects through two pathways in mouse heart transplantation, ‘tryptophan depletion’ and ‘tryptophan metabolite accumulation’. The synergism between IDO+DC and TC (tryptophan catabolic products) has stronger inhibitory effects on T lymphocyte proliferation and mouse heart transplant rejection than the two intervention factors alone, and significantly prolong the survival time of donor-derived transplanted skin. This work demonstrates that the combination of IDO+DC and TC can induce immune tolerance to a greater extent, and reduce the rejection of transplanted organs.  相似文献   

5.
BackgroundCrohn''s disease (CD) is a chronic inflammatory disease of the gastrointestinal tract. Genetic polymorphisms can confer CD risk and influence disease phenotype. Indoleamine 2,3 dioxygenase-1 (IDO1) is one of the most over-expressed genes in CD and mediates potent anti-inflammatory effects via tryptophan metabolism along the kynurenine pathway. We aimed to determine whether non-synonymous polymorphisms in IDO1 or IDO2 (a gene paralog) are important either as CD risk alleles or as modifiers of CD phenotype.MethodsUtilizing a prospectively collected database, clinically phenotyped CD patients (n = 734) and non-IBD controls (n = 354) were genotyped for established IDO1 and IDO2 non-synonymous single nucleotide polymorphisms (SNPs) and novel genetic variants elucidated in the literature. Allelic frequencies between CD and non-IBD controls were compared. Genotype-phenotype analysis was conducted. IDO1 enzyme activity was assessed by calculating the serum kynurenine to tryptophan ratio (K/T).ResultsIDO1 SNPs were rare (1.7% non-IBD vs 1.1% CD; p = NS) and not linked to Crohn''s disease diagnosis in this population. IDO1 SNPs did however associate with a severe clinical course, presence of perianal disease, extraintestinal manifestations and a reduced serum K/T ratio during active disease suggesting lower IDO1 function. IDO2 minor allele variants were common and one of them, rs45003083, associated with reduced risk of Crohn''s disease (p = 0.025). No IDO2 SNPs associated with a particular Crohn''s disease clinical phenotype.ConclusionsThis work highlights the functional importance of IDO enzymes in human Crohn''s disease and establishes relative rates of IDO genetic variants in a US population.  相似文献   

6.
Indoleamine 2,3-dioxygenase (IDO) functions as a crucial mediator of tumor-mediated immune tolerance by causing T-cell suppression via tryptophan starvation in a tumor environment. Glycogen synthase kinase-3β (GSK-3β) is also involved in immune and anti-tumor responses. However, the relativity of these proteins has not been as well defined. Here, we found that GSK-3β-dependent IDO expression in the dendritic cell (DC) plays a role in anti-tumor activity via the regulation of CD8+ T-cell polarization and cytotoxic T lymphocyte activity. By the inhibition of GSK-3β, attenuated IDO expression and impaired JAK1/2-Stat signaling crucial for IDO expression were observed. Protein kinase Cδ (PKCδ) activity and the interaction between JAK1/2 and Stat3, which are important for IDO expression, were also reduced by GSK-3β inhibition. CD8+ T-cell proliferation mediated by OVA-pulsed DC was blocked by interferon (IFN)-γ-induced IDO expression via GSK-3β activity. Specific cytotoxic T lymphocyte activity mediated by OVA-pulsed DC against OVA-expressing EG7 thymoma cells but not OVA-nonexpressing EL4 thymoma cells was also attenuated by the expressed IDO via IFN-γ-induced activation of GSK-3β. Furthermore, tumor growth that was suppressed with OVA-pulsed DC vaccination was restored by IDO-expressing DC via IFN-γ-induced activation of GSK-3β in an OVA-expressing murine EG7 thymoma model. Taken together, DC-based immune response mediated by interferon-γ-induced IDO expression via GSK-3β activity not only regulates CD8+ T-cell proliferation and cytotoxic T lymphocyte activity but also modulates OVA-pulsed DC vaccination against EG7 thymoma.  相似文献   

7.
Substantial evidence indicates that immune activation at stroma can be rerouted in a tumor-promoting direction. CD69 is an immunoregulatory molecule expressed by early-activated leukocytes at sites of chronic inflammation, and CD69(+) T cells have been found to promote human tumor progression. In this study, we showed that, upon encountering autologous CD69(+) T cells, tumor macrophages (MΦs) acquired the ability to produce much greater amounts of IDO protein in cancer nests. The T cells isolated from the hepatocellular carcinoma tissues expressed significantly more CD69 molecules than did those on paired circulating and nontumor-infiltrating T cells; these tumor-derived CD69(+) T cells could induce considerable IDO in monocytes. Interestingly, the tumor-associated monocytes/MΦs isolated from hepatocellular carcinoma tissues or generated by in vitro culture effectively activated circulating T cells to express CD69. IL-12 derived from tumor MΦs was required for early T cell activation and subsequent IDO expression. Moreover, we found that conditioned medium from IDO(+) MΦs effectively suppressed T cell responses in vitro, an effect that could be reversed by adding extrinsic IDO substrate tryptophan or by pretreating MΦs with an IDO inhibitor 1-methyl-DL-tryptophan. These data revealed a fine-tuned collaborative action between different types of immune cells to counteract T cell responses in tumor microenvironment. Such an active induction of immune tolerance should be considered for the rational design of effective immune-based anticancer therapies.  相似文献   

8.
Dendritic cells (DCs) play a key role in the activation and regulation of B and T lymphocytes. Production of indoleamine 2, 3-dioxygenase (IDO) by macrophages has recently been described to result in inhibition of T cell proliferation through tryptophan degradation. Since DCs can be derived from monocytes, we sought to determine whether DCs could produce IDO which could potentially regulate T cell proliferation. Northern blot analysis of RNA from cultured monocyte-derived human DC revealed that IDO mRNA was induced upon activation with CD40 ligand and IFN-gamma. IDO produced from activated DCs was functionally active and capable of metabolizing tryptophan to kynurenine. Activated T cells were also capable of inducing IDO production by DCs, which was inhibited by a neutralizing Ab against IFN-gamma. DC production of IDO resulted in inhibition of T cell proliferation, which could be prevented using the IDO inhibitor 1-methyl-dl -tryptophan. These results suggest that activation of DCs induces the production of functional IDO, which causes depletion of tryptophan and subsequent inhibition of T cell proliferation. This may represent a potential mechanism for DCs to regulate the immune response.  相似文献   

9.
BACKGROUND: Indoleamine 2,3-dioxygenase (IDO) is an enzyme involved in the catabolism of tryptophan and has been shown to prevent rejection of the fetus during pregnancy by inhibiting alloreactive T cells. METHODS: In this study we investigated dendritic cells (DCs) that are transfected with IDO cDNA in the inhibition of T-cell proliferation after antigen-specific interaction. XS106 DCs, derived from A/J mice (H-2k), were transduced with IDO with a gene-delivery system using a recombinant adenoviral vector. RESULTS: Western blotting and immune staining revealed IDO expression in XS106 DCs transduced with IDO (XS106-IDO DCs), and its catabolic effect was confirmed by an increase in kynurenine concentration. Fluorescence-activated cell sorting revealed that XS106-IDO DCs were not changeable for Ia, CD80, and CD86 expression. After XS106-IDO DCs were co-cultured with C57BL/6 allogeneic splenic T cells, the proliferation of the T cell was significantly inhibited. The co-cultured T cells with XS106-IDO DCs exhibited cell-cycle arrest. Furthermore, injection of XS160-IDO DCs into the footpads of C57BL/6 (H-2b) mice demonstrated a reduced T-cell response against allo-antigen. CONCLUSIONS: These results suggest that overexpression of IDO in the DCs effectively inhibited T-cell proliferation, and may expand a new immunomodulatory strategy for the prevention of allo-rejection of organ transplantation.  相似文献   

10.
11.
Infection by the human immunodeficiency virus (HIV) is characterized by functional impairment and chronic activation of T lymphocytes, the causes of which are largely unexplained. We cultured peripheral blood mononuclear cells (PBMC) from HIV-uninfected donors in the presence or absence of HIV. HIV exposure increased expression of the activation markers CD69 and CD38 on CD4 and CD8 T cells. IFN-alpha/beta, produced by HIV-activated plasmacytoid dendritic cells (pDC), was necessary and sufficient for CD69 and CD38 upregulation, as the HIV-induced effect was inhibited by blockade of IFN-alpha/beta receptor and mimicked by recombinant IFN-alpha/beta. T cells from HIV-exposed PBMC showed reduced proliferation after T cell receptor stimulation, partially prevented by 1-methyl tryptophan, a competitive inhibitor of the immunesuppressive enzyme indoleamine (2,3)-dioxygenase (IDO), expressed by HIV-activated pDC. HIV-induced IDO inhibited CD4 T cell proliferation by cell cycle arrest in G1/S, and prevented CD8 T cell from entering the cell cycle by downmodulating the costimulatory receptor CD28. Finally, the expression of CHOP, a marker of the stress response activated by IDO, was upregulated by HIV in T cells in vitro and is increased in T cells from HIV-infected patients. Our data provide an in vitro model for HIV-induced T cell dysregulation and support the hypothesis that activation of pDC concomitantly contribute to phenotypic T cell activation and inhibition of T cell proliferative capacity during HIV infection.  相似文献   

12.
Liver fibrosis is a course of chronic liver dysfunction, can develop into cirrhosis and hepatocellular carcinoma. Inflammatory insult owing to pathogenic factors plays a crucial role in the pathogenesis of liver fibrosis. Indoleamine 2,3-dioxygenase 1 (IDO1) can affect the infiltration of immune cells in many pathology processes of diseases, but its role in liver fibrosis has not been elucidated completely. Here, the markedly elevated protein IDO1 in livers was identified, and dendritic cells (DCs) immune-phenotypes were significantly altered after BDL challenge. A distinct hepatic population of CD11c+DCs was decreased and presented an immature immune-phenotype, reflected by lower expression levels of co-stimulatory molecules (CD40, MHCII). Frequencies of CD11c+CD80+, CD11c+CD86+, CD11c+MHCII+, and CD11c+CD40+ cells in splenic leukocytes were reduced significantly. Notably, IDO1 overexpression inhibited hepatic, splenic CD11c+DCs maturation, mature DCs-mediated T-cell proliferation and worsened liver fibrosis, whereas above pathological phenomena were reversed in IDO1−/− mice. Our data demonstrate that IDO1 affects the process of immune cells recruitment via inhibiting DCs maturation and subsequent T cells proliferation, resulting in the promotion of hepatic fibrosis. Thus, amelioration of immune responses in hepatic and splenic microenvironment by targeting IDO1 might be essential for the therapeutic effects on liver fibrosis.Subject terms: Differentiation, Antigen-presenting cells  相似文献   

13.
IDO is the rate-limiting enzyme in the kynurenine pathway, catabolizing tryptophan to kynurenine. Tryptophan depletion by IDO-expressing tumors is a common mechanism of immune evasion inducing regulatory T cells and inhibiting effector T cells. Because mammalian cells cannot synthesize tryptophan, it remains unclear how IDO(+) tumor cells overcome the detrimental effects of local tryptophan depletion. We demonstrate that IDO(+) tumor cells express a novel amino acid transporter, which accounts for ~50% of the tryptophan uptake. The induced transporter is biochemically distinguished from the constitutively expressed tryptophan transporter System L by increased resistance to inhibitors of System L, resistance to inhibition by high concentrations of most amino acids tested, and high substrate specificity for tryptophan. Under conditions of low extracellular tryptophan, expression of this novel transporter significantly increases tryptophan entry into IDO(+) tumors relative to tryptophan uptake through the low-affinity System L alone, and further decreases tryptophan levels in the microenvironment. Targeting this additional tryptophan transporter could be a way of pharmacological inhibition of IDO-mediated tumor escape. These findings highlight the ability of IDO-expressing tumor cells to thrive in a tryptophan-depleted microenvironment by expressing a novel, highly tryptophan-specific transporter, which is resistant to inhibition by most other amino acids. The additional transporter allows tumor cells to strike the ideal balance between supply of tryptophan essential for their own proliferation and survival, and depleting the extracellular milieu of tryptophan to inhibit T cell proliferation.  相似文献   

14.
Although human amniotic fluid does contain different populations of foetal‐derived stem cells, scanty information is available on the stemness and the potential immunomodulatory activity of in vitro expanded, amniotic fluid stem cells. By means of a methodology unrequiring immune selection, we isolated and characterized different stem cell types from second‐trimester human amniotic fluid samples (human amniotic fluid stem cells, HASCs). Of those populations, one was characterized by a fast doubling time, and cells were thus designated as fHASCs. Cells maintained their original phenotype under prolonged in vitro passaging, and they were able to originate embryoid bodies. Moreover, fHASCs exhibited regulatory properties when treated with interferon (IFN)‐γ, including induction of the immunomodulatory enzyme indoleamine 2,3‐dioxygenase 1 (IDO1). On coculture with human peripheral blood mononuclear cells, IFN‐γ–treated fHASCs caused significantly decreased T‐cell proliferation and increased frequency in CD4+ CD25+ FOXP3+ regulatory T cells. Both effects required an intact IDO1 function and were cell contact‐independent. An unprecedented finding in our study was that purified vesicles from IFN‐γ–treated fHASCs abundantly expressed the functional IDO1 protein, and those vesicles were endowed with an fHASC‐like regulatory function. In vivo, fHASCs were capable of immunoregulatory function, promoting allograft survival in a mouse model of allogeneic skin transplantation. This was concurrent with the expansion of CD4+ CD25+ Foxp3+ T cells in graft‐draining lymph nodes from recipient mice. Thus fHASCs, or vesicles thereof, may represent a novel opportunity for immunoregulatory maneuvers both in vitro and in vivo.  相似文献   

15.
Progestagen-associated endometrial protein (PAEP) is a glycoprotein of the lipocalin family that acts as a negative regulator of T cell receptor-mediated activation. However, the function of tumor-derived PAEP on the human immune system in the tumor microenvironment is unknown. PAEP is highly expressed in intermediate and thick primary melanomas (Breslow’s 2.5mm or greater) and metastatic melanomas, correlating with its expression in daughter cell lines established in vitro. The current study investigates the role of melanoma cell-secreted PAEP protein in regulating T cell function. Upon the enrichment of CD3+, CD4+ and CD8+ T cells from human peripheral blood mononuclear cells, each subset was then mixed with either melanoma-derived PAEP protein or PAEP-poor supernatant of gene-silenced tumor cells. IL-2 and IFN-γ secretion of CD4+ T cells significantly decreased with the addition of PAEP-rich supernatant. And the addition of PAEP-positive cell supernatant to activated lymphocytes significantly inhibited lymphocyte proliferation and cytotoxic T cell activity, while increasing lymphocyte apoptosis. Our result suggests that melanoma cell-secreted PAEP protein immunosuppresses the activation, proliferation and cytotoxicity of T lymphocytes, which might partially explain the mechanism of immune tolerance induced by melanoma cells within the tumor microenvironment.  相似文献   

16.
17.
This study is sought to determine the physiological mechanisms by which exosomes-encapsulated TIM-3 derived from melanoma cells might mediate CD4+ T cell immune function and macrophage M2 polarization in melanoma. Initially, exosomes were isolated from the human skin-derived melanoma cell line MV3for analysis of TIM-3 expression pattern. Next, the exosomes sourced from MV3 cells manipulated with sh-TIM-3 were co-incubated with CD4+ T cells to detect CD4+ T cell proliferation and MV3 cell migration and invasion, to observe the macrophage M2 polarization, and to determine levels of several EMT-related factors. Finally, melanoma nude mouse models were established to study the in vivo modulatory effects of TIM-3 from MV3 cells-derived exosomes. MV3 cells-derived exosomes inhibited CD4+ T cell immune function and promoted macrophage M2 polarization in melanoma. Our results revealed the abundance of TIM-3 in MV3 cells-derived exosomes. Of importance, silencing of TIM-3 shuttled by MV3 cells-derived exosomes improved CD4+ T cell immune function and inhibited macrophage M2 polarization to attenuate the growth and metastasis of melanoma cells. Collectively, MV3 cells-derived exosomes-loaded TIM-3 suppressed CD4+ T cell immune function and induced macrophage M2 polarization to improve occurrence and development of melanoma, therefore providing us with a potential therapeutic target for effectively combating melanoma.  相似文献   

18.
Indoleamine 2,3-dioxygenase (IDO1) catalyzes the first step in tryptophan breakdown along the kynurenine pathway. Therapeutic inhibition of IDO1 is receiving much attention due to its proposed role in the pathogenesis of several diseases including cancer, hypotension and neurodegenerative disorders. A related enzyme, IDO2 has recently been described. We report the first purification and kinetic characterization of human IDO2 using a facile l-tryptophan consumption assay amenable to high throughput screening. We found that the K(m) of human IDO2 for l-tryptophan is much higher than that of IDO1. We also describe the identification and characterization of a new IDO1 inhibitor compound, Amg-1, by high throughput screening, and compare the inhibition profiles of IDO1 and IDO2 with Amg-1 and previously described compounds. Our data indicate that human IDO1 and IDO2 have different kinetic parameters and different inhibition profiles. Docking of Amg-1 and related analogs to the known structure of IDO1 and to homology-modeled IDO2 suggests possible rationales for the different inhibition profiles of IDO1 and IDO2.  相似文献   

19.
Dendritic cells (DC) interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC) were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS). Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1). Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines) showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention of type 1 diabetes autoimmunity.  相似文献   

20.

Background

Indoleamine 2,3-dioxygenase (IDO), which is mainly expressed in activated dendritic cells, catabolizes tryptophan to kynurenine and other downstream catabolites. It is known to be an immune mediator in HIV pathogenesis. The impact of anti-retroviral therapy on its activity has not been well established.

Methods

We measured systemic IDO activity (the ratio of plasma kynurenine to tryptophan) in HIV-infected patients before and after highly active antiretroviral therapy (HAART) and its association with a microbial translocation marker, soluble CD14 (sCD14).

Results

Among 76 participants, higher baseline IDO activity was associated with lower CD4+ T cell counts (P<0.05) and higher plasma sCD14 levels (P<0.001). After 1 year of HAART, IDO activity decreased significantly (P<0.01), but was still higher than in healthy controls (P<0.05). The baseline IDO activity did not predict CD4+ T cell recovery after 1 year of therapy. The percentages of myeloid and plasmacytoid dendritic cells were not correlated with IDO activity.

Conclusions

IDO activity is elevated in HIV-infected patients, which is partially associated with microbial translocation. HAART reduced, but did not normalize the activity of IDO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号