首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human multidrug resistance protein 1 (MRP1) is a membrane protein that belongs to the ATP-binding cassette (ABC) superfamily of transport proteins. MRP1 contributes to chemotherapy failure by exporting a wide range of anti-cancer drugs when over expressed in the plasma membrane of cells. Here, we report the first high-resolution crystal structure of human MRP1-NBD1. Drug efflux requires energy resulting from hydrolysis of ATP by nucleotide binding domains (NBDs). Contrary to the prokaryotic NBDs, the extremely low intrinsic ATPase activity of isolated MRP1-NBDs allowed us to obtain the structure of wild-type NBD1 in complex with Mg2+/ATP. The structure shows that MRP1-NBD1 adopts a canonical fold, but reveals an unexpected non-productive conformation of the catalytic site, providing an explanation for the low intrinsic ATPase activity of NBD1 and new hypotheses on the cooperativity of ATPase activity between NBD1 and NBD2 upon heterodimer formation.  相似文献   

2.
The multidrug resistance proteins P-glycoprotein (Pgp) and MRP1 are drug-efflux pumps. In this study, we compared the nucleotide triphosphatase activities of the isolated N-terminal nucleotide binding domains (NBD1) of Pgp and MRP1, and explored the potential role of the phosphorylation target domain of Pgp on the regulation of Pgp NBD1 ATPase activity. We found that: (1) the NBD1s of Pgp and MRP1 have ATPase and GTPase activities, (2) the K(m)s of Pgp NBD1 for ATP and GTP hydrolysis are identical, while the K(m) of MRP1 NBD1 for ATP is lower than that for GTP, and (3) phosphorylation of MLD by PKA or PKC produces a marginal increase of V(max) for ATP hydrolysis, without affecting the affinity for ATP. These results show efficient GTP hydrolysis by the NBD1s of Pgp and MRP1, and a minor role of phosphorylation in the control of Pgp NBD1 ATPase activity.  相似文献   

3.
Nucleotide Binding Domains (NBDs) are responsible for the ATPase activity of the multidrug resistance protein 1 (MRP1). A series of NBD1-linker-NBD2 chimeric fusion proteins were constructed, expressed and purified, and their ATPase activities were analyzed. We report here that a GST linked NBD1642-890-GST-NBD21286-1531 was able to hydrolyze ATP at a rate of about 4.6 nmol/mg/min (Km = 2.17 mM, Vmax = 12.36 nmol/mg/min), which was comparable to the purified and reconstituted MRP1. In contrast, neither a mixture of NBD1 and GST-NBD2 nor the NBD1-GST-NBD1 fusion protein showed detectable ATPase activity. Additionally, the E1455Q mutant was found to be nonfunctional. Measurements by both MIANS labeling and circular dichroism spectroscopy revealed significant conformational differences in the NBD1-GST-NBD2 chimeric fusion protein compared to the mixture of NBD1 and GST-NBD2. The results suggest a direct interaction mediated by GST between the two NBDs of MRP1 leading to conformational changes which would enhance its ATPase activity.  相似文献   

4.
The multidrug resistance protein MRP2 (ABCC2) acts as an ATP-dependent conjugate export pump in apical membranes of polarized cells and confers multidrug resistance. Purified MRP2 is essential for the detailed functional characterization of this member of the family of ATP-binding cassette (ABC) transporter proteins. In human embryonic kidney cells (HEK293), we have permanently expressed MRP2 containing an additional C-terminal (His)6-tag. Immunoblot and immunofluorescence analyses detected the MRP2-(His)6 overexpressing clones. Isolated membrane vesicles from the MRP2-(His)6-expressing cells were active in ATP-dependent transport of the glutathione S-conjugate leukotriene C4 and were photoaffinity-labelled with 8-azido-[alpha-32P]ATP. MRP2-(His)6 was solubilized from membranes of MRP2-(His)6-cells and purified to homogeneity in a three-step procedure using immobilized metal affinity chromatography, desalting, and immunoaffinity chromatography. The identity of the pure MRP2-(His)6 was verified by MS analysis of tryptic peptides. The purified MRP2-(His)6 glycoprotein was reconstituted into proteoliposomes and showed functional activity as ATPase in a protein-dependent manner with a Km for ATP of 2.1 mM and a Vmax of 25 nmol ADP x mg MRP2-1 x min-1. This ATPase activity was substrate-stimulated by oxidized and reduced glutathione and by S-decyl-glutathione. Future studies using pure MRP2 reconstituted in proteoliposomes should allow further insight into the molecular parameters contributing to MRP2 transport function and to define its intracellular partners for transport and multidrug resistance.  相似文献   

5.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ABC superfamily of transporter proteins. Recently, crystal structures of intact, prokaryotic members of this family have been described. These structures suggested that ATP binding and hydrolysis occurs at two sites formed at the interface between their nucleotide binding domains (NBDs). In contrast to the prokaryotic family members, the NBDs of CFTR are asymmetric (both structurally and functionally), and previous to the present studies, it was not clear whether both NBDs are required for ATP hydrolysis. In order to assess the relative roles of the two NBDs of human CFTR, we purified and reconstituted NBD1 and NBD2, separately and together. We found that NBD1 and NBD2 by themselves exhibited relatively low ATPase activity. Co-assembly of NBD1 and NBD2 exhibited a 2-3-fold enhancement in catalytic activity relative to the isolated domains and this increase reflected enhanced ATP turnover (V(max)). These data provide the first direct evidence that heterodimerization of the NBD1 and NBD2 domains of CFTR is required to generate optimal catalytic activity.  相似文献   

6.
Membrane transporters of the adenine nucleotide binding cassette (ABC) superfamily utilize two either identical or homologous nucleotide binding domains (NBDs). Although the hydrolysis of ATP by these domains is believed to drive transport of solute, it is unknown why two rather than a single NBD is required. In the well studied P-glycoprotein multidrug transporter, the two appear to be functionally equivalent, and a strongly supported model proposes that ATP hydrolysis occurs alternately at each NBD (Senior, A. E., al-Shawi, M. K., and Urbatsch, I. L. (1995) FEBS Lett 377, 285-289). To assess how applicable this model may be to other ABC transporters, we have examined adenine nucleotide interactions with the multidrug resistance protein, MRP1, a member of a different ABC family that transports conjugated organic anions and in which sequences of the two NBDs are much less similar than in P-glycoprotein. Photoaffinity labeling experiments with 8-azido-ATP, which strongly supports transport revealed ATP binding exclusively at NBD1 and ADP trapping predominantly at NBD2. Despite this apparent asymmetry in the two domains, they are entirely interdependent as substitution of key lysine residues in the Walker A motif of either impaired both ATP binding and ADP trapping. Furthermore, the interaction of ADP at NBD2 appears to allosterically enhance the binding of ATP at NBD1. Glutathione, which supports drug transport by the protein, does not enhance ATP binding but stimulates the trapping of ADP. Thus MRP1 may employ a more complex mechanism of coupling ATP utilization to the export of agents from cells than P-glycoprotein.  相似文献   

7.
The aim of this study was the expression and production in Escherichia coli of the nucleotide-binding domains (NBDs) of the human ABCA1 transporter, in a soluble, non-denatured form. To increase the protein solubility, and avoid expression in E. coli inclusion bodies, we extended the length of the expressed NBD domains, to include proximal domains. The corresponding cDNA constructs were used to express the N-terminal His-tagged WT and mutant proteins, which were purified by Ni(2+)-affinity chromatography. Optimal expression of soluble proteins was obtained for constructs including the NBD, the downstream 80-residue domain, and about 20 upstream residues. The size homogeneity of WT and mutant NBDs was determined by Dynamic Light Scattering, and ATP-binding constants and ATPase activities were measured. The NBD1 and NBD2 domains bound ATP with comparable affinity. The ATPase activity of WT His-NBD1 was about three times higher than that of NBD2 and amounted to 5913 compared to 1979 nmol Pi/micromol NBD/min for WT His-NBD2. All engineered mutants had comparable ATPase activity to the corresponding WT protein. The optimisation of the length of the expressed proteins, based upon the boundary prediction of NBDs and neighbour domains, enables the expression and purification of soluble ABCA1 NBDs, with high ATPase activity. This approach should prove useful for the study of the structural and functional properties of the NBDs and other domains of the ABC transporters.  相似文献   

8.
E E Biswas 《Biochemistry》2001,40(28):8181-8187
Members of the ATP binding cassette (ABC) superfamily are transmembrane proteins that are found in a variety of tissues which transport substances across cell membranes in an energy-dependent manner. The retina-specific ABC protein (ABCR) has been linked through genetic studies to a number of inherited visual disorders, including Stargardt macular degeneration and age-related macular degeneration (ARMD). Like other ABC transporters, ABCR is characterized by two nucleotide binding domains and two transmembrane domains. We have cloned and expressed the 522-amino acid (aa) N-terminal cytoplasmic region (aa 854-1375) of ABCR containing nucleotide binding domain 1 (NBD1) with a purification tag at its amino terminus. The expressed recombinant protein was found to be soluble and was purified using single-step affinity chromatography. The purified protein migrated as a 66 kDa protein on SDS-PAGE. Analysis of the ATP binding and hydrolysis properties of the NBD1 polypeptide demonstrated significant differences between NBD1 and NBD2 [Biswas, E. E., and Biswas, S. B. (2000) Biochemistry 39, 15879-15886]. NBD1 was active as an ATPase, and nucleotide inhibition studies suggested that nucleotide binding was not specific for ATP and all four ribonucleotides can compete for binding. Further analysis demonstrated that NBD1 is a general nucleotidase capable of hydrolysis of ATP, CTP, GTP, and UTP. In contrast, NBD2 is specific for adenosine nucleotides (ATP and dATP). NBD1 bound ATP with a higher affinity than NBD2 (K(mNBD1) = 200 microm vs K(mNBD2) = 631 microm) but was less efficient as an ATPase (V(maxNBD1) = 28.9 nmol min(-)(1) mg(-)(1) vs V(maxNBD2) = 144 nmol min(-)(1) mg(-)(1)). The binding efficiencies for CTP and GTP were comparable to that observed for ATP (K(mCTP) = 155 microm vs K(mGTP) = 183 microm), while that observed for UTP was decreased 2-fold (K(mUTP) = 436 microm). Thus, the nucleotide binding preference of NBD1 is as follows: CTP > GTP > ATP > UTP. These studies demonstrate that NBD1 of ABCR is a general nucleotidase, whereas NBD2 is a specific ATPase.  相似文献   

9.
Multidrug Resistance Protein 1 (MRP1) transports diverse organic anionic conjugates and confers resistance to cytotoxic xenobiotics. The protein contains two nucleotide binding domains (NBDs) with features characteristic of members of the ATP-binding cassette superfamily and exhibits basal ATPase activity that can be stimulated by certain substrates. It is not known whether the two NBDs of MRP1 are functionally equivalent. To investigate this question, we have used a baculovirus dual expression vector encoding both halves of MRP1 to reconstitute an active transporter and have compared the ability of each NBD to be photoaffinity-labeled with 8-azido-[(32)P]ATP and to trap 8-azido-[(32)P]ADP in the presence of orthovanadate. We found that NBD1 was preferentially labeled with 8-azido-[(32)P]ATP, while trapping of 8-azido-[(32)P]ADP occurred predominantly at NBD2. Although trapping at NBD2 was dependent on co-expression of both halves of MRP1, binding of 8-azido-ATP by NBD1 remained detectable when the NH(2)-proximal half of MRP1 was expressed alone and when NBD1 was expressed as a soluble polypeptide. Mutation of the conserved Walker A lysine 684 or creation of an insertion mutation between Walker A and B motifs eliminated binding by NBD1 and all detectable trapping of 8-azido-ADP at NBD2. Both mutations decreased leukotriene C(4) (LTC(4)) transport by approximately 70%. Mutation of the NBD2 Walker A lysine 1333 eliminated trapping of 8-azido-ADP by NBD2 but, in contrast to the mutations in NBD1, essentially eliminated LTC(4) transport activity without affecting labeling of NBD1 with 8-azido-[(32)P]ATP.  相似文献   

10.
The relationship between MRP1 activities and its NBD conformational changes   总被引:2,自引:0,他引:2  
The term multidrug resistance (MDR) is classi-cally used to define a resistance phenotype where cells become resistant simultaneously to different drugs with no obvious structural resemblance and with dif-ferent cellular targets. For some time after P-gp, the first membrane protein related with MDR, was dis-covered in 1976[1], it was widely believed that P-gp was the exclusive cause of multidrug resistance. However, increasing evidence afterward suggested that this was not the case. Several…  相似文献   

11.
The human multidrug resistance P-glycoprotein (P-gp, ABCB1) uses ATP to transport many structurally diverse compounds out of the cell. It is an ABC transporter with two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Recently, we showed that the "LSGGQ" motif in one NBD ((531)LSGGQ(535) in NBD1; (1176)LSGGQ(1180) in NBD2) is adjacent to the "Walker A" sequence ((1070)GSSGCGKS(1077) in NBD2; (427)GNSGCGKS(434) in NBD1) in the other NBD (Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2002) J. Biol. Chem. 277, 41303-41306). Drug substrates can stimulate or inhibit the ATPase activity of P-gp. Here, we report the effect of drug binding on cross-linking between the LSGGQ signature and Walker A sites (Cys(431)(NBD1)/C1176C(NBD2) and Cys(1074)(NBD2)/L531C(NBD1), respectively). Seven drug substrates (calcein-AM, demecolcine, cis(Z)-flupentixol, verapamil, cyclosporin A, Hoechst 33342, and trans(E)-flupentixol) were tested for their effect on oxidative cross-linking. Substrates that stimulated the ATPase activity of P-gp (calcein-AM, demecolcine, cis(Z)-flupentixol, and verapamil) increased the rate of cross-linking between Cys(431)(NBD1-Walker A)/C1176C(NBD2-LSGGQ) and between Cys(1074)(NBD2-Walker A)/L531C(NBD1-LSGGQ) when compared with cross-linking in the absence of drug substrate. By contrast, substrates that inhibited ATPase activity (cyclosporin A, Hoechst 33342, and trans(E)-flupentixol) decreased the rate of cross-linking. These results indicate that interaction between the LSGGQ motifs and Walker A sites must be essential for coupling drug binding to ATP hydrolysis. Drug binding in the transmembrane domains can induce long range conformational changes in the NBDs, such that compounds that stimulate or inhibit ATPase activity must decrease and increase, respectively, the distance between the Walker A and LSGGQ sequences.  相似文献   

12.
MIANS, a sulfhydryl-reactive fluorescence, was used to label the cysteines of MRP1 (multidrug resistance protein), and the results indicated that an increase in fluorescence intensity and a large emission blue shift took place after two Cys residues of MRP1 reacted with MIANS, which demonstrated that labeled Cys residues in MRP1 reside in a relatively hydrophobic environment. The experimental results obtained from fluorescence resonance energy transfer further uncover that two Cys residues of MRP1 modified by MIANS located in the vicinity of its NBDs, of which one lies close to NBD1, and the other near NBD2. ATP, ADP and anticancer drugs can all reduce the rate of reaction of MRP1 with MIANS. The collisional quenchers, acrylamide, I-1, and Cs+ were used to assess local environments of MIANS bound to MRP1 and the results showed that the region around the MIANS-labeled cysteine is positively charged. Both MIANS and NEM, which are sulfhydryl-reactive reagents, inhibited MRP1 ATPase activity, whereas anticancer drugs activated it. These results demonstrated that all nucleotides and drugs could induce changes in conformation of the NBDs in MRP1. Nucleotides can bind directly to NBDs, but drugs may react first with TMDs, which in turn alters the accessibility of the two Cys residues bound by MIANS and affects MRP1 ATPase activity, which is coupled with the transport of its substrates. Taken together, the above experimental results provide direct evidence for further study on the coupling of translocation of the transported species to hydrolysis of ATP in MRP1.  相似文献   

13.
Multidrug resistance protein (MRP1) utilizes two non-equivalent nucleotide-binding domains (NBDs) to bind and hydrolyze ATP. ATP hydrolysis by either one or both NBDs is essential to drive transport of solute. Mutations of either NBD1 or NBD2 reduce solute transport, but do not abolish it completely. How events at these two domains are coordinated during the transport cycle have not been fully elucidated. Earlier reports (Gao, M., Cui, H. R., Loe, D. W., Grant, C. E., Almquist, K. C., Cole, S. P., and Deeley, R. G. (2000) J. Biol. Chem. 275, 13098-13108; Hou, Y., Cui, L., Riordan, J. R., and Chang, X. (2000) J. Biol. Chem. 275, 20280-20287) indicate that intact ATP is observed bound at NBD1, whereas trapping of the ATP hydrolysis product, ADP, occurs predominantly at NBD2 and that trapping of ADP at NBD2 enhances ATP binding at NBD1 severalfold. This suggested transmission of a positive allosteric interaction from NBD2 to NBD1. To assess whether ATP binding at NBD1 can enhance the trapping of ADP at NBD2, photoaffinity labeling experiments with [alpha-(32)P]8-N(3)ADP were performed and revealed that when presented with this compound labeling of MRP1 occurred at both NBDs. However, upon addition of ATP, this labeling was enhanced 4-fold mainly at NBD2. Furthermore, the nonhydrolyzable ATP analogue, 5'-adenylylimidodiphosphate (AMP-PNP), bound preferentially to NBD1, but upon addition of a low concentration of 8-N(3)ATP, the binding at NBD2 increased severalfold. This suggested that the positive allosteric stimulation from NBD1 actually involves an increase in ATP binding at NBD2 and hydrolysis there leading to the trapping of ADP. Mutations of Walker A or B motifs in either NBD greatly reduced their ability to be labeled by [alpha-(32)P]8-N(3)ADP as well as by either [alpha-(32)P]- or [gamma-(32)P]8-N(3)ATP (Hou et al. (2000), see above). These mutations also strongly diminished the enhancement by ATP of [alpha-(32)P]8-N(3)ADP labeling and the transport activity of the protein. Taken together, these results demonstrate directly that events at NBD1 positively influence those at NBD2. The interactions between the two asymmetric NBDs of MRP1 protein may enhance the catalytic efficiency of the MRP1 protein and hence of its ATP-dependent transport of conjugated anions out of cells.  相似文献   

14.
The Candida drug resistance protein Cdr1p (approximately 170 kDa) is a member of ATP binding cassette (ABC) superfamily of drug transporters, characterized by the presence of 2 nucleotide binding domains (NBD) and 12 transmembrane segments (TMS). NBDs of these transporters are the hub of ATP hydrolysis activity, and their sequence contains a conserved Walker A motif (GxxGxGKS/T). Mutations of the lysine residue within this motif abrogate the ability of NBDs to hydrolyze ATP. Interestingly, the sequence alignments of Cdr1p NBDs with other bacterial and eukaryotic transporters reveal that its N-terminal NBD contains an unusual Walker A sequence (GRPGAGCST), as the invariant lysine is replaced by a cysteine. In an attempt to understand the significance of this uncommon positioning of cysteine within the Walker A motif, we for the first time have purified and characterized the N-terminal NBD (encompassing first N-terminal 512 amino acids) of Cdr1p as well as its C193A mutant protein. The purified NBD-512 protein could exist as an independent functional general ribonucleoside triphosphatase with strong divalent cation dependence. It exhibited ATPase activity with an apparent K(m) in the 0.8-1.0 mM range and V(max) in the range of 147-160 nmol min(-)(1) (mg of protein)(-)(1). NBD-512-associated ATPase activity was also sensitive to inhibitors such as vanadate, azide, and NEM. The Mut-NBD-512 protein (C193A) showed a severe impairment in its ability to hydrolyze ATP (95%); however, no significant effect on ATP (TNP-ATP) binding was observed. Our results show that C193 is critical for N-terminal NBD-mediated ATP hydrolysis and represents a unique feature distinguishing the ATP-dependent functionality of the ABC transporters of fungi from those found in bacteria and other eukaryotes.  相似文献   

15.
MRP1 belongs to subfamily "C" of the ABC transporter superfamily. The nucleotide-binding domains (NBDs) of the C family members are relatively divergent compared with many ABC proteins. They also differ in their ability to bind and hydrolyze ATP. In MRP1, NBD1 binds ATP with high affinity, whereas NBD2 is hydrolytically more active. Furthermore, ATP binding and/or hydrolysis by NBD2 of MRP1, but not NBD1, is required for MRP1 to shift from a high to low affinity substrate binding state. Little is known of the structural basis for these functional differences. One minor structural difference between NBDs is the presence of Asp COOH-terminal to the conserved core Walker B motif in NBD1, rather than the more commonly found Glu present in NBD2. We show that the presence of Asp or Glu following the Walker B motif profoundly affects the ability of the NBDs to bind, hydrolyze, and release nucleotide. An Asp to Glu mutation in NBD1 enhances its hydrolytic capacity and affinity for ADP but markedly decreases transport activity. In contrast, mutations that eliminate the negative charge of the Asp side chain have little effect. The decrease in transport caused by the Asp to Glu mutation in NBD1 is associated with an inability of MRP1 to shift from high to low affinity substrate binding states. In contrast, mutation of Glu to Asp markedly increases the affinity of NBD2 for ATP while decreasing its ability to hydrolyze ATP and to release ADP. This mutation eliminates transport activity but potentiates the conversion from a high to low affinity binding state in the presence of nucleotide. These observations are discussed in the context of catalytic models proposed for MRP1 and other ABC drug transport proteins.  相似文献   

16.
17.
18.
The P-glycoprotein (P-gp, ABCB1) drug pump protects us from toxic compounds and confers multidrug resistance. Each of the homologous halves of P-gp is composed of a transmembrane domain (TMD) with 6 TM segments followed by a nucleotide-binding domain (NBD). The predicted drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Crystal structures and EM projection images suggest that the two halves of P-gp are separated by a central cavity that closes upon binding of nucleotide. Binding of drug substrates may induce further structural rearrangements because they stimulate ATPase activity. Here, we used disulfide cross-linking with short (8 Å) or long (22 Å) cross-linkers to identify domain-domain interactions that activate ATPase activity. It was found that cross-linking of cysteines that lie close to the LSGGQ (P517C) and Walker A (I1050C) sites of NBD1 and NBD2, respectively, as well as the cytoplasmic extensions of TM segments 3 (D177C or L175C) and 9 (N820C) with a short cross-linker activated ATPase activity over 10-fold. A pyrylium compound that inhibits ATPase activity blocked cross-linking at these sites. Cross-linking between the NBDs was not inhibited by tariquidar, a drug transport inhibitor that stimulates P-gp ATPase activity but is not transported. Cross-linking between extracellular cysteines (T333C/L975C) predicted to lock P-gp into a conformation that prevents close NBD association inhibited ATPase activity. The results suggest that trapping P-gp in a conformation in which the NBDs are closely associated likely mimics the structural rearrangements caused by binding of drug substrates that stimulate ATPase activity.  相似文献   

19.
Multidrug resistance protein 1 (MRP1) is a human ATP-binding cassette (ABC) transporter in the plasma membrane. It confers multidrug resistance to tumor cells by actively effluxing intracellular drugs. To examine the functional significance of intracellular loops (ICLs) in MRP1, we determined the effect of mutation of the amino acid sequence EXXXG, which is conserved in ICL5 and ICL7 of human MRP1, 2 and 3, sulfonylurea receptor (SUR) 1 and 2, and mouse MRP1 and 2. E and G in the ICLs of human MRP1 were mutated to L and P, respectively, and the N-terminal (including ICL5) and C-terminal (including ICL7) wild type or mutant halves of MRP1 were co-expressed in insect cells. The mutation of either ICL5 or ICL7 considerably decreased ATP-dependent LTC4 uptake into vesicles of insect cells expressing mutated MRP1. GSH-dependent photolabeling of MRP1 with an 125I-labeled photoaffinity analog of azido agosterol A (azido AG-A) was abolished by the mutations in ICL5 and ICL7. Mutations in ICL5 of MRP1 almost completely inhibited the labeling of NBD2, but not NBD1, by 8-azido-alpha-[32P]ATP. In contrast, mutations in ICL7 of MRP1 abolished the labeling of both NBDs. Mutation of either ICL5 or ICL7 of MRP1 almost completely inhibited vanadate trapping with 8-azido-alpha-[32P]ATP by both NBD1 and NBD2 domains. These findings indicate that the intramolecular signaling between NBD and ICLs in MRP1 is vital for MRP1 function.  相似文献   

20.
P-glycoprotein (P-gp) is an ATP-dependent drug pump that contains two nucleotide-binding domains (NBDs). Disulfide cross-linking analysis was done to determine if the two NBDs are close to each other. Residues within or close to the Walker A (GNSGCGKS in NDB1 and GSSGCGKS in NBD2) sequences for nucleotide binding were replaced with cysteine, and the mutant P-gps were subjected to oxidative cross-linking. Cross-linking was detected in two mutants, G427C(NBD1)/Cys-1074(NBD2) and L439C(NBD1)/Cys-1074(NBD2), because the cross-linked proteins migrated slower in SDS gels. Mutants G427C(NBD1)/Cys-1074(NBD2) and L439C(NBD1)/Cys-1074(NBD2) retained 10% and 82%, respectively, of the drug-stimulated ATPase activity relative to that of Cys-less P-gp. The cross-linking properties of the more active mutant L439C(NBD1)/Cys-1074(NBD2) were then studied. Cross-linking was reversed by addition of dithiothreitol and could be prevented by pretreatment of the mutant with N-ethylmaleimide. Cross-linking was also inhibited by MgATP, but not by the verapamil. Oxidative cross-linking of mutant L439C(NBD1)/Cys-1074(NBD2) resulted in almost complete inhibition of drug-stimulated ATPase activity. More than 60% of the drug-stimulated ATPase activity, however, was recovered after treatment with dithiothreitol. The results indicate that the two predicted nucleotide-binding sites are close to each other and that cross-linking inhibits ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号