首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yang HY  Kwon J  Choi HI  Park SH  Yang U  Park HR  Ren L  Chung KJ  Kim YU  Park BJ  Jeong SH  Lee TH 《Proteomics》2012,12(1):101-112
Peroxiredoxin II (Prdx II, a typical 2-Cys Prdx) has been originally isolated from erythrocytes, and its structure and peroxidase activity have been adequately studied. Mice lacking Prdx II proteins had heinz bodies in their peripheral blood, and morphologically abnormal cells were detected in the dense red blood cell (RBC) fractions, which contained markedly higher levels of reactive oxygen species (ROS). In this study, a labeling experiment with the thiol-modifying reagent biotinylated iodoacetamide (BIAM) in Prdx II-/- mice revealed that a variety of RBC proteins were highly oxidized. To identify oxidation-sensitive proteins in Prdx II-/- mice, we performed RBC comparative proteome analysis in membrane and cytosolic fractions by nano-UPLC-MSE shotgun proteomics. We found oxidation-sensitive 54 proteins from 61 peptides containing cysteine oxidation, and analyzed comparative expression pattern in healthy RBCs of Prdx II+/+ mice, healthy RBCs of Prdx II-/- mice, and abnormal RBCs of Prdx II-/- mice. These proteins belonged to cellular functions related with RBC lifespan maintain, such as cytoskeleton, stress-induced proteins, metabolic enzymes, signal transduction, and transporters. Furthermore, protein networks among identified oxidation-sensitive proteins were analyzed to associate with various diseases. Consequently, we expected that RBC proteome might provide clues to understand redox-imbalanced diseases.  相似文献   

2.
Recent studies of chitosan have increased the interest in its conversion to chitooligosaccharides (COSs) because these compounds are water-soluble and have potential use in several biomedical applications. Furthermore, such oligomers may be more advantageous than chitosans because of their much higher absorption profiles at the intestinal level, which permit their facilitated access to systemic circulation and potential distribution throughout the entire human body. In that perspective, it is important to clarify their effect on blood further, namely, on human red blood cells (RBCs). The aim of this work was thus to study the effect of two COS mixtures with different molecular weight (MW) ranges, <3 and <5 kDa, at various concentrations (5.0-0.005 mg/mL) on human RBCs. The interactions of these two mixtures with RBC membrane proteins and with hemoglobin were assessed, and the RBC morphology and surface structure were analyzed by optical microscopy (OM) and atomic force microscopy (AFM). In the presence of either COS mixture, no significant hemolysis was observed; however, at COS concentrations >0.1 mg/mL, changes in membrane binding hemoglobin were observed. Membrane protein changes were also observed with increasing COS concentration, including a reduction in both alpha- and beta-spectrin and in band 3 protein, and the development of three new protein bands: peroxiredoxin 2, calmodulin, and hemoglobin chains. Morphologic evaluation by OM showed that at high concentrations COSs interact with RBCs, leading to RBC adhesion, aggregation, or both. An increase in the roughness of the RBC surface with increasing COS concentration was observed by AFM. Overall, these findings suggest that COS damage to RBCs was dependent on the COS MW and concentration, and significant damage resulted from either a higher MW or a greater concentration (>0.1 mg/mL).  相似文献   

3.
Plasmodium falciparum thrombospondin-related apical merozoite protein (PTRAMP) has a thrombospondin related (TSR) domain which in many proteins has been reported as a fragment involved in pathogen-host and cell-interactions. Receptor-ligand studies using eighteen non-overlapping 20-aminoacid-long synthetic peptides from this protein were carried out to determine regions involved in parasite invasion of red blood cells (RBC). Two high activity binding peptides (HABPs) were determined, 33405 (21YISSNDLTSTNLKVRNNWEH40) and 33413 (180LEGPIQFSLGKSSGAFRINY199), presenting high dissociation constants and positive cooperativity. One of the HABPs displayed a modified Plasmodium export element (PEXEL), suggesting that this protein could be involved in the merozoite cytoplasmic reticulum, parasitophorous vacuole, red blood cell (RBC) cytosol, and probably infected RBC (iRBC) membrane transport of some other molecules and nutrients. Enzymatic treatment of RBCs increased HABP 33405 binding to them whilst it decreased HABP 33413 binding. Merozoite invasion assays revealed that HABPs have around 57% ability to inhibit new RBC invasion. Circular dichroism revealed the presence of possible alpha-helical elements in both HABPs structures. RBC binding interaction specificity and the presence of a PEXEL motif make these 2 HABPs good candidates for being included in further studies to develop a new multi-antigenic, multi-stage, subunit-based, chemically-synthesised, anti-malarial vaccine.  相似文献   

4.
Ideally, shotgun proteomics would facilitate the identification of an entire proteome with 100% protein sequence coverage. In reality, the large dynamic range and complexity of cellular proteomes results in oversampling of abundant proteins, while peptides from low abundance proteins are undersampled or remain undetected. We tested the proteome equalization technology, ProteoMiner, in conjunction with Multidimensional Protein Identification Technology (MudPIT) to determine how the equalization of protein dynamic range could improve shotgun proteomics methods for the analysis of cellular proteomes. Our results suggest low abundance protein identifications were improved by two mechanisms: (1) depletion of high abundance proteins freed ion trap sampling space usually occupied by high abundance peptides and (2) enrichment of low abundance proteins increased the probability of sampling their corresponding more abundant peptides. Both mechanisms also contributed to dramatic increases in the quantity of peptides identified and the quality of MS/MS spectra acquired due to increases in precursor intensity of peptides from low abundance proteins. From our large data set of identified proteins, we categorized the dominant physicochemical factors that facilitate proteome equalization with a hexapeptide library. These results illustrate that equalization of the dynamic range of the cellular proteome is a promising methodology to improve low abundance protein identification confidence, reproducibility, and sequence coverage in shotgun proteomics experiments, opening a new avenue of research for improving proteome coverage.  相似文献   

5.
Transport of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) variants to the red blood cell (RBC) surface enables malarial parasite evasion of host immunity by modifying the antigenic and adhesive properties of infected RBCs. In this study, we applied the Bxb1 integrase system to integrate transgenes encoding truncated PfEMP1‐GFP fusions into cytoadherent A4 parasites and characterize their surface transport requirements. Our studies revealed that the semi‐conserved head structure of PfEMP1 proteins, in combination with the predicted transmembrane region and cytoplasmic tail, encodes sufficient information for RBC surface display. In contrast, miniPfEMP1 proteins with truncated head structures were exported to the RBC cytoplasm but were not detected at the RBC surface by flow cytometry or immuno‐electron microscopy. We demonstrated the absence of a mechanistic barrier to having native and miniPfEMP1 proteins displayed simultaneously at the RBC surface. However, surface‐exposed miniPfEMP1 proteins did not convey cytoadherence properties to their host cells, implicating potential steric considerations in host‐receptor interactions or the need for multiple domains to mediate cell binding. This study establishes a new system to investigate PfEMP1 transport and demonstrates that the PfEMP1 semi‐conserved head structure is under selection for protein transport, in addition to its known roles in adhesion.  相似文献   

6.
Here, we report the results of a study on the effects of ethanol exposure on human red blood cells (RBCs) using quantitative phase imaging techniques at the level of individual cells. Three-dimensional refractive index tomograms and dynamic membrane fluctuations of RBCs were measured using common-path diffraction optical tomography, from which morphological (volume, surface area, and sphericity); biochemical (hemoglobin (Hb) concentration and Hb content); and biomechanical (membrane fluctuation) parameters were retrieved at various concentrations of ethanol. RBCs exposed to the ethanol concentration of 0.1 and 0.3% v/v exhibited cell sphericities higher than those of normal cells. However, mean surface area and sphericity of RBCs in a lethal alcoholic condition (0.5% v/v) are not statistically different with those of healthy RBCs. Meanwhile, significant decreases of Hb content and concentration in RBC cytoplasm at the lethal condition were observed. Furthermore, dynamic fluctuation of RBC membranes increased significantly upon ethanol treatments, indicating ethanol-induced membrane fluidization.  相似文献   

7.
Red blood cell (RBC) encapsulated hemoglobin in the blood scavenges nitric oxide (NO) much more slowly than cell-free hemoglobin would. Part of this reduced NO scavenging has been attributed to an intrinsic membrane barrier to diffusion of NO through the RBC membrane. Published values for the permeability of RBCs to NO vary over several orders of magnitude. Recently, the rate that RBCs scavenge NO has been shown to depend on the hematocrit (percentage volume of RBCs) and oxygen tension. The difference in rate constants was hypothesized to be due to oxygen modulation of the RBC membrane permeability, but also could have been due to the difference in bimolecular rate constants for the reaction of NO and oxygenated vs deoxygenated hemoglobin. Here, we model NO scavenging by RBCs under previously published experimental conditions. A finite-element based computer program model is constrained by published values for the reaction rates of NO with oxygenated and deoxygenated hemoglobin as well as RBC NO scavenging rates. We find that the permeability of RBCs to NO under oxygenated conditions is between 4400 and 5100 microm s(-1) while the permeability under deoxygenated conditions is greater than 64,000 microm s(-1). The permeability changes by a factor of 10 or more upon oxygenation of anoxic RBCs. These results may have important implications with respect to NO import or export in physiology.  相似文献   

8.
All vertebrates except cold-water ice fish transport oxygenvia hemoglobin packaged in red blood cells (RBCs). VertebrateRBCs vary in size by thirtyfold. Differences in RBC size havebeen known for over a century, but the functional significanceof RBC size remains unknown. One hypothesis is that large RBCsare a primitive character. Agnathans have larger RBCs than domammals. However, the largest RBCs are found in urodele amphibianswhich is inconsistent with the hypothesis that large RBCs areprimitive. Another possibility is that small RBCs increase bloodoxygen transport capacity. Blood hemoglobin concentration ([Hb])and mean RBC hemoglobin concentration (MCHC) increase from Agnathato birds and mammals. However, the changes in [Hb] and MCHCdo not parallel changes in RBC size. In addition, RBC size doesnot affect blood viscosity. Thus, there is no clear link betweenRBC size and oxygen transport capacity. We hypothesize thatRBC size attends changes in capillary diameter. This hypothesisis based on the following observations. First, RBC width averages25% larger than capillary diameter which insures cell deformationduring capillary flow. Functionally, RBC deformation minimizesdiffusion limitations to gas exchange. Second, smaller capillariesare associated with increased potential for diffusive gas exchange.However, smaller capillaries result in higher resistances toblood flow which requires higher blood pressures. We proposethat the large capillary diameters and large RBCs in urodelesreflect the evolutionary development of a pulmonary vascularsupply. The large capillaries reduced systemic vascular resistancesenabling a single ventricular heart to supply blood to two vascularcircuits, systemic and pulmonary, without developing high pressureson the pulmonary side. The large RBCs preserved diffusive gasexchange efficiency in the large capillaries.  相似文献   

9.
Hydroxyurea (HU) is an effective oral drug for the management of homozygous sickle cell anemia (SS) in part because it increases fetal hemoglobin (HbF) levels within sickle red blood cells (RBCs) and thus reduces sickling. However, results from the Multicenter Study of HU suggested that clinical symptoms often improved before a significant increase in HbF levels occurred. This indicated that HU may be acting through the modification of additional cellular mechanisms that are yet to be identified. Hence, in this study, we focused on the analysis of the sickle RBC membrane proteome +/- HU treatment. 2D-DIGE (Two Dimensional Difference In-Gel Electrophoresis) technology and tandem mass spectrometry has been used to determine quantitative differences between sickle cell membrane proteins in the presence and absence of a clinically relevant concentration of HU. In vitro protein profiling of 13 sickle RBC membrane samples +/- 50 muM HU identified 10 statistically significant protein spots. Of these, the most remarkable class of proteins to show a statistically significant increase was the anti-oxidant enzymes-catalase, thioredoxin peroxidase and biliver-din reductase and the chaperonin containing TCP1 complex assisting in the folding of RBC cytoskeletal proteins. Interestingly, catalase immunoblots showed an increase in the acidic forms of the enzyme within sickle RBC membranes on incubation with 50 muM HU. We further identified this modification in catalase to be phosphorylation and demonstrated that HU exposed SS RBC membranes showed a 2-fold increase in tyrosine phosphorylation of catalase as compared to counterparts not exposed to HU. These results present an attractive model for HU-induced post-translational modification and potential activation of catalase in mature sickle RBCs. These findings also identify protein targets of HU other than fetal hemoglobin and enhance the understanding of the drug mechanism.  相似文献   

10.
Peptide ligands capable of mediating nanoparticle adhesion to human red blood cells (RBCs) were identified from a large bacterial display peptide library. Peptides were displayed on the surface of fluorescent Escherichia coli, enabling quantitative measurement of RBC binding and high-throughput screening using fluorescence-activated cell sorting. One of the isolated clones remained attached to RBCs under high-shear stresses equivalent to those encountered in vivo. Furthermore, nanoparticles functionalized with the identified RBC-binding peptides exhibited nearly 100-fold increased RBC binding relative to nonfunctionalized particles in the presence of physiologically relevant concentrations of human serum albumin, indicating that peptides remained functional in the absence of the protein scaffold used for display. The RBC-binding peptides identified here provide new opportunities for sustained therapeutic delivery applications whereby nanoparticulate drug carriers can be attached to RBCs to achieve long-circulating carrier systems.  相似文献   

11.
A quasi-elastic light-scattering (QELS) microscope spectrometer was used to study the dynamic properties of the membrane/cytoskeleton of individual human red blood cells (RBCs). QELS is a spectroscopic technique that measures intensity fluctuations of laser light scattered from a sample. The intensity fluctuations were analyzed using power spectra and the intensity autocorrelation function, g(2)(tau), which was approximated with a single exponential. The value of the correlation time, Tcorr, was used for comparing results. Motion of the RBC membrane/cytoskeleton was previously identified as the source of the QELS signal from the RBC (R. B. Tishler and F. D. Carlson, 1987. Biophys. J. 51:993-997), and additional data supporting that conclusion are presented. Similar results were obtained from anucleate mammalian RBCs that have structures similar to that of the human RBC, but not for morphologically distinct, nucleated RBCs. The effect of altering the physical properties of the cytoplasm and the membrane/cytoskeleton was also studied. Osmotically increasing the cytoplasmic viscosity led to significant increases in Tcorr. Increasing the membrane cholesterol content and increasing the intracellular calcium content both led to decreased deformability of the human RBC. In both cases, the modified cells with decreased deformability showed an increase in Tcorr, demonstrating that QELS could measure biochemically induced changes of the membrane/cytoskeleton. Physiological changes were measured in studies of age-separated RBC populations which showed that Tcorr was increased in the older, less deformable cells.  相似文献   

12.
We recently reported that CD47 (integrin-associated protein) on sickle red blood cells (SS RBCs) activates G-protein-dependent signaling, which promotes cell adhesion to immobilized thrombospondin (TSP) under relevant shear stress. These data suggested that signal transduction in SS RBCs may contribute to the vaso-occlusive pathology observed in sickle cell disease. However, the CD47-activated SS RBC adhesion receptor(s) that mediated adhesion to immobilized TSP remained unknown. Here we demonstrate that the alpha4beta1 integrin (VLA-4) is the receptor that mediates CD47-stimulated SS RBC adhesion to immobilized TSP. This adhesion requires both the N-terminal heparin-binding domain and the RGD site of TSP. CD47 signaling induces an "inside-out" activation of alpha4beta1 on SS RBCs as indicated by an RGD-dependent interaction of this integrin with soluble, plasma fibronectin. However, CD47 engagement also induces an alpha4beta1-mediated, RGD-independent adhesion of SS RBCs to immobilized vascular cell adhesion molecule-1 (VCAM-1). CD47 signaling in SS RBCs appears to be independent of large scale changes in cAMP formation but nonetheless promotes alpha4beta1-mediated adhesion via a protein kinase A-dependent, serine phosphorylation of the alpha4 cytoplasmic domain. CD47-activated SS RBC adhesion absolutely requires the Src family tyrosine kinases and is also enhanced by treatment of SS RBCs with low concentrations of cytochalasin D, which may release alpha4beta1 from cytoskeletal restraints. In addition, CD47 co-immunoprecipitates with alpha4beta1 in a sickle reticulocyte-enriched fraction of SS RBCs. These studies therefore identify the alpha4beta1 integrin on SS RBCs as a CD47-activated receptor for TSP, VCAM-1, and plasma fibronectin, revealing novel binding characteristics of this integrin.  相似文献   

13.
Synthetic 20-mer long non-overlapped peptides, from STEVOR protein, were tested in RBC binding assays for identifying STEVOR protein regions having high RBC binding activity and evaluating whether these regions inhibit Plasmodium falciparum in vitro invasion. Affinity constants, binding site number per cell and Hill coefficients were determined by saturation assay with high activity binding peptides (HABPs). HABP binding assays using RBCs previously treated with enzymes were carried out to study the nature of the receptor. The molecular weight of RBC surface proteins interacting with HABPs was determined by cross-linking assays and SDS-PAGE analysis. RBC binding assays revealed that peptides 30561 (41MKSRRLAEIQLPKCPHYNND60), 30562 (61PELKKIIDKLNEERIKKYIE80) and 30567 (161ASCCKVHDNYLDNLKKGCFG180) bound saturably and with high binding activity, presenting nanomolar affinity constants. HABP binding activity to RBCs previously treated with neuraminidase and trypsin decreased, suggesting that these peptides bound to RBC surface proteins and that such binding could be sialic acid dependent. Cross-linking and SDS-PAGE assays showed that the three HABPs specifically bound to 30 and 40 kDa molecular weight RBC membrane proteins. Peptides 30561, 30562 and 30567 inhibited P. falciparum in vitro invasion of red blood cells in a concentration-dependent way. Goat sera having STEVOR protein polymeric peptides antibodies inhibit parasite in vitro invasion depending on concentration. Three peptides localized in STEVOR N-terminal and central regions had high, saturable, binding activity to 30 and 40 kDa RBC membrane proteins. These peptides inhibited the parasite's in vitro invasion, suggesting that STEVOR protein regions are involved in P. falciparum invasion processes during intra-erythrocyte stage.  相似文献   

14.
Free radicals and oxidative damage play important roles in aging and many degenerative disorders such as cancer, cardiovascular disease, and Alzheimer disease. Antioxidants can alleviate some of the harmful effects of oxidative damage. In this report, we describe that we have been using human red blood cells (RBCs) as a model system to delineate the effects of oxidative damage on human cells, particularly on glucose-6-phosphate dehydrogenase (G6PD)-deficient human RBCs. By using a monolayer technique, we found that oxidative denaturation of hemoglobin leads to the release of hemin into the RBC membrane and the released hemin is capable of oxidizing membrane proteins via a thiyl radical intermediate as detected by the electron spin resonance technique. By using a Laser Viscodiffractometer (Vidometer) to measure RBC deformability, we found that the deformability of G6PD-deficient RBCs was drastically reduced by hydroxyl radicals. Perhaps as a consequence of enhanced susceptibility to oxidative stress, G6PD-deficient individuals have lower antioxidant levels, particularly vitamin C, than normal individuals. Interestingly, we have also found that RBC deformability could be affected by two environmental pollutants, namely, platinum and palladium, which can enhance hydroxyl radical formation in the presence of hydrogen peroxide and ferrous ion (Fenton reaction).  相似文献   

15.
A comparative study of the effect of hydrogen peroxide on adult and neonatal red blood cell (RBC) membrane protein composition has been carried out. The results indicate that (a) the native neonatal RBC membranes contain higher levels of membrane-bound hemoglobin (MBHb) than the adult RBC membranes. (b) The content of MBHb increases when RBCs are incubated with increasing concentrations of hydrogen peroxide (H2O2), more so in neonatal than in adult RBCs; however, neonatal RBC membrane proteins are less susceptible to H2O2 oxidation than adult ones. This could be attributed to the fact that Hb F, which is more susceptible to oxidation than Hb A, adds to the reduction potential of neonatal RBC (in which it is present in large amounts) and partially protects neonatal membrane proteins against oxidant stress compared to Hb A in adult RBC. (c) In both neonatal and adult RBCs, Spectrin 1 is relatively more susceptible to oxidant stress than spectrin 2, and spectrins in adult RBC are more labile for peroxidation than the spectrins in neonatal RBC. (d) Based on electrophoretic studies with and without reduction of membranes with mercaptoethanol, we have classified two types of MBHb: Type I is adsorbed to membrane by noncovalent interactions and Type II MBHb is chemically crosslinked to membrane components by disulfide bridges; the content of both these types increases when RBCs are incubated with increasing concentrations of H2O2. (e) Band 6 protein is present in higher amounts in neonatal than in adult RBC membranes. (f) Since the total content of MBHb increases linearly with the level of oxidant stress, we suggest that it could be used as a marker for oxygen radical-induced injury to tissues.  相似文献   

16.
Several EBA-175 paralogues (EBA-140, EBA-165, EBA-175, EBA-181, and EBL-1) have been described among the Plasmodium falciparum malaria parasite proteins, which are important in the red blood cell (RBC) invasion process. EBA-181/JESEBL is a 181 kDa protein expressed in the late schizont stage and located in the micronemes; it belongs to the Plasmodium Duffy binding-like family and is able to interact with the erythrocyte surface. Here, we describe the synthesis of 78, 20-mer synthetic peptides derived from the reported EBA-181/JESEBL sequence and their ability to bind RBCs in receptor-ligand assays. Five peptides (numbered 30030, 30031, 30045, 30051, and 30060) displayed high specific binding to erythrocytes; their equilibrium binding parameters were then determined. These peptides interacted with 53 and 33 kDa receptor proteins on the erythrocyte surface, this binding being altered when RBCs were pretreated with enzymes. They were able to inhibit P. falciparum merozoite invasion of RBCs when tested in in vitro assays. According to these results, these five EBA-181/JESEBL high specific erythrocyte binding peptides, as well as the entire protein, were seen to be involved in the molecular machinery used by the parasite for invading RBCs. They are thus suggested as potential candidates in designing a multi-sub-unit vaccine able to combat the P. falciparum malaria parasite.  相似文献   

17.
Hydroxyurea (HU) is an effective drug for the treatment of sickle cell disease (SCD). The main clinical benefit of HU is thought to derive from its capacity to increase fetal hemoglobin (HbF) production. However, other effects leading to clinical benefit, such as improved blood rheology, have been suggested. In order to understand HU-induced changes at the proteomic level, we profiled sickle RBC membranes from of HU-treated and untreated patients. Our previous in vitro profiling studies on sickle RBC membranes identified a significant increase in predominantly anti-oxidant enzymes, protein repair and degradation components and a few RBC cytoskeletal proteins. In the present study, using 2D-DIGE (Two-Dimensional Difference In-Gel Electrophoresis) and tandem mass spectrometry, we detected 32 different proteins that significantly changed in abundance in the HU treatment group. The proteins that significantly increased in abundance were mostly membrane skeletal components involved in the regulation of RBC shape and flexibility, and those showing a significant decrease were components of the protein repair and degradation machinery. RBC palmitoylated membrane protein 55 (p55) is significantly increased in abundance at low (in vitro) and high (in vivo) concentrations of HU. Palmitoylated p55 may be an important target of HU-dependent regulation of the sickle RBC membrane, consistent with our earlier in vitro studies.  相似文献   

18.

Background

In sickle cell disease (SCD), the mitogen-activated protein kinase (MAPK) ERK1/2 is constitutively active and can be inducible by agonist-stimulation only in sickle but not in normal human red blood cells (RBCs). ERK1/2 is involved in activation of ICAM-4-mediated sickle RBC adhesion to the endothelium. However, other effects of the ERK1/2 activation in sickle RBCs leading to the complex SCD pathophysiology, such as alteration of RBC hemorheology are unknown.

Results

To further characterize global ERK1/2-induced changes in membrane protein phosphorylation within human RBCs, a label-free quantitative phosphoproteomic analysis was applied to sickle and normal RBC membrane ghosts pre-treated with U0126, a specific inhibitor of MEK1/2, the upstream kinase of ERK1/2, in the presence or absence of recombinant active ERK2. Across eight unique treatment groups, 375 phosphopeptides from 155 phosphoproteins were quantified with an average technical coefficient of variation in peak intensity of 19.8%. Sickle RBC treatment with U0126 decreased thirty-six phosphopeptides from twenty-one phosphoproteins involved in regulation of not only RBC shape, flexibility, cell morphology maintenance and adhesion, but also glucose and glutamate transport, cAMP production, degradation of misfolded proteins and receptor ubiquitination. Glycophorin A was the most affected protein in sickle RBCs by this ERK1/2 pathway, which contained 12 unique phosphorylated peptides, suggesting that in addition to its effect on sickle RBC adhesion, increased glycophorin A phosphorylation via the ERK1/2 pathway may also affect glycophorin A interactions with band 3, which could result in decreases in both anion transport by band 3 and band 3 trafficking. The abundance of twelve of the thirty-six phosphopeptides were subsequently increased in normal RBCs co-incubated with recombinant ERK2 and therefore represent specific MEK1/2 phospho-inhibitory targets mediated via ERK2.

Conclusions

These findings expand upon the current model for the involvement of ERK1/2 signaling in RBCs. These findings also identify additional protein targets of this pathway other than the RBC adhesion molecule ICAM-4 and enhance the understanding of the mechanism of small molecule inhibitors of MEK/1/2/ERK1/2, which could be effective in ameliorating RBC hemorheology and adhesion, the hallmarks of SCD.  相似文献   

19.
The passage of red blood cells (RBCs) through capillaries is essential for human blood microcirculation. This study used a moving mesh technology that incorporated leader-follower pairs to simulate the fluid-structure and structure-structure interactions between the RBC and a microvessel stenosis. The numerical model consisted of plasma, cytoplasm, the erythrocyte membrane, and the microvessel stenosis. Computational results showed that the rheology of the RBC is affected by the Reynolds number of the plasma flow as well as the surface-to-volume ratio of the erythrocyte. At a constant inlet flow rate, an increased plasma viscosity will improve the transit of the RBC through the microvessel stenosis. For the above reasons, we consider that the decreased hemorheology in microvessels in a pathological state may primarily be attributed to an increase in the number of white blood cells. This leads to the aggregation of RBCs and a change in the blood flow structure. The present fundamental study of hemorheology aimed at providing theoretical guidelines for clinical hemorheology.  相似文献   

20.
On the basis of the fact that selenium from selenite binds to hemoglobin (Hb), we investigated the missing process in the selenium export from red blood cells (RBCs), i.e., the transfer of selenium bound to Hb to RBC membrane proteins. To elucidate the molecular events of the Hb-associated selenium export from RBC, a Hb–Se complex was synthesized from thiol-exchange of Cys-β93 in Hb with penicillamine-substituted glutathione selenotrisulfide, as a model of major metabolic intermediates, and then interactions between the Hb–Se complex and RBC inside-out vesicles (IOVs) were examined. Selenium bound to Hb was transferred to the IOV membrane on the basis of the intrinsic interactions between Hb and the cytoplasmic domains of band 3 protein (CDB3). The observed selenium transfer was inhibited by the pretreatments of IOVs with iodoacetamide and the α-chymotrypsin digestion, indicating that the Hb mediates the selenium transfer to the thiol groups of CDB3. In addition, it was found that deoxygenated Hb, with a high binding affinity for CDB3, more favorably transferred selenium to the IOV membranes than oxygenated Hb, with a low affinity. When selenium export from RBC to the plasma was examined by continuously introducing nitrogen gas, the selenium export rate was promoted with an increase in the rate of deoxygenated Hb. Overall, these data suggested that Hb could possibly play a role in the selenium export from RBC treated with selenite in an oxygen-linked fashion. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号