首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Murine lymphotoxin (LT; TNF-beta) gene upstream regulatory elements were identified by linking fragments of 5' DNA to the chloramphenicol acetyl transferase gene. Fragment LT1 (-293 to +77 in relation to the proximal cap site) exhibited promoter activity which drove CAT expression in transfected murine fibroblasts and T lymphomas. Primer extension analysis of endogenous LT message confirmed that LT1 contained the necessary elements required for promoter function. Promoter activity was not observed when LT2 (-662 to +77), LT3 (-1186 to +77), or LT3 delta AX (-1186 to +77 (delta-662/-269)) were ligated to the chloramphenicol acetyl transferase gene and transfected into fibroblasts or T lymphomas. At least one upstream repressor element is postulated to account for this promoter inhibition. In contrast to the results obtained with fibroblast and T cell transfectants, LT1 was inactive in the B cell transfectants A20 and P3X63. This suggests that some B cells express a repressor factor that inhibits the LT promoter and/or they lack the necessary positive regulatory factors.  相似文献   

10.
11.
12.
13.
14.
15.
IL-4 secreted by activated T cells is a pleiotropic cytokine affecting growth and differentiation of diverse cell types such as T cells, B cells, and mast cells. We investigated the upstream regulatory elements of the human IL-4 promoter. A novel T cell-specific negative regulatory element (NRE) composed of two protein-binding sites were mapped in the 5' flanking region of the IL-4 gene: -311CTCCCTTCT-303 (NRE-I) and -288CTTTTTGCTT-TGC-300 (NRE-II). A T cell-specific protein Neg-1 and a ubiquitous protein Neg-2 binding to NRE-I and NRE-II, respectively, were identified. Furthermore, a positive regulatory element was found 45 bp downstream of the NRE. The enhancer activity of the PRE was completely suppressed when the NRE was present. These data suggest that IL-4 promoter activity is normally down-regulated by an NRE via repression of the enhancer positive regulatory element. These data may have implications for the stringent control of IL-4 expression in T cells.  相似文献   

16.
The human prothrombin gene: transcriptional regulation in HepG2 cells.   总被引:1,自引:0,他引:1  
J D Bancroft  S A McDowell  S J Degen 《Biochemistry》1992,31(49):12469-12476
  相似文献   

17.
18.
Deletion analysis of the mouse alpha 1(III) collagen promoter.   总被引:3,自引:2,他引:1       下载免费PDF全文
A chimeric gene was constructed by fusing the DNA sequences containing the 5' flanking region of the mouse alpha 1(III) collagen gene to the coding sequence of the bacterial chloramphenicol acetyltransferase (CAT) gene. Transient transfection experiments indicated that the alpha 1(III) promoter is active in NIH 3T3 fibroblasts and BC3H1 smooth muscle cells. The activity of the alpha 1(III) collagen promoter-CAT plasmid is stimulated approximately ten fold by the presence of the SV40 enhancer element. Removing sequences upstream of -200 stimulates the activity of the chimeric gene eight fold. Further deletion analysis identified sequences located between -350 and -300 that were instrumental in repressing the activity of the promoter. This 50 bp region contains a direct repeat sequence that may be involved in the regulation of the mouse alpha 1(III) collagen gene. Truncating the alpha 1(III) promoter to -80 further stimulated expression. We propose that the positive regulatory elements of this gene appear to be located within the first 80 bp of the promoter, whereas elements located further upstream exert a negative effect on the expression of the gene. Regulation of the alpha 1(III) gene contrasts with that of the alpha 2(I) collagen gene, which appears to be regulated by several positive elements located in various regions of the promoter.  相似文献   

19.
The amyloid beta-protein (Abeta) deposited in brains of Alzheimer's disease (AD) patients is proteolytically derived from a large Abeta precursor protein (APP). APP gene expression patterns in the AD brain region indicate that abnormalities of gene regulation may be important in AD pathology. To understand the contribution of different cell types to APP gene expression, we studied it at four levels: promoter activity (by reporter gene assay of transfected cells), DNA-nuclear protein interaction (by electrophoretic mobility shift assay), RNA message and protein (by northern and western blotting, respectively). APP mRNA and protein expression levels were greater in neuroblastoma and PC12 cells than in glial or cervix epithelial cells. Relative activity among 12 different promoter regions and within single regions varied according to cell type/cell line. An upstream regulatory region containing a GATA-1 site is necessary for activity in PC12 and glial cells but not in neuroblastoma cells. DNA-protein interactions were examined in three distal and one proximal promoter elements in nuclear extracts belonging to neuronal and non-neuronal cells. The proximal promoter region is important for cell line-specific APP gene expression. Characterization of the APP regulatory region's interaction with cell type-specific nuclear factor(s) is important to understand tissue-specific expression of APP seen in AD subjects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号