首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell adhesion and migration are complex processes that require integrin activation, the formation and dissolution of focal adhesion (FAs), and linkage of actin cytoskeleton to the FAs. The IPP (ILK, PINCH, Parvin) complex regulates FA formation via binding of the adaptor protein ILK to β1 integrin, PINCH and parvin. The signaling protein Rsu1 is linked to the complex via binding PINCH1. The role of Rsu1 and PINCH1 in adhesion and migration was examined in non-transformed mammary epithelial cells. Confocal microscopy revealed that the depletion of either Rsu1 or PINCH1 by siRNA in MCF10A cells decreased the number of focal adhesions and altered the distribution and localization of β1 integrin, vinculin, talin and paxillin without affecting the levels of FA protein expression. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. In addition, constitutive phosphorylation of actin regulatory proteins occurred in the absence of PINCH1. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function by regulating levels of PINCH1. However, while both Rsu1- or PINCH1-depleted cells retained the ability to activate adhesion signaling in response to EGF stimulation, only Rsu1 was required for EGF-induced p38 Map Kinase phosphorylation and ATF2 activation, suggesting an Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with an Rsu1 mutant that does not bind to PINCH1 failed to restore FAs or migration but did promote spreading and constitutive p38 activation. These data show that Rsu1-PINCH1 association with ILK and the IPP complex is required for regulation of adhesion and migration but that Rsu1 has a critical role in linking integrin-induced adhesion to activation of p38 Map kinase signaling and cell spreading. Moreover, it suggests that Rsu1 may regulate p38 signaling from the IPP complex affecting other functions including survival.  相似文献   

2.
Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.  相似文献   

3.
The ILK, PINCH, Parvin (IPP) complex regulates adhesion and migration via binding of ILK to β1 integrin and α?parvin thus linking focal adhesions to actin cytoskeleton. ILK also binds the adaptor protein PINCH which connects signaling proteins including Rsu1 to the complex. A recent study of Rsu1 and PINCH1 in non-transformed MCF10A human mammary epithelial cells revealed that the siRNA-mediated depletion of either Rsu1 or PINCH1 decreased the number of focal adhesions (FAs) and altered the distribution and localization of FA proteins. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function in part by regulating levels of PINCH1. However, Rsu1, but not PINCH1, was required for EGF-induced activation of p38 Map kinase and ATF2 phosphorylation, suggesting a Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with a Rsu1 mutant (N92D) that does not bind to PINCH1 failed to restore FAs or migration but did promote IPP-independent spreading and constitutive as well as EGF-induced p38 activation. In this commentary we discuss p38 activity in adhesion and how Rsu1 expression may be linked to Map kinase kinase (MKK) activation and detachment-induced stress kinase signaling.  相似文献   

4.
The ILK, PINCH, Parvin (IPP) complex regulates adhesion and migration via binding of ILK to β1 integrin and α−parvin thus linking focal adhesions to actin cytoskeleton. ILK also binds the adaptor protein PINCH which connects signaling proteins including Rsu1 to the complex. A recent study of Rsu1 and PINCH1 in non-transformed MCF10A human mammary epithelial cells revealed that the siRNA-mediated depletion of either Rsu1 or PINCH1 decreased the number of focal adhesions (FAs) and altered the distribution and localization of FA proteins. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function in part by regulating levels of PINCH1. However, Rsu1, but not PINCH1, was required for EGF-induced activation of p38 Map kinase and ATF2 phosphorylation, suggesting a Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with a Rsu1 mutant (N92D) that does not bind to PINCH1 failed to restore FAs or migration but did promote IPP-independent spreading and constitutive as well as EGF-induced p38 activation. In this commentary we discuss p38 activity in adhesion and how Rsu1 expression may be linked to Map kinase kinase (MKK) activation and detachment-induced stress kinase signaling.  相似文献   

5.
The heterotrimeric protein complex containing the integrin linked kinase (ILK), parvin, and PINCH proteins, termed the IPP complex, is an essential component of focal adhesions, where it interacts with many proteins to mediate signaling from integrin adhesion receptors. Here we conduct a biochemical and structural analysis of the minimal IPP complex, comprising full-length human ILK, the LIM1 domain of PINCH1, and the CH2 domain of α-parvin. We provide a detailed purification protocol for IPP and show that the purified IPP complex is stable and monodisperse in solution. Using small-angle X-ray scattering (SAXS), we also conduct the first structural characterization of IPP, which reveals an elongated shape with dimensions 120×60×40 Å. Flexibility analysis using the ensemble optimization method (EOM) is consistent with an IPP complex structure with limited flexibility, raising the possibility that inter-domain interactions exist. However, our studies suggest that the inter-domain linker in ILK is accessible and we detect no inter-domain contacts by gel filtration analysis. This study provides a structural foundation to understand the conformational restraints that govern the IPP complex.  相似文献   

6.
Cells attach to the extracellular matrix (ECM) through integrins to form focal adhesion complexes, and this process is followed by the extension of lamellipodia to enable cell spreading. PINCH-1, an adaptor protein essential for the regulation of cell-ECM adhesion, consists of five tandem LIM domains and a small C-terminal region. PINCH-1 is known to interact with integrin-linked kinase (ILK) and Ras suppressor protein 1 (Rsu-1); however, the precise mechanism by which this complex regulates cell-ECM adhesion is not fully understood. We report here that the LIM1 domain of PINCH-1, which associates with ILK to stabilize the expression of this protein, is sufficient for cell attachment but not for cell spreading. In contrast, the C-terminal region of PINCH-1, which binds to Rsu-1, plays a pivotal role in cell spreading but not in cell attachment. We also show that PINCH-1 associates with Rsu-1 to activate Rac1 and that Rac1 activation is necessary for cell spreading. Thus, these data reveal how specific domains of PINCH-1 direct two independent pathways: one utilizing ILK to allow cell attachment, and the other recruiting Rsu-1 to activate Rac1 in order to promote cell spreading.  相似文献   

7.
Integrin-linked kinase (ILK) is an essential component of the cardiac mechanical stretch sensor and is bound in a protein complex with parvin and PINCH proteins, the so-called ILK-PINCH-parvin (IPP) complex. We have recently shown that inactivation of ILK or β-parvin activity leads to heart failure in zebrafish via reduced protein kinase B (PKB/Akt) activation. Here, we show that PINCH proteins localize at sarcomeric Z disks and costameres in the zebrafish heart and skeletal muscle. To investigate the in vivo role of PINCH proteins for IPP complex stability and PKB signaling within the vertebrate heart, we inactivated PINCH1 and PINCH2 in zebrafish. Inactivation of either PINCH isoform independently leads to instability of ILK, loss of stretch-responsive anf and vegf expression, and progressive heart failure. The predominant cause of heart failure in PINCH morphants seems to be loss of PKB activity, since PKB phosphorylation at serine 473 is significantly reduced in PINCH-deficient hearts and overexpression of constitutively active PKB reconstitutes cardiac function in PINCH morphants. These findings highlight the essential function of PINCH proteins in controlling cardiac contractility by granting IPP/PKB-mediated signaling.  相似文献   

8.
Integrin-linked kinase (ILK) is a multidomain protein that plays important roles at cell-extracellular matrix (ECM) adhesion sites. We describe here a new LIM-domain containing protein (termed as PINCH-2) that forms a complex with ILK. PINCH-2 is co-expressed with PINCH-1 (previously known as PINCH), another member of the PINCH protein family, in a variety of human cells. Immunofluorescent staining of cells with PINCH-2-specific antibodies show that PINCH-2 localizes to both cell-ECM contact sites and the nucleus. Deletion of the first LIM (LIM1) domain of PINCH-2 abolished the ability of PINCH-2 to form a complex with ILK. The ILK-binding defective LIM1-deletion mutant, unlike the wild type PINCH-2 or the ILK-binding competent LIM5-deletion mutant, was incapable of localizing to cell-ECM contact sites, suggesting that ILK binding is required for this process. Importantly, the PINCH-2-ILK and PINCH-1-ILK interactions are mutually exclusive. Overexpression of PINCH-2 significantly inhibited the PINCH-1-ILK interaction and reduced cell spreading and migration. These results identify a novel nuclear and focal adhesion protein that associates with ILK and reveals an important role of PINCH-2 in the regulation of the PINCH-1-ILK interaction, cell shape change, and migration.  相似文献   

9.
Although glucocorticoids strongly affect numerous biological processes including cell growth, development, and homeostasis, their effects on migration of human mesenchymal stem cells (hMSCs) are unclear. Therefore, we investigated the role of dexamethasone (DEX) and its related signaling pathways on migration of hMSCs. We found that DEX, at 10?8 to 10?6 M, significantly increased migration after a 24 h incubation, and DEX (10?6 M) increased migration at >12 h. Moreover, DEX (10?6 M) increased the level of glucocorticoid receptor (GR)‐α mRNA and protein expression, but not GR‐β mRNA. The increases in DEX‐induced migration were inhibited by the GR antagonist mifepristone (10?7 M). In addition, DEX increased integrin‐linked kinase (ILK) and α‐parvin expression but did not change PINCH‐1/2 expression in lysate. DEX also increased formations of complex with ILK and α‐parvin, and ILK and PINCH‐1/2 as shown by immunoprecipitation, which were all inhibited by mifepristone. DEX‐induced migration was blocked by ILK and α‐parvin small interfering(si)RNAs. In addition, DEX increased focal adhesion kinase (FAK) and paxillin expression, which were attenuated by ILK and α‐parvin siRNAs. DEX‐induced cell migration was inhibited by FAK/paxillin siRNAs. DEX also increased β1‐integrin expression, which was blocked by FAK/paxillin siRNAs. In addition, DEX‐induced cell migration was inhibited by β1‐integrin siRNA. Downregulation of ILK, α‐parvin, FAK/paxillin and β1‐integrin expression by siRNAs decreased DEX‐induced filamentous(F)‐actin organization and migration of hMSCs. In conclusion, DEX partially stimulates hMSC migration by the expression of β1‐integrin through formation of a PINCH‐1/2/ILK/α‐parvin complex (PIP complex), and FAK and paxillin expression. J. Cell. Physiol. 226: 683–692, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
PINCH-1 is a widely expressed focal adhesion protein that forms a ternary complex with integrin-linked kinase (ILK) and CH-ILKBP/actopaxin/alpha-parvin (abbreviated as alpha-parvin herein). We have used RNA interference, a powerful approach of reverse genetics, to investigate the functions of PINCH-1 and ILK in human cells. We report here the following. First, PINCH-1 and ILK, but not alpha-parvin, are essential for prompt cell spreading and motility. Second, PINCH-1 and ILK, like alpha-parvin, are crucial for cell survival. Third, PINCH-1 and ILK are required for optimal activating phosphorylation of PKB/Akt, an important signaling intermediate of the survival pathway. Whereas depletion of ILK reduced Ser473 phosphorylation but not Thr308 phosphorylation of PKB/Akt, depletion of PINCH-1 reduced both the Ser473 and Thr308 phosphorylation of PKB/Akt. Fourth, PINCH-1 and ILK function in the survival pathway not only upstream but also downstream (or in parallel) of protein kinase B (PKB)/Akt. Fifth, PINCH-1, ILK and to a less extent alpha-parvin are mutually dependent in maintenance of their protein, but not mRNA, levels. The coordinated down-regulation of PINCH-1, ILK, and alpha-parvin proteins is mediated at least in part by proteasomes. Finally, increased expression of PINCH-2, an ILK-binding protein that is structurally related to PINCH-1, prevented the down-regulation of ILK and alpha-parvin induced by the loss of PINCH-1 but failed to restore the survival signaling or cell shape modulation. These results provide new insights into the functions of PINCH proteins in regulation of ILK and alpha-parvin and control of cell behavior.  相似文献   

11.
12.
PINCH is a recently identified adaptor protein that comprises an array of five LIM domains. PINCH functions through LIM-mediated protein-protein interactions that are involved in cell adhesion, growth, and differentiation. The LIM1 domain of PINCH interacts with integrin-linked kinase (ILK), thereby mediating focal adhesions via a specific integrin/ILK signaling pathway. We have solved the NMR structure of the PINCH LIM1 domain and characterized its binding to ILK. LIM1 contains two contiguous zinc fingers of the CCHC and CCCH types and adopts a global fold similar to that of functionally distinct LIM domains from cysteine-rich protein and cysteine-rich intestinal protein families with CCHC and CCCC zinc finger types. Gel-filtration and NMR experiments demonstrated a 1:1 complex between PINCH LIM1 and the ankyrin repeat domain of ILK. A chemical shift mapping experiment identified regions in PINCH LIM1 that are important for interaction with ILK. Comparison of surface features between PINCH LIM1 and other functionally different LIM domains indicated that the LIM motif might have a highly variable mode in recognizing various target proteins.  相似文献   

13.
The contractile stimulation of smooth muscle tissues stimulates the recruitment of proteins to membrane adhesion complexes and the initiation of actin polymerization. We hypothesized that integrin-linked kinase (ILK), a beta-integrin-binding scaffolding protein and serine/threonine kinase, and its binding proteins, PINCH, and alpha-parvin may be recruited to membrane adhesion sites during contractile stimulation of tracheal smooth muscle to mediate cytoskeletal processes required for tension development. Immunoprecipitation analysis indicted that ILK, PINCH, and alpha-parvin form a stable cytosolic complex and that the ILK.PINCH.alpha-parvin complex is recruited to integrin adhesion complexes in response to acetylcholine (ACh) stimulation where it associates with paxillin and vinculin. Green fluorescent protein (GFP)-ILK and GFP-PINCH were expressed in tracheal muscle tissues and both endogenous and recombinant ILK and PINCH were recruited to the membrane in response to ACh stimulation. The N-terminal LIM1 domain of PINCH binds to ILK and is required for the targeting of the ILK-PINCH complex to focal adhesion sites in fibroblasts during cell adhesion. We expressed the GFP-PINCH LIM1-2 fragment, consisting only of LIM1-2 domains, in tracheal smooth muscle tissues to competitively inhibit the interaction of ILK with PINCH. The PINCH LIM1-2 fragment inhibited the recruitment of endogenous ILK and PINCH to integrin adhesion sites and prevented their association of ILK with beta-integrins, paxillin, and vinculin. The PINCH LIM1-2 fragment also inhibited tension development, actin polymerization, and activation of the actin nucleation initiator, N-WASp. We conclude that the recruitment of the ILK.PINCH.alpha-parvin complex to membrane adhesion complexes is required to initiate cytoskeletal processes required for tension development in smooth muscle.  相似文献   

14.
Integrin-linked kinase (ILK) is an important signaling regulator that assembles into the heteroternary complex with adaptor proteins PINCH and parvin (termed the IPP complex). We recently reported that ILK is important for integrin activation in a Chinese hamster ovary (CHO) cell system. We previously established parental CHO cells expressing a constitutively active chimeric integrin (αIIbα6Bβ3) and mutant CHO cells expressing inactive αIIbα6Bβ3 due to ILK deficiency. In this study, we further investigated the underlying mechanisms for ILK-dependent integrin activation. ILK-deficient mutant cells had trace levels of PINCH and α-parvin, and transfection of ILK cDNA into the mutant cells increased not only ILK but also PINCH and α-parvin, resulting in the restoration of αIIbα6Bβ3 activation. In the parental cells expressing active αIIbα6Bβ3, ILK, PINCH, and α-parvin were co-immunoprecipitated, indicating the formation of the IPP complex. Moreover, short interfering RNA (siRNA) experiments targeting PINCH-1 or both α- and β-parvin mRNA in the parent cells impaired the αIIbα6Bβ3 activation as well as the expression of the other components of the IPP complex. In addition, ILK mutants possessing defects in either PINCH or parvin binding failed to restore αIIbα6Bβ3 activation in the mutant cells. Kindlin-2 siRNA in the parental cells impaired αIIbα6Bβ3 activation without disturbing the expression of ILK. For CHO cells stably expressing wild-type αIIbβ3 that is an inactive form, overexpression of a talin head domain (THD) induced αIIbβ3 activation and the THD-induced αIIbβ3 activation was impaired by ILK siRNA through a significant reduction in the expression of the IPP complex. In contrast, overexpression of all IPP components in the αIIbβ3-expressing CHO cells further augmented THD-induced αIIbβ3 activation, whereas they did not induce αIIbβ3 activation without THD. These data suggest that the IPP complex rather than ILK plays an important role and supports integrin activation probably through stabilization of the active conformation.  相似文献   

15.
Epithelial cell adhesion to the surrounding extracellular matrix is necessary for their proper behavior and function. During pregnancy and lactation, mammary epithelial cells (MECs) receive signals from their interaction with laminin via β1‐integrin (β1‐itg) to establish apico‐basal polarity and to differentiate in response to prolactin. Downstream of β1‐itg, the scaffold protein Integrin Linked Kinase (ILK) has been identified as the key signal transducer that is required for both lactational differentiation and the establishment of apico‐basal polarity. ILK is an adaptor protein that forms the IPP complex with PINCH and Parvins, which are central to its adaptor functions. However, it is not known how ILK and its interacting partners control tissue‐specific gene expression. Expression of ILK mutants, which weaken the interaction between ILK and Parvin, revealed that Parvins have a role in mammary epithelial differentiation. This conclusion was supported by shRNA‐mediated knockdown of the Parvins. In addition, shRNA knockdown of the Parvin‐binding guanine nucleotide exchange factor αPix prevented prolactin‐induced differentiation. αPix depletion did not disrupt focal adhesions, MEC proliferation, or polarity. This suggests that αPix represents a differentiation‐specific bifurcation point in β1‐itg‐ILK adhesive signaling. In summary, this study has identified a new role for Parvin and αPix downstream of the integrin‐ILK signaling axis for MEC differentiation. J. Cell. Physiol. 231: 2408–2417, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

16.
Integrins play a crucial role in cell motility, cell proliferation and cell survival. The evolutionarily conserved LIM protein PINCH is postulated to act as part of an integrin-dependent signaling complex. In order to evaluate the role of PINCH in integrin-mediated cellular events, we have tested directly the in vivo function of PINCH in Drosophila melanogaster. We demonstrate that the steamer duck (stck) alleles that were first identified in a screen for potential integrin effectors represent mutations in Drosophila pinch. stck mutants die during embryogenesis, revealing a key role for PINCH in development. Muscle cells within embryos that have compromised PINCH function display disturbed actin organization and cell-substratum adhesion. Mutation of stck also causes failure of integrin-dependent epithelial cell adhesion in the wing. Consistent with the idea that PINCH could contribute to integrin function, PINCH protein colocalizes with betaPS integrin at sites of actin filament anchorage in both muscle and wing epithelial cells. Furthermore, we show that integrins are required for proper localization of PINCH at the myotendinous junction. The integrin-linked kinase, ILK, is also essential for integrin function. We demonstrate that Drosophila PINCH and ILK are complexed in vivo and are coincident at the integrin-rich muscle-attachment sites in embryonic muscle. Interestingly, ILK localizes appropriately in stck mutant embryos, therefore the phenotypes exhibited by the stck mutants are not attributable to mislocalization of ILK. Our results provide direct genetic evidence that PINCH is essential for Drosophila development and is required for integrin-dependent cell adhesion.  相似文献   

17.
The interaction of cells with extracellular matrix recruits multiple proteins to cell-matrix contact sites (e.g. focal and fibrillar adhesions), which connect the extracellular matrix to the actin cytoskeleton and regulate cell shape change, migration, and other cellular processes. We previously identified PINCH, an adaptor protein comprising primarily five LIM domains, as a binding protein for integrin-linked kinase (ILK). In this study, we show that PINCH co-localizes with ILK in both focal adhesions and fibrillar adhesions. Furthermore, we have investigated the molecular basis underlying the targeting of PINCH to the cell-matrix contact sites and the functional significance of the PINCH-ILK interaction. We have found that the N-terminal LIM1 domain, which mediates the ILK binding, is required for the targeting of PINCH to the cell-matrix contact sites. The C-terminal LIM domains, although not absolutely required, play an important regulatory role in the localization of PINCH to cell-matrix contact sites. Inhibition of the PINCH-ILK interaction, either by overexpression of a PINCH N-terminal fragment containing the ILK-binding LIM1 domain or by overexpression of an ILK N-terminal fragment containing the PINCH-binding ankyrin domain, retarded cell spreading, and reduced cell motility. These results suggest that PINCH, through its interaction with ILK, is crucially involved in the regulation of cell shape change and motility.  相似文献   

18.
The LIM-only adaptor PINCH (the particularly interesting cysteine- and histidine-rich protein) plays a pivotal role in the assembly of focal adhesions (FAs), supramolecular complexes that transmit mechanical and biochemical information between extracellular matrix and actin cytoskeleton, regulating diverse cell adhesive processes such as cell migration, cell spreading, and survival. A key step for the PINCH function is its localization to FAs, which depends critically on the tight binding of PINCH to integrin-linked kinase (ILK). Here we report the solution NMR structure of the core ILK·PINCH complex (28 kDa, KD ∼ 68 nm) involving the N-terminal ankyrin repeat domain (ARD) of ILK and the first LIM domain (LIM1) of PINCH. We show that the ILK ARD exhibits five sequentially stacked ankyrin repeat units, which provide a large concave surface to grip the two contiguous zinc fingers of the PINCH LIM1. The highly electrostatic interface is evolutionally conserved but differs drastically from those of known ARD and LIM bound to other types of protein domains. Consistently mutation of a hot spot in LIM1, which is not conserved in other LIM domains, disrupted the PINCH binding to ILK and abolished the PINCH targeting to FAs. These data provide atomic insight into a novel modular recognition and demonstrate how PINCH is specifically recruited by ILK to mediate the FA assembly and cell-extracellular matrix communication.Cell-extracellular matrix (ECM)3 adhesion, migration, and survival are essential for the development and maintenance of tissues and organs in living organisms. They are mediated by integrin transmembrane receptors, which function by adhering to ECM proteins via their large extracellular domains while connecting to the actin cytoskeleton via their small cytoplasmic tails (20-70 residues) (1). The integrin-actin connection supports strong cell-ECM adhesion, and its alteration leads to dynamic cell shape change, migration, and survival (2). The molecular details of such connection, however, are highly complex, involving a large protein complex network called focal adhesions (FAs) (3, 4).Integrin-linked kinase (ILK) is a 50-kDa FA protein that contains an N-terminal ankyrin repeat domain (ARD), a middle pleckstrin homology domain, and a C-terminal kinase domain. Originally discovered as an integrin β cytoplasmic tail-binding protein (5), ILK has been established as a major regulator that controls the complex FA assembly and transmits many cell adhesive signals between integrins and actin (6-8). Soon after the discovery of ILK, Tu et al. (9) identified an ILK binding partner called PINCH that contains five LIM domains. Extensive studies have shown that the PINCH binding to ILK is essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between ECM and the actin cytoskeleton (9-11). Consistent with the importance of the ILK/PINCH association in almost all cellular behavior and fate, ablation of either ILK (12) or PINCH in mice is embryonically lethal (13, 14). PINCH also has a highly homologous isoform called PINCH-2. However, although complementary to PINCH in many cellular behaviors (for reviews, see Refs. 8 and 15), PINCH-2 appears to be involved at the later stage of development (16), and thus its ablation in mice is not embryonically lethal (17). At the clinical level, dysregulation of the ILK/PINCH interaction has been implicated in the development of numerous human disorders such as cancer (6, 18) and heart diseases (19, 20). A Phase I clinical trial is ongoing on a drug called thymosin β-4 (RegeneRx) that appears to specifically target ILK/PINCH for treating myocardial infarction, a major heart failure disorder (19).Despite the cellular, physiological, and pathological importance of the ILK/PINCH interaction, the structural basis for how exactly PINCH binds to ILK has not been well understood. Previous biochemical/structural analyses have indicated that ILK utilizes its N-terminal ARD to recognize the LIM1 domain of PINCH, and such binding may promote the targeting of PINCH to FAs (9, 21). However, the precise atomic basis for such targeting process is elusive. No structure of any ARD·LIM complex has been reported. Using a combination of NMR-based techniques, we have solved the solution structure of the ILK ARD·PINCH LIM1 complex that revealed an interface that is distinct from other ARD and LIM bound to non-ARD/LIM domains. Structure-based mutation of a hot spot in PINCH LIM1, which is not conserved in other LIM domains, abolished the PINCH binding to ILK and its localization to FAs. These results not only reveal a unique LIM/ARD recognition mode but also provide a definitive functional basis for how PINCH is recruited by ILK to focal adhesion site, a major step toward the dynamic cell adhesion and migration processes.  相似文献   

19.
PINCH is a widely expressed and evolutionarily conserved protein comprising primarily five LIM domains, which are cysteine-rich consensus sequences implicated in mediating protein-protein interactions. We report here that PINCH is a binding protein for integrin-linked kinase (ILK), an intracellular serine/threonine protein kinase that plays important roles in the cell adhesion, growth factor, and Wnt signaling pathways. The interaction between ILK and PINCH has been consistently observed under a variety of experimental conditions. They have interacted in yeast two-hybrid assays, in solution, and in solid-phase-based binding assays. Furthermore, ILK, but not vinculin or focal adhesion kinase, has been coisolated with PINCH from mammalian cells by immunoaffinity chromatography, indicating that PINCH and ILK associate with each other in vivo. The PINCH-ILK interaction is mediated by the N-terminal-most LIM domain (LIM1, residues 1 to 70) of PINCH and multiple ankyrin (ANK) repeats located within the N-terminal domain (residues 1 to 163) of ILK. Additionally, biochemical studies indicate that ILK, through the interaction with PINCH, is capable of forming a ternary complex with Nck-2, an SH2/SH3-containing adapter protein implicated in growth factor receptor kinase and small GTPase signaling pathways. Finally, we have found that PINCH is concentrated in peripheral ruffles of cells spreading on fibronectin and have detected clusters of PINCH that are colocalized with the alpha5beta1 integrins. These results demonstrate a specific protein recognition mechanism utilizing a specific LIM domain and multiple ANK repeats and suggest that PINCH functions as an adapter protein connecting ILK and the integrins with components of growth factor receptor kinase and small GTPase signaling pathways.  相似文献   

20.
Alternative splicing of the human PTEN/MMAC1/TEP1 gene   总被引:2,自引:0,他引:2  
The human tumour suppressor gene PTEN/MMAC1/TEP1 encodes a lipid and protein phosphatase. Using RT-PCR, alternatively spliced forms of PTEN mRNA, encoding full-length PTEN and two forms of the protein truncated at the C-terminal end, were detected in normal human tissue. Cultured tumour and non-tumour cell lines show similar splicing patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号