首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The concentrations of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid, and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid were determined in plasma from patients with different liver diseases and compared with those of unconjugated and conjugated C24 bile acids. The levels of the cholestenoic acids were similar in patients with extrahepatic cholestasis and in controls (median concentration 153 and 162 ng/ml, respectively), whereas significantly elevated levels were found in plasma from patients with primary biliary cirrhosis (median concentration 298 ng/ml) and alcoholic liver cirrhosis (median concentration 262 ng/ml). As expected, conjugated C24 bile acids were elevated in most patients whereas the corresponding unconjugated compounds were low in cholestasis and elevated in alcoholic liver cirrhosis. The levels of the individual C27 acids were usually positively correlated to each other and also to the levels of conjugated C24 bile acids in plasma from patients with liver cirrhosis. In contrast, there was no correlation between the levels of C27 acids and conjugated bile acids in patients with extrahepatic cholestasis. The levels of unconjugated C24 bile acids were not correlated to C27 acids or conjugated bile acids in any of the groups. The results indicate that there is a close metabolic relationship between the individual C27 acids, that they do not participate in an enterohepatic circulation, and that the liver is important for their elimination/metabolism.  相似文献   

2.
The chemical synthesis of 3beta,7beta-dihydroxy-5-cholen-24-oic acid, triply conjugated by sulfuric acid at C-3, by N-acetylglucosamine (GlcNAc) at C-7, and by glycine or taurine at C-24, is described. These are unusual, major metabolites of bile acid found to be excreted in the urine of a patient with Niemann-Pick disease type C1. Analogous double-conjugates of 3beta-hydroxy-7-oxo-5-cholen-24-oic acid were also prepared. The principal reactions involved were: (1) beta-d-N-acetylglucosaminidation at C-7 of methyl 3beta-tert-butyldimethylsilyloxy (TBDMSi)-7beta-hydroxy-5-cholen-24-oate with 2-acetamido-1alpha-chloro-1,2-dideoxy-3,4,6-tri-O-acetyl-d-glucopyranose in the presence of CdCO(3) in boiling toluene; (2) sulfation at C-3 of the resulting 3beta-TBDMSi-7beta-GlcNAc with sulfur trioxide-trimethylamine complex in pyridine; and (3) direct amidation at C-24 of the 3beta-sulfooxy-7beta-GlcNAc conjugate with glycine methyl ester hydrochloride (or taurine) using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride as a coupling agent in DMF. The structures of the multi-conjugated bile acids were characterized by liquid chromatography-mass spectrometry with an electrospray ionization probe under the positive and negative ionization modes.  相似文献   

3.
In order to define the effect of a side chain hydroxy group on bile acid (BA) physicochemical and biological properties, 23-hydroxylated bile acids were synthesized following a new efficient route involving the alpha-oxygenation of silylalkenes. 22-Hydroxylated bile acids were also studied. The synthesized bile acids included R and S epimers of 3 alpha,7 alpha,23-trihydroxy-5 beta-cholan-24-oic acid (23R epimer: phocaecholic acid), 3 alpha,12 alpha,23-trihydroxy-5 beta-cholan-24-oic (23R epimer: bitocholic acid), and 3 alpha,7 beta,23-trihydroxy-5 beta-cholan-24-oic acid. A 3 alpha,7 alpha,22-trihydroxy-5 beta-cholan-24-oic acid (haemulcholic acid) was also studied. The presence of a hydroxy group on the side chain slightly modified the physicochemical behavior in aqueous solution with respect to common BA: the critical micellar concentration (CMC) and the hydrophilicity were similar to naturally occurring trihydroxy BA such as cholic acid. The pKa value was lowered by 1.5 units with respect to common BA, being 3.8 for all the C-23 hydroxy BA. C-22 had a higher pKa (4.2) as a result of the increased distance of the hydroxy group from the carboxy group. When the C-23 hydroxylated BA were intravenously administered to bile fistula rats, they were efficiently recovered in bile (more than 80% unmodified) while the corresponding analogs, lacking the 23- hydroxy group, were almost completely glycine- or taurine-conjugated. On the other hand, the C-22 hydroxylated BA were extensively conjugated with taurine and less than 40% of the administered dose was secreted without being conjugated. In the presence of intestinal bacteria, they were mostly metabolized to the corresponding 7-dehydroxylated compound similar to common BA with the exception of bitocholic acid which was relatively stable. The presence of a hydroxy group at the C-23 position increased the acidity of the BA and this accounted for poor absorption within the biliary tree and efficient biliary secretion without the need for conjugation. 3 alpha,7 beta-23 R/S trihydroxy-5 beta-cholan-24-oic acids could improve the efficiency of ursodeoxycholic acid (UDCA) for gallstone dissolution or cholestatic syndrome therapy, as it is relatively hydrophilic and efficiently secreted into bile without altering the glycine and taurine hepatic pool.  相似文献   

4.
Summary The microbial transformation of bile acids that takes place in the lower alimentary tract plays an important role in the in vivo metabolism of bile acids and also of cholesterol in general. Most of the transforming reactions involved can be reproduced in in vitro cultures of mixed intestinal microflora: hydrolysis of the peptide bond in the conjugated bile acids, removal of the 7α-OH group, and dehydrogenation of the α-OH substituents at C-7, C-3 and C-12. The last reaction, which leads to the formation an oxo group, is reversible and a stereospecific reduction of, the oxo moiety into a b-OH group has been shown to be carried out.  相似文献   

5.
In nine strains of Clostridium innocuum, 3 beta-hydroxysteroid-dehydrogenating activities were detected. 3 beta, 7 alpha, 12 alpha-Trihydroxy- and 3 beta-hydroxy-12-keto-5 beta-cholanoic acids were identified as reduction products of the respective 3-keto bile acids by gas-liquid chromatography and gas-liquid chromatography-mass spectrometry. One strain was shown to contain a NAD-dependent 3 beta-hydroxysteroid dehydrogenase. Enzyme production was constitutive in the absence of added bile acids. The specific enzyme activity was significantly reduced by growth medium supplementation with 3-keto bile acids, with trisubstituted acids being more effective than disubstituted ones. A pH optimum of 10.0 to 10.2 was found after partial purification by DEAE-cellulose chromatography. A molecular weight of about 56,000 was established. 3 beta-hydroxysteroid dehydrogenase activity was also found in the membrane fraction after solubilization with Triton X-100, suggesting that the enzyme was originally membrane bound. The enzyme reduced a 3-keto group in unconjugated and conjugated bile acids, lower Km values being demonstrated with disubstituted than with trisubstituted bile acids. Keto functions at C-7 and C-12 further reduced the Km value. The enzyme was found to be partially heat labile (86% inactivation at 50 degrees C for 10 min).  相似文献   

6.
In nine strains of Clostridium innocuum, 3 beta-hydroxysteroid-dehydrogenating activities were detected. 3 beta, 7 alpha, 12 alpha-Trihydroxy- and 3 beta-hydroxy-12-keto-5 beta-cholanoic acids were identified as reduction products of the respective 3-keto bile acids by gas-liquid chromatography and gas-liquid chromatography-mass spectrometry. One strain was shown to contain a NAD-dependent 3 beta-hydroxysteroid dehydrogenase. Enzyme production was constitutive in the absence of added bile acids. The specific enzyme activity was significantly reduced by growth medium supplementation with 3-keto bile acids, with trisubstituted acids being more effective than disubstituted ones. A pH optimum of 10.0 to 10.2 was found after partial purification by DEAE-cellulose chromatography. A molecular weight of about 56,000 was established. 3 beta-hydroxysteroid dehydrogenase activity was also found in the membrane fraction after solubilization with Triton X-100, suggesting that the enzyme was originally membrane bound. The enzyme reduced a 3-keto group in unconjugated and conjugated bile acids, lower Km values being demonstrated with disubstituted than with trisubstituted bile acids. Keto functions at C-7 and C-12 further reduced the Km value. The enzyme was found to be partially heat labile (86% inactivation at 50 degrees C for 10 min).  相似文献   

7.
The nature of the bile alcohols present in urine of an infant with neonatal cholestasis has been investigated. Urine was extracted with Sep-Pak C18 cartridges and a glucuronide fraction was isolated by ion exchange chromatography on Lipidex-DEAP. Following enzymatic hydrolysis and purification on Lipidex-DEAP, the bile alcohols were isolated by high performance liquid chromatography. Fourteen compounds were studied by a combination of microchemical reactions and capillary column gas-liquid chromatography-mass spectrometry. Both C26 and C27 bile alcohols were present. Among the former, three additional isomers of the previously identified 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24 xi,25 xi-pentol were detected. A new C26 bile alcohol, 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24 xi,25 xi,26 -hexol, was identified, and a 27-norcholestane-pentolone with hydroxyl groups at C-24 and C-25 and a keto group in the ring system was partially characterized. The C27 bile alcohols consisted of cholestanepentols, -tetrolones, and -pentolones. 5 beta-Cholestane-3 alpha,7 alpha,12 alpha,25,26-pentol (5 beta-bufol), one of its isomers and an isomer of cholestane-3,7,12,24,26-pentol were present. Two cholestanetetrolones and two cholestanepentolones having the keto group in the ring system were partially characterized. The hydroxyl groups in the side chain of the tetrolones were at C-24,26 and C-25,26, respectively, whereas the pentolones had hydroxyl groups at C-24,25 and C-25,26, respectively. The excretion of glucuronidated bile alcohols in urine is suggested to reflect an alternative metabolism of intermediates in the normal biosynthesis of bile acids.  相似文献   

8.
It is postulated that the six conjugated bile acids of most common occurrence in human bile could be analyzed by three enzymic and one chemical assay without any prior chromatographic separation of the bile acids. In health, all bile acids in liver or gall bladder bile are conjugated with either glycine or taurine and have an a-hydroxyl group at the 3 position. In addition, the trihydroxy bile acid, cholic (C) has a 7α- and a 12α-hydroxy group while the dihydroxy bile acids either have a second hydroxyl group at the 7α-position (chenodeoxycholic acid, CDC) or at the 12α-position (deoxycholic acid, DC). Hydroxysteroid dehydrogenases (HSDH) specific for oxido-reductase activity at the 3α-, 7α- and 12α-positions would directly quantify these 3α-, 7α- and 12α-hydroxyl groups in a sample of bile or bile extract. Subsequent data would be used to solve three simultaneous equations yielding solutions for the overall concentrations of conjugated C, conjugated CDC and conjugated DC on the assumption that the overall concentration of lithocholic acid is negligible (< 2 %). A suitable assay for the sulphonate group containing taurine conjugates, such as that described by Christie, Macdonald & Williams, 1975, along with the total bile acid measurement would readily facilitate the estimation of the glycine/taurine (GT) ratio. This ratio applied to the enzymatically derived estimates for conjugated DC, CDC and C would approximate the glycodeoxycholate (GDC), glycochenodeoxycholate (GCDC), glycocholate (GC), taurodeoxycholate (TDC), taurochenodeoxycholate (TCDC) and taurocholate (TC) concentrations. Figures for these concentrations would be based on the assumption that the GT ratio is approximately the same for each bile acid and that all the bile acids are conjugated.  相似文献   

9.
Ketonic bile acids have been found to be quantitatively important in urine of healthy infants during the neonatal period. In order to determine their structures, the bile acids in urine from 11 healthy infants were analyzed by gas-liquid chromatography-mass spectrometry (GLC-MS) and three samples with particularly high levels of ketonic bile acids were selected for detailed studies by ion exchange chromatography, fast atom bombardment mass spectrometry, microchemical reactions, and GLC-MS. The major ketonic bile acid was identified as 7 alpha, 12 alpha-dihydroxy-3-oxo-5 beta-chol-1-enoic acid, not previously described as a naturally occurring bile acid. The positional isomer 7 alpha, 12 alpha-dihydroxy-3-oxo-4-cholenoic acid, recently described as a major urinary bile acid in infants with severe liver diseases, was also excreted by most infants. Three acids related to cholic acid were identified: 7 alpha, 12 alpha-dihydroxy-3-oxo-, 3 alpha, 12 alpha-dihydroxy-7-oxo-, and 3 alpha, 7 alpha-dihydroxy-12-oxo-5 beta-cholanoic acids. Five bile acids having one oxo and three hydroxy groups were also present. Based on mass spectra and biological considerations two of these were tentatively given the structures 1 beta, 7 alpha, 12 alpha-trihydroxy-3-oxo- and 1 beta, 3 alpha, 12 alpha-trihydroxy-7-oxo-5 beta-cholanoic acids. Some of the others had a hydroxy group at C-4 or C-2. The levels of ketonic bile acids were higher on the third than on the first day of life, and lower after 1 month. The formation and excretion especially of 3-oxo bile acids is proposed to result from changes of the redox state in the liver in connection with birth.  相似文献   

10.
1. Analysis of bile salts of four snakes of the subfamily Viperinae showed that their bile acids consisted mainly of C-23-hydroxylated bile acids. 2. Incubations of 14C-labelled sodium cholate (3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholan-24-oate) and deoxycholate (3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oate) with whole and fractionated adder liver homogenates were carried out in the presence of molecular oxygen and NADPH or an NADPH-generating system. The formation of C-23-hydroxylated bile acids, namely bitocholic acid (3 alpha, 12 alpha, 23xi-trihydroxy-5 beta-cholan-24-oic acid) and 3 alpha, 7 alpha, 12 alpha, 23 xi-tetrahydroxy-cholanic acid (3 alpha, 7 alpha, 12 alpha, 23 xi-tetrahydroxy-5 beta-cholan-24-oic acid), was observed mainly in the microsomal fraction and partly in the mitochondrial fraction. 3. Biosynthetic pathways of C-23-hydroxylated bile acids are discussed.  相似文献   

11.
Urinary sulfated primary bile acids, 7α-hydroxy bile acids, are detected by an enzymatic method using 7α-hydroxysteroid dehydrogenase (EC 1.1.1.-, 7α-HSD) after chromatographic fractionation on Sephadex G-25. Urinary sulfated or glucuronated bile acids are hydrolyzed by β-glucuronidase/sulfatase (EC 3.2.1.31/EC 3.1.6.1) from Helix pomatia and then released 7α-hydroxy bile acids are detected with 7α-HSD in the presence of β-NAD+, diaphorase (EC 1.6.99.2, from Clostridium kluyveri) and 2-p-iodophenyl-3-p-nitrophenyl-5-phenyltetrazolium chloride. The absorbance of formazan formed during the enzymic reaction is measured at 500 nm. Excretion values of 7α-hydroxy bile acids in normal subjects and in patients with acute hepatitis were compared. This enzymatic detection method for the excretion pattern of urinary 7α-hydroxy bile acids may be useful for clinical diagnosis.  相似文献   

12.
A detailed study of the qualitative and quantitative composition of bile acids in human fetal gallbladder bile is described. Bile was collected during early gestation (weeks 16-19) and analyzed by gas chromatography and mass spectrometry, fast atom bombardment ionization mass spectrometry, and high performance liquid chromatography. Bile acids were separated into different conjugate groups by chromatography on the lipophilic anion exchange gel, diethylaminohydroxypropyl Sephadex LH-20. Quantitatively more than 80% of the bile acids were secreted into bile conjugated to taurine. Unconjugated bile acids and glycine conjugates accounted for 5-10% of the total biliary bile acids. Bile acid sulfates were present only in trace amounts indicating that quantitatively sulfation is not an important pathway in bile acid metabolism during development. Total biliary bile acid concentrations were low (0.1-0.4 mM) when compared to reported values for adult bile (greater than 10 mM). Chenodeoxycholic acid was the major biliary bile acid and exceeded cholic acid concentrations by 1.43-fold indicating either a relative immaturity in 12 alpha-hydroxylase activity during early life or a dominance of alternative pathways for chenodeoxycholic acid synthesis. A relatively large proportion of the biliary bile acids comprised metabolites not found in adult bile. The presence of relatively high proportions of hyocholic acid (often greater than cholic acid) and several 1 beta-hydroxycholanoic acid isomers indicates that C-1 and C-6 hydroxylation are important pathways in bile acid synthesis during development. We describe, for the first time, evidence for the existence of a C-4 hydroxylation pathway in the metabolism of bile acids, which may be unique to early human development. Mass spectrometry was used to confirm the identification of 3 alpha,4 beta,7 alpha-trihydroxy-5 beta-cholanoic and 3 alpha,4 beta-dihydroxy-5 beta-cholanoic acids. Quantitatively, these C-4 hydroxylated bile acids accounted for 5-15% of the total biliary bile acids of the fetus, suggesting that C-4 hydroxylation is quantitatively an important pathway in the bile acid metabolism during early life.  相似文献   

13.
In this qualitative study of the pattern of bile acid excretion in cholestasis, methods are described for the isolation of bile acids from large volumes of urine and plasma. The bile acids were subjected to a group separation and identified by combined gas chromatography-mass spectrometry. The techniques were developed to allow identification of the minor components of the bile acid mixture. Four bile acids that have not previously been described in human urine and plasma were detected, namely 3beta, 7alpha-dihydroxy-5beta-cholan-24-oic acid, 3alpha, 6alpha-dihydroxy-5beta-cholan-24-oic acid (hyodeoxycholic acid), 3alpha, 6alpha, 7alpha-trihydroxy-5beta-cholan-24-oic acid (hyocholic acid) and 3alpha, 7beta, 12alpha-trihydroxy-5beta-cholan-24-oic acid. In addition three C27 steroids were found; 26-hydroxycholesterol and a trihydroxy cholestane, probably 5 beta-cholestane-3alpha, 7alpha, 26-triol were found in the sulphate fraction of plasma and urine. In the plasma sample, a sulphate conjugate of 24-hydroxycholesterol was found. The presence of these compounds probably reflects the existence of further pathways for bile acid metabolism. It is not yet known whether this is a consequence of the cholestasis or whether they are also present in normal man, at much lower concentrations.  相似文献   

14.
Preparation of some biologically important keto bile acids is described. Advantage is taken of the preferential ketalization of 3-oxo group in bile acids over 7- and 12-oxo groups for the selective reduction of these keto groups. The method was found to be specially useful for preparation of 7 beta-, 12 alpha, and 12 beta-[3H]-3-oxo bile acids. Improved methods are also described for the preparation of epimers of naturally occurring bile acids at C-3, C-7, and C-12. 3 beta-Hydroxy bile acids (iso-bile acids) were prepared with the use of diethylazodicarboxylate/triphenylphosphine/formic acid. Iso-bile acids were obtained in excellent yields (80-95%) except during synthesis of isoursodeoxycholic acid (yield, 50%). Isoursodeoxycholic acid was, however, prepared in very good yield via epimerization of 3 alpha-hydroxyl group in 7-oxolithocholic acid followed by stereoselective reduction of 7-oxo group. A highly efficient method for the reduction of 7-oxo and 12-oxo groups was developed. Thus, 7-oxolithocholic acid and 7-oxoisolithocholic acid on reduction with potassium/tertiary amyl alcohol yielded ursodeoxycholic acid and isoursodeoxycholic acid in yields of 96% and 94%, respectively, while reduction of 7-oxodeoxycholic acid resulted in ursocholic acid in 93% yield. In a similar manner, reduction of 12-oxolithocholic acid and 12-oxochenodeoxycholic acid yielded 3 alpha, 12 beta-dihydroxy-5 beta-cholanoic acid (lagodeoxycholic acid; 92% yield) and 3 alpha, 7 alpha, 12 beta-trihydroxy-5 beta-cholanoic acid (lagocholic acid, 86% yield).  相似文献   

15.
Biliary excretion and biotransformation of tracer doses of [14C]lithocholic acid and its sulfate and glucuronide intravenously injected into bile-drainaged rats were compared. Biliary excretion efficiency was in the order of unconjugate sulfate glucuronide and all conjugates were completely excreted into bile within 60 min after injection. Only tracer doses of radioactivity were found in the liver and urine. About 90% of radiolabeled bile acids in bile were conjugated with taurine immediately after injection of lithocholic acid, whereas lithocholic acid-glucuronide was only partly conjugated with taurine all the time (less than 6%) and excreted into bile mainly as native compound. In the first 10 min, 66% of lithocholic acid-sulfate was conjugated with taurine and it gradually proceeded up to 87%. Hydroxylation at C-6 and C-7 positions of lithocholic acid proceeded time-dependently up to 45%. No hydroxylation was observed with lithocholic acid-sulfate or glucuronide. Differences of biliary excretion rate of these conjugates may be one of the reasons for the delayed decrease of sulfated and glucuronidated bile acids in serum after bile drainage to patients with obstructive jaundice of during the recovery of acute hepatitis than non-esterified bile acids.  相似文献   

16.
The in vivo conversion of several 5 beta-cholestane intermediates to primary bile acids was investigated in three patients with total biliary diversion. The following compounds were administered intravenously: 5 beta-[G-3H]-cholestane-3 alpha, 7 alpha-diol, 5 beta-[G-3H]cholestane-3 alpha, 7alpha, 26-triol, and 5 beta-[24-14C]cholestane-3 alpha, 7 alpha-25-triol. Bile was then collected quantitatively at frequent intervals for the next 21 to 28 h. The administered 5 beta-[G-3H]cholestane-3alpha, 7alpha, 26-triol was found to be efficiently converted to cholic and chenodeoxycholic acids in two patients; 61 and 75% of the administered label was found in primary bile acids. The proportion of labeled cholic to chenodeoxycholic acid was 1.20 and 1.02 in the bile of these patients, indicating that the C-26 triol was efficiently converted to cholic acid. The ratio of cholic to chenodeoxycholic acid (mass) in the bile of these patients was 1.23 and 2.32. The 5 beta-cholestane-3alpha, 7alpha-diol intermediate was also efficiently converted (71%) to both primary bile acids. The cholic to chenodeoxycholic acid ratios by mass and label were similar (2.97 versus 2.23). By contrast, the 5beta-cholestane-3alpha, 7alpha, 25-triol was poorly converted to bile acids in three patients. Following the administration of this compound almost all of the administered radioactivity found in the bile acid fraction was in cholic acid (5 to 19%) and very little (less than 5%) was found in chenodeoxycholic acid. These findings indicate that ring hydroxylation at position 12 is not materially hindered by the presence of a hydroxyl group on the side chain at C-26 in patients with biliary diversion. The labeled C-26-triol which was efficiently converted to both primary bile acids in a proportion similar to that which was observed for the bile acids synthesized by the liver suggests that this 5beta-cholestane derivative may be a major intermediate in the synthesis of both cholic and chenodeoxycholic acids.  相似文献   

17.
Trihydroxy and tetrahydroxy bile acid metabolites substituted at the C-1 or C-6 position were studied using the urine, serum and liver tissue from sixteen patients with cholestatic liver diseases. Following extraction, isolation and hydrolysis, bile acids were converted into the dimethylethylsilyl derivatives and assayed by capillary gas chromatography—mass spectrometry. Five 1β-hydroxylated bile acids, viz. 1β,3α,12α-trihydroxy-, 1β,3α,7β-trihydroxy-1, 1β,3α,7α,12α-tetrahydroxy-5β-cholanoic acids and an epimer of the first compound, and two 6α-hydroxylated bile acids, viz. 3α,6α,7α-trihydroxy-, 3α,6α,7α,12α-tetrahydroxy-5β-cholanoic acids, were completely or partially identified. Large amounts of 1β-hydroxylated and 6α-hydroxylated bile acids were found in the urine, whereas only trace amounts were detected in the serum and liver tissue. These findings indicate that altered metabolism, such as 1β- or 6α-hydroxylation of bile acids, is enhanced in cholestasis, and that the resulting hydroxylated metabolites are eliminated in the urine.  相似文献   

18.
Clostridium sp. strain S1, an unnamed bile acid-desulfating strain from rat intestinal microflora (S.M. Huijghebaert, J. A. Mertens, and H. J. Eyssen, Appl. Environ. Microbiol. 43:185-192, 1982), was examined for its ability to desulfate different bile acid sulfates and steroid sulfates in growing cultures. Clostridium sp. strain S1 desulfated the 3 alpha-monosulfates of chenodeoxycholic, deoxycholic, and cholic acid, but not their 7 alpha- or 12 alpha-monosulfates. Among the 3-sulfates of the 5 alpha- and 5 beta-bile acids, only bile acid-3-sulfates with an equatorial sulfate group were desulfated. Hence, Clostridium sp. strain S1 desulfated the 3-sulfates of bile acids with a 3 alpha, 5 beta-, a 3 beta, 5 alpha- or a 3 beta, delta 5-structure. In contrast, the bile acid-3-sulfates with a 3 beta, 5 beta- or a 3 alpha, 5 alpha-structure were not desulfated. In addition, Clostridium sp. strain S1 did not hydrolyze the equatorial 3-sulfate esters of C19 and C21 steroids and cholesterol or the phenolic 3-sulfate esters of estrone and estradiol. 23-Nordeoxycholic acid with a C-23 carboxyl group was also not desulfated, in contrast to the 5 beta-bile acid 3 alpha-sulfates with a C-24 or C-26 carboxyl group. Therefore, the specificity of the sulfatase of Clostridium sp. strain S1 is related to the location of the sulfate group on the bile acid molecule, the equatorial orientation of the sulfate group, and the structure of the C-17 side chain, its carboxyl group, and chain length.  相似文献   

19.
Pure performylated bile acids are obtained in quantitative yield by anew formylation procedure. The procedure involves heating the bile acids in 90% formic acid containing catalytic amount of perchloric acid and then adding acetic anhydride slowly until effervescence occurs. Pure performylated bile acids are then isolated simply by diluting the reaction mixture with water. Contrary to what was believed by past investigations, the formyl groups on these compounds are quite stable to various reaction conditions. The stability and ready availability of these compounds make them more suitable candidates than their counterpart—bile acid acetates for use as starting material in various synthetic schemes, such as C-24 labeled bile acids, etc. The partial deformylation of these formates can be effected by using methanolic ammonia, sodium methoxide in methanol, or sodium hydroxide in aqueous acetone. The resulting 3-hydroxy formyl bile acids are obtained in high yield and are the best starting materials for the synthesis of bile acids with specific modification at 3-hydroxyl group, such as the synthesis of bile acid 3-monosulfates and 3-monoglucuronides.  相似文献   

20.
Bile formation and its canalicular secretion are essential functions of the mammalian liver. The sister-of-p-glycoprotein (spgp) gene was shown to encode the canalicular bile salt export protein, and mutations in spgp gene were identified as the cause of progressive familial intrahepatic cholestasis type 2. However, target inactivation of spgp gene in mice results in nonprogressive but persistent cholestasis and causes the secretion of unexpectedly large amounts of unknown tetrahydroxylated bile acid in the bile. The present study confirms the identity of this tetrahydroxylated bile acid as 3 alpha,6 beta,7 beta,12 alpha-tetrahydroxy-5 beta-cholan-24-oic acid. The data further show that in serum, liver, and urine of the spgp knockout mice, there is a significant increase in the concentration of total bile salts containing a large amount of tetrahydroxy-5 beta-cholan-24-oic acid. The increase in total bile acids was associated with up-regulation of the mRNA of cholesterol 7 alpha-hydroxylase in male mice only. It is suggested that the lower severity of the cholestasis in the spgp knockout mice may be due to the synthesis of 3 alpha,6 beta,7 beta,12 alpha-tetrahydroxy-5 beta-cholan-24-oic acid, which neutralizes in part the toxic effect of bile acids accumulated in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号