首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
We have conducted molecular population genetics analyses to understand the relationships among the transposable elements (TEs) in Drosophila melanogaster, in combination with sequence comparisons of TEs from two related species, D. simulans and D. yakuba. We observed much lower than expected genetic differences among elements, clear evidence for departure from expectations for equilibrium copy numbers and little divergence between species. This suggests that a large proportion of TEs in D. melanogaster had a recent origin as a result of interspecies movement.  相似文献   

2.
Transposable elements (TEs) are the primary contributors to the genome bulk in many organisms and are major players in genome evolution. A clear and thorough understanding of the population dynamics of TEs is therefore essential for full comprehension of the eukaryotic genome evolution and function. Although TEs in Drosophila melanogaster have received much attention, population dynamics of most TE families in this species remains entirely unexplored. It is not clear whether the same population processes can account for the population behaviors of all TEs in Drosophila or whether, as has been suggested previously, different orders behave according to very different rules. In this work, we analyzed population frequencies for a large number of individual TEs (755 TEs) in five North American and one sub-Saharan African D. melanogaster populations (75 strains in total). These TEs have been annotated in the reference D. melanogaster euchromatic genome and have been sampled from all three major orders (non-LTR, LTR, and TIR) and from all families with more than 20 TE copies (55 families in total). We find strong evidence that TEs in Drosophila across all orders and families are subject to purifying selection at the level of ectopic recombination. We showed that strength of this selection varies predictably with recombination rate, length of individual TEs, and copy number and length of other TEs in the same family. Importantly, these rules do not appear to vary across orders. Finally, we built a statistical model that considered only individual TE-level (such as the TE length) and family-level properties (such as the copy number) and were able to explain more than 40% of the variation in TE frequencies in D. melanogaster.  相似文献   

3.
Patrizio Dimitri 《Genetica》1997,100(1-3):85-93
Several families of transposable elements (TEs), most of them belonging to the retrotransposon catagory, are particularly enriched in Drosophila melanogaster constitutive heterochromatin. The enrichment of TE-homologous sequences into heterochromatin is not a peculiar feature of the Drosophila genome, but appears to be widespread among higher eukaryotes. The constitutive heterochromatin of D. melanogaster contains several genetically active domains; this raises the possibility that TE-homologous sequences inserted into functional heterochromatin compartments may be expressed. In this review, I present available data on the genetic and molecular organization of D. melanogaster constitutive heterochromatin and its relationship with transposable elements. The implications of these findings on the possible impact of heterochromatic TEs on the function and evolution of the host genome are also discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
5.
We have investigated at the molecular level four cases in which D. melanogaster middle repetitive DNA probes consistently hybridized to a particular band on chromosomes sampled from a D. melanogaster natural population. Two corresponded to true fixations of a roo and a Stalker element, and the others were artefacts of the in situ hybridization technique caused by the presence of genomic DNA flanking the transposable elements (TEs) in the probes. The two fixed elements are located in the beta-heterochromatin (20A and 80B, respectively) and are embedded in large clusters of other elements, many of which may also be fixed. We also found evidence that this accumulation is an ongoing process. These results support the hypothesis that TEs accumulate in the non-recombining part of the genome. Their implications for the effects of TEs on determining the chromatin structure of the host genomes are discussed in the light of recent evidence for the role of TE-derived small interfering-RNAs as cis -acting determinants of heterochromatin formation.  相似文献   

6.
7.
It is recognized that a stable number of transposable element (TE) copies per genome is maintained in natural populations of D. melanogaster as a result of the dynamic equilibrium between transposition to new sites and natural selection eliminating copies. The force of natural selection opposing TE multiplication is partly relaxed in inbred laboratory lines of flies. The average rate of TE transposition is from 2.6 × 10 -4 to 5.0 ×10 -4 per copy per generation, and the average rate of excision is at least two orders of magnitude lower; therefore inbred lines accumulate increasing numbers of copies with time. Correlations between the rate of transposition and TE copy number have been determined for copia, Doc, roo, and 412 and found to be either zero or positive. Because the rate of transposition is not a decreasing function of TE copy number, TE accumulation in inbred lines is self-accelerating. Transpositions cause a substantial fraction of mutations in D. melanogaster, therefore the mutation rate should increase with time in laboratory lines of this species. Inferences about the properties of spontaneous mutations from studies of mutation accumulation in laboratory lines should be reevaluated, because they are based on the assumption of a constant mutation rate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
We recently proposed that patterns of evolution of non-LTR retrotransposable elements can be used to study patterns of spontaneous mutation. Transposition of non-LTR retrotransposable elements commonly results in creation of 5' truncated, "dead-on-arrival" copies. These inactive copies are effectively pseudogenes and, according to the neutral theory, their molecular evolution ought to reflect rates and patterns of spontaneous mutation. Maximum parsimony can be used to separate the evolution of active lineages of a non-LTR element from the fate of the "dead-on-arrival" insertions and to directly assess the relative frequencies of different types of spontaneous mutations. We applied this approach using a non-LTR element, Helena, in the Drosophila virilis group and have demonstrated a surprisingly high incidence of large deletions and the virtual absence of insertions. Based on these results, we suggested that Drosophila in general may exhibit a high rate of spontaneous large deletions and have hypothesized that such a high rate of DNA loss may help to explain the puzzling dearth of bona fide pseudogenes in Drosophila. We also speculated that variation in the rate of spontaneous deletion may contribute to the divergence of genome size in different taxa by affecting the amount of superfluous "junk" DNA such as, for example, pseudogenes or long introns. In this paper, we extend our analysis to the D. melanogaster subgroup, which last shared a common ancestor with the D. virilis group approximately 40 MYA. In a different region of the same transposable element, Helena, we demonstrate that inactive copies accumulate deletions in species of the D. melanogaster subgroup at a rate very similar to that of the D. virilis group. These results strongly suggest that the high rate of DNA loss is a general feature of Drosophila and not a peculiar property of a particular stretch of DNA in a particular species group.   相似文献   

9.
Summary A 190 by insertion is associated with the white-eosin mutation in Drosophila melanogaster. This insertion is a member of a family of transposable elements, pogo elements, which is of the same class as the P and hobo elements of D. melanogaster. Strains typically have many copies of a 190 by element, 10–15 elements 1.1–1.5 kb in size and several copies of a 2.1 kb element. The smaller elements all appear to be derived from the largest by single internal deletions so that all elements share terminal sequences. They either always insert at the dinucleotide TA and have perfect 21 bp terminal inverse repeats, or have 22 by inverse repeats and produce no duplication upon insertion. Analysis by DNA blotting of their distribution and occupancy of insertion sites in different strains suggests that they may be less mobile than P or hobo. The DNA sequence of the largest element has two long open reading frames on one strand which are joined by splicing as indicated by cDNA analysis. RNAs of this strand are made, whose sizes are similar to the major size classes of elements. A protein predicted by the DNA sequence has significant homology with a human centrosomal-associated protein, CENP-B. Homologous sequences were not detected in other Drosophila species, suggesting that this transposable element family may be restricted to D. melanogaster.  相似文献   

10.
11.
Evolutionary theory predicts that the rate and level of adaptation will be enhanced in sexual relative to asexual genomes because sexual recombination facilitates the elimination of deleterious mutations and the fixation of beneficial ones by natural selection. To date, the most compelling evidence for this prediction comes from experimental evolution studies and from loci completely lacking recombination, such as those on Y chromosomes, which often show reduced adaptation and even degeneration. Here, by analyzing replacement and silent DNA polymorphism and divergence at 98 loci, I show that recombination increases the efficacy of protein adaptation throughout the genome of the fruit fly Drosophila melanogaster. Genes residing in genomic regions with reduced recombination rates suffer a greater load of segregating, mildly deleterious mutations and fix fewer beneficial mutations than genes residing in regions with higher recombination rates. These findings suggest that the capacity to respond to natural selection varies with recombination rate across the genome, consistent with theory on the evolutionary advantages of sex and recombination.  相似文献   

12.
A combination of cytogenetic and molecular analyses has shown that several different transposable elements are involved in the restructuring of Drosophila chromosomes. Two kinds of elements, P and hobo, are especially prone to induce chromosome rearrangements. The mechanistic details of this process are unclear, but, at least some of the time, it seems to involve ectopic recombination between elements inserted at different chromosomal sites; the available data suggest that these ectopic recombination events are much more likely to occure between elements in the same chromosome than between elements in different chromosomes. Other Drosophila transposons also appear to mediate chromosome restructuring by ectopic recombination; these include the retrotransposons BEL, roo, Docand I and the foldback element FB. In addition, two retrotransposons, HeT-A and TART, have been found to be associated specifically with the ends of Drosophila chromosomes. Very limited data indicate that transposon-mediated chromosome restructuring is occurring in natural populations of Drosophila. This suggests that transposable elements may help to shape the structure of the Drosophila genome and implies that they may have a similar role in other organisms.  相似文献   

13.
The P transposable element family in Drosophila melanogaster is responsible for the syndrome of hybrid dysgenesis which includes chromosomal rearrangements, male recombination, high mutability and temperature sensitive agametic sterility (called gonadal dysgenesis sterility). P element activity is controlled by a complex regulation system, encoded by the elements themselves, which keeps their transposition rate low within the strain bearing P elements and limits copy number by genome. A second regulatory mechanism, which acts on the level of RNA processing, prevents P mobility to somatic cells. The oldest available strains, representing most major geographical regions of the world, exhibited no detectable hybridization to the P-element. In contrast, all recently collected natural populations that were tested carried P-element sequences. The available evidence is consistent with the hypothesis of a worldwide P-element invasion of D. melanogaster during the past 30 years. Timing and direction of the invasion are discussed. The lack of P-element in older strains of Drosophila melanogaster as well as in the species must closely related to Drosophila melanogaster, suggests that P entered the Drosophila melanogaster genome recently, probably by horizontal transfer from an other species. The analysis of P-element elsewhere in the genus Drosophila reveals that several more distantly related species carried transposable elements with sequences quite similar to P. The species with the best-matching P-element is D. willistoni. A P-element from this species was found to match all but one of the 2907 nucleotides of the Drosophila melanogaster P-element. The phylogenic distributions and the likely horizontal transfers of the two other Drosophila transposable elements are discussed.  相似文献   

14.
Urasaki A  Mito T  Noji S  Ueda R  Kawakami K 《Gene》2008,425(1-2):64-68
The Tol2 element is a transposon found from a genome of a vertebrate, a small teleost medaka fish. Tol2 encodes a gene for a transposase which is active in vertebrate animals so far tested; for instance, in fish, frog, chicken and mammals, and transgenesis methods using Tol2 have been developed in these model vertebrates. However, it has not been known whether Tol2 can transpose in animals other than vertebrates. Here we report transposition of Tol2 in an invertebrate Drosophila melanogaster. First, we injected a transposon donor plasmid containing a Tol2 construct and mRNA encoding the Tol2 transposase into Drosophila eggs, and found that the Tol2 construct could be excised from the plasmid. Second, we crossed the injected flies, raised the offspring, and found that the Tol2 construct was integrated into the genome of germ cells and transmitted to the next generation. Finally, we constructed a Tol2 construct containing the white gene and injected the transposon donor plasmid and the transposase mRNA into fertilized eggs from the white mutant. We analyzed their offspring, and found that G1 flies with wild type red eyes could be obtained from 35% of the injected fly. We cloned and sequenced 34 integration loci from these lines and showed that these insertions were indeed created through transposition and distributed throughout the genome. Our present study demonstrates that the medaka fish Tol2 transposable element does not require vertebrate-specific host factors for its transposition, and also provides a possibility that Tol2 may be used as a new genetic tool for transgenesis and genome analysis in Drosophila.  相似文献   

15.
Transposable elements are disproportionately abundant in the heterochromatin of Drosophila melanogaster. Among the forces contributing to this bias in genomic distribution, fixation due to positive selection has been put forward. We have studied I-related elements which are located in pericentromeric heterochromatin and are believed to have a role in the control of active I elements. Flies straight from the wild have been studied where fixed elements are expected to emerge clearly over the highly polymorphic background in the genomic distribution of transposable elements. The results show that some restriction fragments due to I-related elements are conserved in size and are present in all individuals tested, consistent with a selective pressure for a role. Other fragments are polymorphic in presence/absence and intensity in individuals from the wild but appear homogeneous in laboratory stocks. Although the significance of this type of instability is unclear, the finding that these polymorphic bands are recurrent in populations from distant geographical locations is also suggestive of a selective pressure for a role.  相似文献   

16.
17.
The Drosophila melanogaster transposable element 412 is transiently unstable in Saccharomyces cerevisiae when present on a freely replicating plasmid. The 412 element undergoes recombination to form two circular molecules, a 412 deletion plasmid and, presumably, a 412 circle. The 412 deletion plasmid contains a single long terminal repeat which most likely is the result of homologous recombination within the long terminal repeats. This recombination occurs at or shortly after transformation and is independent of both the RAD52 gene product and the Flp gene of 2 micron DNA.  相似文献   

18.
Summary Mitomycin C was injected into the abdomen of male flies of the y 2 sc1 waG strain of Drosophila melanogaster. They were mated with females bearing attached-X chromosomes, and the male offspring (F1) were analysed for the appearance of mutations in the X chromosome. We observed y 1 and sc + reversions induced either by excision of mdg4 (gypsy) with retention of one long terminal repeat (LTR) or by insertion of a foreign sequence into mdg4, partial reversion of the w aG mutation, w aGw aGd, and unstable f mutations. The overall mutation frequency was considerably higher than in control flies of the y 2 sc1 waG strain. Possible mechanisms of genomic rearrangements induced by Mitomycin C, in particular the role of homologous recombination, are discussed.  相似文献   

19.
Kim YJ  Hice RH  O'Brochta DA  Atkinson PW 《Genetica》2011,139(8):985-997
We have conducted a structure and functional analysis of the hobo transposable element of Drosophila melanogaster. A minimum of 141 bp of the left (L) end and 65 bp of the right (R) end of the hobo were shown to contain sequences sufficient for transposition. Both ends of hobo contain multiple copies of the motifs GGGTG and GTGGC and we show that the frequency of hobo transposition increases as a function of the copy number of these motifs. The R end of hobo contains a unique 12 bp internal inverted repeat that is identical to the hobo terminal inverted repeats. We show that this internal inverted repeat suppresses transposition activity in a hobo element containing an intact L end and only 475 bp of the R end. In addition to establishing cis-sequences requirements for transposition, we analyzed trans-sequence effects of the hobo transposase. We show a hobo transposase lacking the first 49 amino acids catalyzed hobo transposition at a higher frequency than the full-length transposase suggesting that, similar to the related Ac transposase, residues at the amino end of the transposase reduce transposition. Finally, we compared target site sequences of hobo with those of the related Hermes element and found both transposons have strong preferences for the same insertion sites.  相似文献   

20.
Genomic patterns of occurrence of the transposable element hobo are polymorphic in the sibling species Drosophila melanogaster and D. simulans. Most tested strains of both species have apparently complete (3.0 kb) and smaller hobo elements (H lines), but in both species some strains completely lack such canonical hobo elements (E lines). The occurrence of H and E lines in D. simulans as well as in D. melanogaster implies that an hypothesis of recent introduction in the latter species is inadequate to explain the phylogenetic occurrence of hobo. Particular internally deleted elements, the approximately 1.5 kb Th1 and Th2 elements, are abundant in many lines of D. melanogaster, and an analogous 1.1 kb internally deleted element, h del sim, is abundant in most lines of D. simulans. Besides the canonical hobo sequences, both species (and their sibling species D. sechellia and D. mauritiana) have many hobo-hybridizing sequences per genome that do not appear to be closely related to the canonical hobo sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号