首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present for the first time a microfluidic cell culture array for long-term cellular monitoring. The 10 x 10 array could potentially assay 100 different cell-based experiments in parallel. The device was designed to integrate the processes used in typical cell culture experiments on a single self-contained microfluidic system. Major functions include repeated cell growth/passage cycles, reagent introduction, and real-time optical analysis. The single unit of the array consists of a circular microfluidic chamber, multiple narrow perfusion channels surrounding the main chamber, and four ports for fluidic access. Human carcinoma (HeLa) cells were cultured inside the device with continuous perfusion of medium at 37 degrees C. The observed doubling time was 1.4 +/- 0.1 days with a peak cell density of approximately 2.5*10(5) cells/cm(2). Cell assay was demonstrated by monitoring the fluorescence localization of calcein AM from 1 min to 10 days after reagent introduction. Confluent cell cultures were passaged within the microfluidic chambers using trypsin and successfully regrown, suggesting a stable culture environment suitable for continuous operation. The cell culture array could offer a platform for a wide range of assays with applications in drug screening, bioinformatics, and quantitative cell biology.  相似文献   

2.
Hepatocellular carcinoma (HCC) treatments are evaluated by two-dimensional (2D) in vitro culture systems, despite their limited ability to predict drug efficacy. The three-dimensional (3D) microporous scaffold provides the possibility of generating more reliable preclinical models to increase the efficacy of cancer treatments. The physical properties of a microporous cellulosic scaffold were evaluated. The cellulosic scaffold was biocompatible and had a highly porous network with appropriate pore size, swelling rate, and stiffness of cancer cell cultures. Cellulosic scaffolds were compared with 2D polystyrene for the culture of HepG2 and Huh7 human HCC cells. Cellulosic scaffolds promoted tumor spheroid formation. Cells cultured on scaffolds were more resistant to chemotherapy drugs and showed upregulation of EpCAM and Oct4. The migration ability of HCC cells cultured on scaffolds was significantly greater than that of cells grown in 2D cultures as evidenced by the downregulation of E-cadherin. In addition, the proportion of CD44+/CD133+ HCC cancer stem cells (CSCs) was significantly greater in cells cultured on scaffolds than in those grown in 2D cultures. These findings suggest that cellulosic scaffolds effectively mimic the in vivo tumor behavior and may serve as a platform for the study of anticancer therapeutics and liver CSCs.  相似文献   

3.
This protocol describes a simple but robust microfluidic assay combining three-dimensional (3D) and two-dimensional (2D) cell culture. The microfluidic platform comprises hydrogel-incorporating chambers between surface-accessible microchannels. By using this platform, well-defined biochemical and biophysical stimuli can be applied to multiple cell types interacting over distances of <1 mm, thereby replicating many aspects of the in vivo microenvironment. Capabilities exist for time-dependent manipulation of flow and concentration gradients as well as high-resolution real-time imaging for observing spatial-temporal single-cell behavior, cell-cell communication, cell-matrix interactions and cell population dynamics. These heterotypic cell type assays can be used to study cell survival, proliferation, migration, morphogenesis and differentiation under controlled conditions. Applications include the study of previously unexplored cellular interactions, and they have already provided new insights into how biochemical and biophysical factors regulate interactions between populations of different cell types. It takes 3 d to fabricate the system and experiments can run for up to several weeks.  相似文献   

4.
Epidermal growth factor receptor (EGFR) is a valid drug target for development of target-based therapeutics against non-small-cell lung cancer. In this study, we established a high-throughput cell-based assay to screen for compounds that may inhibit EGFR activation and/or EGFR-mediated downstream signaling pathway. This drug screening platform is based on the characterization of an EGFR-transfected 32D cell line (32D-EGFR). The expression of EGFR in 32D cells allowed cell proliferation in the presence of either epidermal growth factor (EGF) or interleukin 3 (IL-3) and provided a system for both screening and counterscreening of EGFR pathway-inhibitory compounds. After the completion of primary and secondary screenings in which 32D-EGFR cells were grown under the stimulation of either EGF or IL-3, 9 of 20,000 compounds were found to selectively inhibit the EGF-dependent proliferation, but not the IL-3-dependent proliferation, of 32D-EGFR cells. Subsequent analysis showed that 3 compounds of the 9 initial hits directly inhibited the kinase activity of recombinant EGFR in vitro and the phosphorylation of EGFR in H1299 cells transfected with EGFR. Thus, this 32D-EGFR assay system provides a promising approach for identifying novel EGFR and EGFR signaling pathway inhibitors with potential antitumor activity.  相似文献   

5.
Since the 1970s, the limitations of two dimensional (2D) cell culture and the relevance of appropriate three dimensional (3D) cell systems have become increasingly evident. Extensive effort has thus been made to move cells from a flat world to a 3D environment. While 3D cell culture technologies are meanwhile widely used in academia, 2D culture technologies are still entrenched in the (pharmaceutical) industry for most kind of cell-based efficacy and toxicology tests. However, 3D cell culture technologies will certainly become more applicable if biological relevance, reproducibility and high throughput can be assured at acceptable costs. Most recent innovations and developments clearly indicate that the transition from 2D to 3D cell culture for industrial purposes, for example, drug development is simply a question of time.  相似文献   

6.
Conventional two‐dimensional cultures in monolayer and sandwich configuration have been used as a model for in vitro drug testing. However, these culture configurations do not present the actual in vivo liver cytoarchitecture for the hepatocytes cultures and thus they may compromise the cells liver‐specific functions and their cuboidal morphology over longer term culture. In this study, we present a three‐dimensional polydimethylsiloxane (PDMS) scaffold with interconnected spherical macropores for the culturing of rat liver cells (hepatocytes). The scaffolds were integrated into our perfusion enhanced bioreactor to improve the nutrients and gas supply for cell cultures. The liver‐specific functions of the cell culture were assessed by their albumin and urea production, and the changes in the cell morphology were tracked by immunofluorescence staining over 9 days of culture period. N‐Acetyl‐Para‐Amino‐Phenol (acetaminophen) was used as drug model to investigate the response of cells to drug in our scaffold‐bioreactor system. Our experimental results revealed that the perfusion enhanced PDMS‐based scaffold system provides a more conducive microenvironment with better cell‐to‐cell contacts among the hepatocytes that maintains the culture specific enzymatic functions and their cuboidal morphology during the culturing period. The numerical simulation results further showed improved oxygen distribution within the culturing chamber with the scaffold providing an additional function of shielding the cell cultures from the potentially detrimental fluid induced shear stresses. In conclusion, this study could serve a crucial role as a platform for future preclinical hepatotoxicity testing. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:418–428, 2014  相似文献   

7.
A class of 5-lipoxygenase (5-LO) inhibitors characterized by a central 5-benzylidene-2-phenyl-thiazolinone scaffold was synthesized as a new series of molecular modifications and extensions of a previously reported series. Compounds were tested in a cell-based and a cell-free assay and furthermore evaluated for their influence on cell viability. The presented substituted thiazolinone scaffold turned out to be essential for both the 5-LO inhibitory activity and the non-cytotoxic profile. With (Z)-5-(4-methoxybenzylidene)-2-(naphthalen-2-yl)-5H-thiazol-4-one (2k, ST1237), a potent, direct, non-cytotoxic 5-LO inhibitor with IC(50) of 0.08 μM and 0.12 μM (cell-free assay and intact cells), we present a promising lead optimization and development for further investigations as novel anti-inflammatory drug.  相似文献   

8.
AIM: To evaluate adhesion, proliferation and differentiation of human dental pulp stem cells (hDPSCs) on four commercially available scaffold biomaterials.METHODS: hDPSCs were isolated from human dental pulp tissues of extracted wisdom teeth and established in stem cell growth medium. hDPSCs at passage 3-5 were seeded on four commercially available scaffold biomaterials, SureOss (Allograft), Cerabone (Xenograft), PLLA (Synthetic), and OSTEON II Collagen (Composite), for 7 and 14 d in osteogenic medium. Cell adhesion and morphology to the scaffolds were evaluated by scanning electron microscopy (SEM). Cell proliferation and differentiation into osteogenic lineage were evaluated using DNA counting and alkaline phosphatase (ALP) activity assay, respectively.RESULTS: All scaffold biomaterials except SureOss (Allograft) supported hDPSC adhesion, proliferation and differentiation. hDPSCs seeded on PLLA (Synthetic) scaffold showed the highest cell proliferation and attachment as indicated with both SEM and DNA counting assay. Evaluating the osteogenic differentiation capability of hDPSCs on different scaffold biomaterials with ALP activity assay showed high level of ALP activity on cells cultured on PLLA (Synthetic) and OSTEON II Collagen (Composite) scaffolds. SEM micrographs also showed that in the presence of Cerabone (Xenograft) and OSTEON II Collagen (Composite) scaffolds, the hDPSCs demonstrated the fibroblastic phenotype with several cytoplasmic extension, while the cells on PLLA scaffold showed the osteoblastic-like morphology, round-like shape.CONCLUSION: PLLA scaffold supports adhesion, proliferation and osteogenic differentiation of hDPSCs. Hence, it may be useful in combination with hDPSCs for cell-based reconstructive therapy.  相似文献   

9.
Cardiac tissue engineering has evolved as a potential therapeutic approach to assist in cardiac regeneration. We have recently shown that tissue-engineered cardiac graft, constructed from cardiomyocytes seeded within an alginate scaffold, is capable of preventing the deterioration in cardiac function after myocardial infarction in rats. The present article addresses cell seeding within porous alginate scaffolds in an attempt to achieve 3D high-density cardiac constructs with a uniform cell distribution. Due to the hydrophilic nature of the alginate scaffold, its >90% porosity and interconnected pore structure, cell seeding onto the scaffold was efficient and short, up to 30 min. Application of a moderate centrifugal force during cell seeding resulted in a uniform cell distribution throughout the alginate scaffolds, consequently enabling the loading of a large number of cells onto the 3D scaffolds. The percent cell yield in the alginate scaffolds ranged between 60-90%, depending on cell density at seeding; it was 90% at seeding densities of up to 1 x 10(8) cells/cm(3) scaffold and decreased to 60% at higher densities. The highly dense cardiac constructs maintained high metabolic activity in culture. Scanning electron microscopy revealed that the cells aggregated within the scaffold pores. Some of the aggregates were contracting spontaneously within the matrix pores. Throughout the culture there was no indication of cardiomyocyte proliferation within the scaffolds, nor was it found in 3D cultures of cardiofibroblasts. This may enable the development of cardiac cocultures, without domination of cardiofibroblasts with time.  相似文献   

10.
Cell behaviours such as proliferation and attachment can be affected by the length of pre-incubation period of the scaffolds in the culture medium for long term. The aim of this study was to investigate the long term pre-incubation of 3D silk fibroin scaffolds in complete culture medium on cell attachment and proliferation. After the preparation of silk fibroin scaffolds by the technique of freeze drying, the scaffolds were pre-incubated in complete culture medium for 2 d, 6 d or 10 d before apical papilla stem cells (SCAP) seeding. Modifications of the scaffold surface and wettability were examined by FE-SEM and water contact angle, respectively. Results showed a decrease both in roughness and water contact angle as pre-incubation time increases. DNA measurement after 18 h and 10 d cell seeding showed a significant increase of DNA concentration which represents better attachment and proliferation with pre-incubation time increase. Qualitative examination, live&dead assay or H&E staining method after 30 h and 10 d cell seeding respectively, indicated that pre-incubation of scaffolds has time dependent effect on cell proliferation and attachment. This suggests that improvement of cell attachment and proliferation may be mediated by differences in the amount of wettability (decreased water contact angle) after exposure of scaffold to culture medium for long term which, in turn, causes more protein adsorption in the surface of silk fibroin scaffold (decreased roughness).  相似文献   

11.
ABSTRACT:?

Precise control of the architecture of multiple cells in culture and in vivo via precise engineering of the material surface properties is described as cell patterning. Substrate patterning by control of the surface physicochemical and topographic features enables selective localization and phenotypic and genotypic control of living cells. In culture, control over spatial and temporal dynamics of cells and heterotypic interactions draws inspiration from in vivo embryogenesis and haptotaxis. Patterned arrays of single or multiple cell types in culture serve as model systems for exploration of cell-cell and cell-matrix interactions. More recently, the patterned arrays and assemblies of tissues have found practical applications in the fields of Biosensors and cell-based assays for Drug Discovery. Although the field of cell patterning has its origins early in this century, an improved understanding of cell-substrate interactions and the use of microfabrication techniques borrowed from the microelectronics industry have enabled significant recent progress. This review presents the important early discoveries and emphasizes results of recent state-of-the-art cell patterning methods. The review concludes by illustrating the growing impact of cell patterning in the areas of bioelectronic devices and cell-based assays for drug discovery.  相似文献   

12.
The lack of prediction accuracy during drug development and screening risks complications during human trials, such as drug‐induced liver injury (DILI), and has led to a demand for robust, human cell‐based, in vitro assays for drug discovery. Microporous polymer‐based scaffolds offer an alternative to the gold standard flat tissue culture plastic (2D TCPS) and other 3D cell culture platforms as the porous material entraps cells, making it advantageous for automated liquid handlers and high‐throughput screening (HTS). In this study, we optimized the surface treatment, pore size, and choice of scaffold material with respect to cellular adhesion, tissue organization, and expression of complex physiologically relevant (CPR) outcomes such as the presence of bile canaliculi‐like structures. Poly‐l‐ lysine and fibronectin (FN) coatings have been shown to encourage cell attachment to the underlying substrate. Treatment of the scaffold surface with NaOH followed with a coating of FN improved cell attachment and penetration into pores. Of the two pore sizes we investigated (A: 104 ± 4 μm; B: 175 ± 6 μm), the larger pore size better promoted cell penetration while limiting tissue growth from reaching the hypoxia threshold. Finally, polystyrene (PS) proved to be conducive to cell growth, penetration into the scaffold, and yielded CPR outcomes while being a cost‐effective choice for HTS applications. These observations provide a foundation for optimizing microporous polymer‐based scaffolds suitable for drug discovery. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:505–514, 2018  相似文献   

13.
Three-dimensional (3D) tumor has been considered as the best in vitro model for cancer research. In recent years, various methods have been developed to controllable prepare multisize 3D tumors. Nonetheless, reported technologies are still problematic and difficult to produce 3D tumors with highly uniform size and cell content. Here, a novel and simple microsphere-based mold approach is proposed to rapidly fabricate spherical microwell arrays for multisize 3D tumors formation, culture, and recovery. Larger amounts of HepG2 3D tumors with excellent quality and uniformity can be efficiently generated using this method. In addition, the tumor size can also be simply controlled by adjusting the diameter of the microwell arrays. All experimental results indicated that the proposed method offers a promising platform to generate and recover highly controlled multisize 3D tumors for various cell-based biomedical research.  相似文献   

14.
The development of a suitable three dimensional (3D) culture system for anticancer drug development remains an unmet need. Despite progress, a simple, rapid, scalable and inexpensive 3D-tumor model that recapitulates in vivo tumorigenesis is lacking. Herein, we report on the development and characterization of a 3D nanofibrous scaffold produced by electrospinning a mixture of poly(lactic-co-glycolic acid) (PLGA) and a block copolymer of polylactic acid (PLA) and mono-methoxypolyethylene glycol (mPEG) designated as 3P. Cancer cells cultured on the 3P scaffold formed tight irregular aggregates similar to in vivo tumors, referred to as tumoroids that depended on the topography and net charge of the scaffold. 3P scaffolds induced tumor cells to undergo the epithelial-to-mesenchymal transition (EMT) as demonstrated by up-regulation of vimentin and loss of E-cadherin expression. 3P tumoroids showed higher resistance to anticancer drugs than the same tumor cells grown as monolayers. Inhibition of ERK and PI3K signal pathways prevented EMT and reduced tumoroid formation, diameter and number. Fine needle aspirates, collected from tumor cells implanted in mice when cultured on 3P scaffolds formed tumoroids, but showed decreased sensitivity to anticancer drugs, compared to tumoroids formed by direct seeding. These results show that 3P scaffolds provide an excellent platform for producing tumoroids from tumor cell lines and from biopsies and that the platform can be used to culture patient biopsies, test for anticancer compounds and tailor a personalized cancer treatment.  相似文献   

15.
Cell-based high throughput proliferation and cytotoxicity assays are increasingly used in drug screening and bioprocess development. However, online monitoring of cell proliferation, pH, and dissolved oxygen (DO) has been a challenge in 3D cell-based assays. In this work, a 40-microwell bioreactor (40-MBR) system was developed from a 384-well plate for real-time, noninvasive monitoring of pH, DO, and cell proliferation in 3D microenvironments. Chinese hamster ovary (CHO) and MCF-07 breast cancer cells cultured in 40-MBR confirmed that the 40-MBR was capable of simultaneously monitoring DO and cell proliferation based on culture fluorescence and pH by measuring the absorbance of phenol red. Cytotoxicity studies of sodium butyrate on CHO cells demonstrated that 40-MBR with dynamic background fluorescence correction gave more reliable and highly reproducible growth kinetic data compared to conventional multiwells with static background correction. Furthermore, the dosage effects of two new anticancer drug candidates, 5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(E)-2-phenylethenyl]-3,4-dihydro-2H-1-benzopyran-4-one (DH-8P-DB) and 5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(E)-2-phenylethenyl]-3,4-dihydro-2H-1-benzopyran-4-one (DH-6P-DB), on HT-29 colon cancer cells were assessed using the 40-MBR, and the results indicated that DH-6P-DB would be a more potent drug in treating colon cancer than DH-8P-DB. These studies demonstrated that 40-MBR could serve as a high throughput platform for screening potential cancer drugs in early-stage drug discovery.  相似文献   

16.
Tissue engineering is a new strategy which proposed to treat numerous human diseases nowadays. Three dimensional (3D) scaffolds fill the gap between two dimensional cell culture (2D) and animal tissues through mimicking the environmental behaviors surrounding the cells. In this study, hUCMs into insulin producing cells in fibrin scaffold were differentiated compare to conventional culture condition. Differentiation rate was estimated by real time PCR, immunocytochemistry (ICC) and the chemiluminesence (CLIA) and enzyme immunoassay (EIA). Real time PCR's results showed an increasing expression in NKX2.2, PDX1 and INS (producing the hormone insulin) genes in fibrin scaffold. Furthermore ICC analysis exhibited that insulin and pro-insulin proteins were more in fibrin scaffolds. CLIA and EIA on insulin and C peptide secretion indicated that both of groups were sensitive to the glucose challenge test but significant higher response was observed in fibrin scaffold (6.5 fold in 3D, 1.8 fold in 2D culture). It could be concluded that differentiation of hUCM cells into insulin producing cells in fibrin scaffold 3D culture system is much more efficient than 2D conventional culture system.  相似文献   

17.
Due to a poor clinical predictive power of 2D cell cultures, standard tool for in vitro assays in drug discovery process, there is increasing interest in developing 3D in vitro cell cultures, biologically relevant assay feasible for the development of robust preclinical anti-cancer drug screening platforms. Herein, we tested amidino-substituted benzimidazoles and benzimidazo[1,2-a]quinolines as a small platform for comparison of antitumor activity in 2D and 3D cell culture systems and correlation with structure–activity relationship. 3D cell culture method was applied on a human cancer breast (SK-BR-3, MDA-MB-231, T-47D) and pancreatic cancer cells (MIA PaCa-2, PANC-1). Results obtained in 2D and 3D models were highly comparable, but in some cases we have observed significant disagreement indicating that some prominent compounds can be discarded in early phase of researching because of compounds with false positive result. To confirm which of cell culture systems is more accurate, in vivo profiling is needed.  相似文献   

18.
Microorganisms in nature are highly diverse biological resources, which can be explored for drug discovery. Some countries including Brazil, Columbia, Indonesia, China, and Mexico, which are blessed with geographical uniqueness with diverse climates and display remarkable megabiodiversity, potentially provide microorganismal resources for such exploitation. In this review, as an example of drug discovery campaigns against tropical parasitic diseases utilizing microorganisms from such a megabiodiversity country, we summarize our past and on-going activities toward discovery of new antimalarials. The program was held in a bilateral collaboration between multiple Indonesian and Japanese research groups. In order to develop a new platform of drug discovery utilizing Indonesian bioresources under an international collaborative scheme, we aimed at: 1) establishment of an Indonesian microbial depository, 2) development of robust enzyme-based and cell-based screening systems, and 3) technology transfer necessary for screening, purification, and identification of antimalarial compounds from microbial culture broths. We collected, characterized, and deposited Indonesian microbes. We morphologically and genetically characterized fungi and actinomycetes strains isolated from 5 different locations representing 3 Indonesian geographical areas, and validated genetic diversity of microbes. Enzyme-based screening was developed against two validated mitochondrial enzymes from Plasmodium falciparum, dihydroorotate dehydrogenase and malate:quinone oxidoreductase, while cell-based proliferation assay was developed using the erythrocytic stage parasite of 3D7 strain. More than 17 thousands microbial culture extracts were subjected to the enzyme- and cell-based screening. Representative anti-malarial compounds discovered in this campaign are discussed, including a few isolated compounds that have been identified for the first time as anti-malarial compounds. Our antimalarial discovery campaign validated the Indonesian microbial library as a powerful resource for drug discovery. We also discuss critical needs for selection criteria for hits at each stage of screening and hit deconvolution such as preliminary extraction test for the initial profiling of the active compounds and dereplication techniques to minimize repetitive discovery of known compounds.  相似文献   

19.
We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through Z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types.  相似文献   

20.
Discovery of novel agonists and antagonists for G protein-coupled receptors (GPCRs) relies heavily on cell-based assays because determination of functional consequences of receptor engagement is often desirable. Currently, there are several key parameters measured to achieve this, including mobilization of intracellular Ca2+ and formation of cyclic adenosine monophosphate or inositol triphosphate. However, no single assay platform is suitable for all situations, and all of the assays have limitations. The authors have developed a new high-throughput homogeneous assay platform for GPCR discovery as an alternative to current assays, which employs detection of phosphorylation of the key signaling molecule p42/44 MAP kinase (ERK 1/2). The authors show that ERK 1/2 is consistently activated in cells stimulated by Gq-coupled GPCRs and provides a new high-throughput platform for screening GPCR drug candidates. The activation of ERK 1/2 in Gq-coupled GPCR systems generates comparable pharmacological data for receptor agonist and antagonist data obtained by other GPCR activation measurement techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号