首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cytomegalovirus. III. Virus-induced DNA polymerase.   总被引:47,自引:25,他引:22       下载免费PDF全文
Infection of WI-38 human fibroblasts with human cytomegalovirus (CMV) led to the stimulation of host cell DNA polymerase synthesis and induction of a novel virus-specific DNA polymerase. This cytomegalovirus-induced DNA polymerase was purified and separated from host cell enzymes by DEAE-cellulose and phosphocellulose column chromatographies. It can be distinguished from host cell enzymes by chromatographic behavior, template primer specificity, sedimentation property, and the requirement of salt for maximal activity. This virus-induced enzyme has a sedimentation coefficient of 9.2S and is found in both the nuclei and cytoplasm of virus-infected cells, but not in uninfected cells. This enzyme could efficiently use activated calf-thymus DNA, oly(dA)-oligo(dT)12-18, and poly(dC)-oligo(dG)12-18 as template primers, especially poly(dA)-oligo(dT)12-18, but it could not use poly(rA)-oligo(dT)12-18, poly(rC)-oligo(dG)12-18, or oligo(dT)12-18. The enzyme requires Mg2+ for maximal activity, is sensitive to p-hydroxymercuribenzoate, and is not a zinc metalloenzyme. In addition, the cytomegalovirus-induced DNA polymerase activity can be enhanced by adding 0.06 to 0.12 M NaCl or 0.03 to 0.06 M (NH4)2SO4 to the reaction mixture.  相似文献   

2.
A large form of DNA polymerase delta from HeLa cells was recently purified in this laboratory as a factor required for conservative DNA synthesis in a reconstituted system utilizing UV-irradiated permeabilized human diploid fibroblasts (Nishida, C., Reinhard, P., and Linn, S. (1988) J. Biol. Chem. 263, 501-510). We have now purified this form of the enzyme utilizing its polymerase activity and further characterized it. The enzyme activity sediments at 11.1 S in low salt and 6.8 S in high salt. In both cases, activity cosediments with the major visible peptide displayed by sodium dodecyl sulfate-polyacrylamide gels which has an Mr of 215,000. This value is consistent with the molecular mass calculated from the sedimentation coefficient and gel filtration behavior in high salt. In low salt the apparent molecular mass was approximately double. The enzyme prefers poly(dA).oligo(dT) as template/primer in low salt, with which it has a processivity of several thousand nucleotides in 1 mM MgCl2. At isotonic KCl or potassium phosphate concentrations, the preferred template/primer is activated DNA. Proliferating cell nuclear antigen, also characterized as a DNA polymerase delta auxiliary protein, does not increase the activity of this preparation of the enzyme. An antibody to the proliferating cell nuclear antigen has no inhibitory effect, nor is it able to recognize any peptides in immunoblots of purified enzyme fractions. Under polymerizing conditions, the enzyme removes mismatched, but not matched nucleotides from the 3' terminus of oligo(dT) annealed to poly(dA) suggesting a proofreading function. The properties of this form of DNA polymerase delta distinguish it from other preparations reported in the literature.  相似文献   

3.
DNA polymerase delta from calf thymus was purified under conditions that minimized proteolysis to a specific activity of 27,000 units/mg. The four step isolation procedure included phosphocellulose, hydroxyapatite, heparin-Sepharose and FPLC-MonoS. This enzyme consists of four polypeptides with Mr of 140, 125, 48 and 40 kilodaltons. Velocity gradient sedimentation in glycerol removed the 48 kDa polypeptide while the other three sedimented with the DNA polymerase activity. The biochemical properties of the three subunit enzyme and the copurification of 3'----5' exonuclease activity were typical for a bona fide DNA polymerase delta. Tryptic peptide analysis showed that the 140 kDa polypeptide was different from the catalytic 180 kDa polypeptide of calf thymus DNA polymerase alpha. Both high Mr polypeptides (140 and 125 kDa) were catalytically active as analysed in an activity gel. Four templates were used by DNA polymerase delta with different preferences, namely poly(dA)/oligo(dT)12-18 much much greater than activated DNA greater than poly(dA-dT) greater than primed single-stranded M13DNA. Calf thymus proliferating cell nuclear antigen (PCNA) could not stimulated this DNA polymerase delta in any step of the isolation procedure. If tested on poly(dA)/oligo(dT)12-18 (base ratio 10:1), PCNA had no stimulatory effect on DNA polymerase delta when tested with low enzyme DNA ratio nor did it change the kinetic behaviour of the enzyme. DNA polymerase delta itself did not contain PCNA. The enzyme had an intrinsic processivity of several thousand bases, when tested either on the homopolymer poly(dA)/oligo(dT)12-18 (base ratio 64:1) or on primed single-stranded M13DNA. Contrary to DNA polymerase alpha, no pausing sites were seen with DNA polymerase delta. Under optimal in vitro replication conditions the enzyme could convert primed single-stranded circular M13 DNA of 7,200 bases to its double-stranded form in less than 10 min. This supports that a PCNA independent DNA polymerase delta exists in calf thymus in addition to a PCNA dependent enzyme (Lee, M.Y.W.T. et al. (1984) Biochemistry 23, 1906-1913).  相似文献   

4.
DNA polymerase was purified from Drosophila melanogaster embryos by a combination of phosphocellulose adsorption, Sepharose 6B gel filtration, and DEAE-cellulose chromatography. Three enzyme forms, designated enzymes I, II, and III, were separated by differential elution from DEAE-cellulose and were further purified by glycerol gradient centrifugation. Purification was monitored with two synthetic primer-templates, poly(dA) . (dT)-16 and poly(rA) . (dT)-16. At the final step of purification, enzymes I, II, and III were purified approximately 1700-fold, 2000-fold and 1000-fold, respectively, on the basis of their activities with poly(dA) . (dT)-16. The DNA polymerase eluted heterogeneously as anomalously high-molecular-weight molecules from Sepharose 6B gel filtration columns. On DEAE-cellulose chromatography enzymes I and II eluted as distinct peaks and enzyme III eluted heterogeneously. On glycerol velocity gradients enzyme I sedimented at 5.5-7.3 S, enzyme II sedimented at 7.3-8.3 S, and enzyme III sedimented at 7.3-9.0 S. All enzymes were active with both synthetic primer-templates, except the 9.0 S component of enzyme III, which was inactive with poly(rA) . (dT)-16. Non-denaturing polyacrylamide gel electrophoresis did not separate poly(dA) . (dT)-16 activity from poly(rA) . (dT)-16 activity. The DNA polymerase preferred poly(dA) . (dT)-16 (with Mg2+) as a primer-template, although it was also active with poly(rA) . (dT)-16 (with Mn2+), and it preferred activated calf thymus DNA to native or heat-denatured calf thymus DNA. All three primer-template activities were inhibited by N-ethylmaleimide. Enzyme activity with activated DNA and poly(dA) . (dT)-16 was inhibited by K+ and activity with poly(rA) . (dT)-16 was stimulated by K+ and by spermidine. The optimum pH for enzyme activity with the synthetic primer-templates was 8.5. The DNA polymerases did not exhibit deoxyribonuclease or ATPase activities. The results of this study suggest that the forms of DNA polymerase from Drosophila embryos have physical properties similar to those of DNA polymerase-alpha and enzymatic properties similar to those of all three vertebrate DNA polymerases.  相似文献   

5.
Two RNase H (RNA-DNA hybrid ribonucleotidohydrolase, EC 3.1.4.34) activities separable by Sephadex G-100 gel filtration were identified in lysates of Moloney murine sarcoma-leukemia virus (MSV). The larger enzyme, which we have called RNase H-I, represented about 10% of the RNase H activity in the virion. RNase H-I (i) copurified with RNA-directed DNA polymerase from the virus, (ii) had a sedimentation coefficient of 4.4S (corresponds to an apparent mol wt of 70,000), (iii) required Mn-2+ (2 mM optimum) for activity with a [3-h]poly(A)-poly(dT) substrate, (iv) eluted from phosphocellulose at 0.2 M KC1, and (v) degraded [3-H]poly(A)-poly(dT) and [3-H]poly(C)-poly(dG) at approximately equal rates. The smaller enzyme, designated RNase H-II, which represented the majority of the RNase H activity in the virus preparation, was shown to be different since it (i) had no detectable, associated DNA polymerase activity, (ii) had a sedmimentation coefficient of 2.6S (corresponds to an apparent mol wt of 30,000), (iii) preferred Mg-2+ (10 to 15 mM optimum) over Mn-2+ (5 to 10 mM optimum) 2.5-fold for the degradation of [3-H]poly(A)-poly(dT), and (iv) degraded [3-H]poly(A)-poly(dT) 6 and 60 times faster than [3-H]poly(C)-poly(dG) in the presence of Mn-2+ and Mg-2+, respectively. Moloney MSV DNA polymerase (RNase H-I), purified by Sephadex G-100 gel filtration followed by phosphocellulose, poly(A)-oligo(dT)-cellulose, and DEAE-cellulose chromatography, transcribed heteropolymeric regions of avian myeloblastosis virus 70S RNA at a rate comparable to avian myeloblastosis virus DNA polymerase purified by the same procedure.  相似文献   

6.
A DNA primase from yeast. Purification and partial characterization   总被引:5,自引:0,他引:5  
A DNA primase activity has been purified from the budding yeast Saccharomyces. The resulting preparation was nearly homogeneous and was devoid of DNA and RNA polymerase activities. The primase activity cofractionated with a Mr 65,000 polypeptide in sedimentation and chromatography procedures, and the native molecular weight of the enzyme corresponded closely to this value suggesting that the primase or an active proteolytic fragment of the protein exists as a monomer. Both heat-denatured calf thymus DNA and poly(dT) could be utilized by the enzyme as templates. Primase exhibited an absolute requirement for divalent cations and for rATP on a poly(dT) template. Although it required the ribonucleotide to initiate primer chains, the enzyme could incorporate the deoxynucleotide into primers. The product of the primase-catalyzed reaction was an oligonucleotide of discrete length (11-13 nucleotides), and oligonucleotides that were apparently dimers of this unit length were also observed. Primers that were synthesized were virtually identical in size in both the presence and absence of dATP incorporation. Although the bulk of DNA primase activity was isolated as a "free" enzyme, a portion of cellular primase activity co-chromatographed with DNA polymerase suggesting an association between these enzymes similar to that found in several higher eukaryotes.  相似文献   

7.
It has been shown that DNA primase activity is tightly associated with 10S DNA polymerase alpha from calf thymus and that the ribonucleotide-dependent DNA synthesis is more sensitive to araCTP than DNA-primed DNA synthesis (Yoshida, S., et al. (1983) Biochim. Biophys. Acta 741, 348-357). Here we measured DNA primase activity using poly(dT) template or M13 bacteriophage single-stranded DNA template and primer RNA synthesis was coupled to the reaction by Escherichia coli DNA polymerase I Klenow fragment. By this method, the primer RNA synthesis can be measured independently of the associating DNA polymerase alpha. Using poly(dT) template, it was found that arabinosyladenine 5'-triphosphate (araATP) strongly inhibited DNA primase in competition with rATP. The apparent Ki for araATP was 21 microM and the ratio of Ki/Km (for rATP) was as low as 0.015. With poly(dI, dT) or M13 DNA, it was shown that araCTP also inhibited DNA primase in the similar manner. Product analysis using [alpha-32P]rATP showed that araATP inhibited the elongation of primer RNA. However, it is not likely that arabinosylnucleotides act as chain-terminators, since incubation of primer RNA with araATP did not abolish its priming activity. From these results, it is suggested that arabinosylnucleotide inhibits the initiation as well as elongation of Okazaki fragments in mammalian cells.  相似文献   

8.
9.
The ability of the 9S and 5.7S DNA polymerase alpha subspecies from calf thymus in elongating a mismatched primer terminus has been investigated. With poly(dA) as template, the elongation rate for (dT)8dG, (dT)8dC and (dT)10dGdT is 20-fold lower for the 9S enzyme and 5-fold lower for the 5.7S enzyme as compared to (dT)10. The presence of a second mismatch at the primer terminus reduces the elongation rate further by a factor of two. Exonucleolytic excision of the mismatches can be excluded. With (dT)8dG (dT)n as primer we show, that at least five T-residues have to follow the mismatch in order to establish the elongation rate of a perfectly paired primer. The KM value for (dT)10 dG as primer is 400 nM as compared to 10 nM for (dT)10. Addition of Mn2+ increases the relative efficiency of elongation of the mismatched primers.  相似文献   

10.
The activity of a 7.3S-8.3S Drosophila DNA polymerase was characterized in detail using poly dA.p(dT)[unk] and poly rA.p(dT)[unk]. With poly dA.p(dT)[unk], Mg(2+) ion was the preferred divalent cation, and enzyme activity was inhibited by K(+) ion and by spermidine. With poly rA.p(dT)[unk], Mn(2+) ion was the preferred divalent cation and enzyme activity was stimulated by K(+) ion and by spermidine. The dependence of enzyme activity on the concentration of primer-template and on the ratio of primer to template was the same in both reactions. The two enzyme activities were identically inhibited by N-ethylmaleimide. Poly dA was replicated extensively and poly rA was replicated partially. The activation energy for poly dA replication was twice that for poly rA replication. Enzyme activity with poly dA.p(dT)[unk] was more stable to thermal inactivation than was enzyme activity with poly rA.p(dT)[unk]. These studies suggest that the same enzyme responds to both the deoxy- and the ribohomopolymer template but that the mechanisms of replication may be different.  相似文献   

11.
A novel factor that stimulates DNA polymerase alpha activity on poly(dA) X oligo(dT) has been identified and partially purified from mouse FM3A cells. The assay system for the factor contained poly(ethylene glycol) 6000. The activities of DNA polymerase alpha on poly(dA) X oligo(dT) in the presence and absence of the stimulating factor were increased greatly by the addition of poly(ethylene glycol). Stimulation by the factor was observed at all the primer to template ratios tested from 0.01 to 0.3. The highest activity was observed at the ratio of 0.05, corresponding to about 3.3 primers on one template in the presence of the factor. The concentration of DNA polymerase alpha used in the assay affected the stimulation by the factor, and the stimulation became more prominent at concentrations of the enzyme lower than 0.04 unit per assay. The stimulating factor lowered the Km value of DNA polymerase alpha for the template-primer, though they had no effect on the Km value for dTTP substrate. The results of product analysis suggested that the stimulation by the factor is mainly due to the increase in the initiation frequency of DNA synthesis from the primers. The stimulating factor specifically stimulated DNA polymerase alpha but not DNA polymerases beta and gamma. Furthermore, the factor formed a complex with DNA polymerase alpha under a certain condition.  相似文献   

12.
Human cyclin/PCNA (proliferating cell nuclear antigen) is structurally, functionally, and immunologically homologous to the calf thymus auxiliary protein for DNA polymerase delta. This auxiliary protein has been investigated as a stimulatory factor for the nuclear DNA polymerases from S. cerevisiae. Calf cyclin/PCNA enhances by more than ten-fold the ability of DNA polymerase III to replicate templates with high template/primer ratios, e.g. poly(dA).oligo(dT) (40:1). The degree of stimulation increases with the template/primer ratio. At a high template/primer ratio, i.e. low primer density, cyclin/PCNA greatly increases processive DNA synthesis by DNA polymerase III. At low template/primer ratios (e.g. poly(dA).oligo(dT) (2.5:1), where addition of cyclin/PCNA only minimally increases the processivity of DNA polymerase III, a several-fold stimulation of total DNA synthesis is still observed. This indicates that cyclin/PCNA may also increase productive binding of DNA polymerase III to the template-primer and stabilize the template-primer-polymerase complex. The activity of yeast DNA polymerases I and II is not affected by addition of cyclin/PCNA. These results strengthen the hypothesis that yeast DNA polymerase III is functionally analogous to the mammalian DNA polymerase delta.  相似文献   

13.
14.
J M Gardner  C I Kado 《Biochemistry》1976,15(3):688-697
A high molecular weight (6 S) plant DNA polymerase from axenic Vinca rosea tissue culture cells has been purified 2200-fold and characterized. The enzyme has a molecular weight of 105 000 (+/-5000). Sodium dodecyl sulfate-acrylamide gel electrophoresis of the purified enzyme yields polypeptide subunits having molecular weights of 70 000 and 34 000. The purified enzyme has a pH optimum of 7.5; a cation requirement optimum of 6 mM Mg2+ or 0.5 mM Mn2+; an apparent requirement for Zn2+; a Km of 1 muM for dTTP; and a 3.5-fold stimulation by 50 mM KCl. The enzyme is sensitive to N-ethylmaleimide (1 mM), heparin (0.1 muM), ethanol (5%), pyrophosphate (0.05 muM), and o-phenanthroline (0.1 mM) but is insensitive to rifamycin. Denatured DNA is found to be the best natural template, and only negligible activity can be demonstrated with the ribopolymer templates poly(dT)n-poly(rA)n and p(dT)10-poly(rA)n. In addition to the polymerization reaction, the enzyme catalyzes a pyrophosphate exchange reaction. Antibody to calf thymus 6-8S DNA polymerase does not inhibit DNA polymerase from Vinca rosea, suggesting no antigenic relationships between the mammalian and plant enzymes.  相似文献   

15.
16.
The DNA sequence specificity of stimulation of DNA polymerases by factor D   总被引:1,自引:0,他引:1  
The mechanism of enhancement of DNA polymerase activity by the murine DNA-binding protein factor D was investigated. Extension by Escherichia coli DNA polymerase I and calf thymus DNA polymerase-alpha of 5'-32P-labeled oligodeoxynucleotide primers that are complementary to poly(dT) or to bacteriophage M13 DNA was measured in the absence or presence of factor D. With 5'-[32P](dA)9.poly(dT), factor D enables E. coli polymerase I to fill approximately 15-nucleotide gaps between adjacent primers; whereas in the absence of the stimulatory protein, poly(dT) is not copied significantly. In order to study the nucleotide specificity of synthesis enhancement, we used M13mp10 DNA containing 4 consecutive thymidine residues downstream from the 3-hydroxyl terminus of an oligonucleotide primer. Upon addition of factor D, both polymerase I and polymerase-alpha can traverse this sequence more efficiently and thus generate longer DNA products. Densitometric analysis of nonextended and elongated 5'-32P-labeled M13 primer indicates that, without changing the frequency of primer utilization, factor D enhances the activity of these DNA polymerases by increasing their apparent processivity. By positioning oligonucleotide primers 4, 8, and 12 bases upstream from the (dT)4 template sequence, we show that the enhancement of synthesis by factor D is independent of the position of the oligothymidine cluster. We hypothesize that factor D interacts with oligo(dT).oligo(dA) domains in DNA to alter their conformation, which may normally obstruct the progression of DNA polymerases.  相似文献   

17.
Purified DNA polymerase beta of calf thymus can utilize poly(rA).oligo(dT) as efficiently as poly(dA).oligo(dT) or activated DNA as a template primer. The poly(rA).oligo(dT)-dependent activity of DNA polymerase beta was found to differ markedly from the DNA-dependent activity of the same enzyme (with either activated calf thymus DNA or poly(dA).(dT)10) in the following respects. 1) Poly(rA)-dependent activity was strongly inhibited by natural DNA from various sources or synthetic deoxypolymer duplexes at very low concentrations (less than 0.5 microgram/ml) at which the DNA-dependent activity was affected to a much smaller extent, if at all. 2) Poly(rA)-dependent activity was inhibited by N-ethylmaleimide more strongly than DNA-dependent activity measured at 37 degrees C, while it was resistant to this reagent at 26 degrees C. 3) The curves of the activity versus substrate concentration were sigmoidal in the poly(rA)-dependent reaction but hyperbolic in the activated DNA-dependent reaction. A kinetic study suggested that the association of beta-enzyme protomers may be required to copy the poly(rA) strand.  相似文献   

18.
The reaction product of the ribosomal poly(A) polymerase [ATP(UTP):RNA nucleotidyltransferase] is analyzed. Two systems are used in vitro: (a) isolated polyribosomes with endogenous enzyme and RNA primer and (b) purified enzyme with total polyribosomal RNA as primer. In the polyribosome system about 50% of the [3H]AMP label is in poly(A)-containing mRNA. This RNA displays a heterogeneous size ditribution in the range of 8--30 S with a maximum at about 14 S. Upon denaturation the maximum is shifted towards the 10-S zone. The poly(A) polymerase catalyzes the addition of 12--18 adenylate residues to pre-existing mRNA poly(A) sequences of 40--160 residues. The [3H]AMP incorporated into poly(A)-lacking RNA is mainly in a fraction with an electrophoretic mobility corresponding to 4-S RNA. In the purified enzyme system, specificity towards poly(A)-containing mRNA is lost to a considerable extent. Only 10% of the [3H]AMP label is retained by oligo(dT)-cellulose. The bulk of the product is in 18-S rRNA and heterogeneous small molecular weight RNA. We conclude that the ribosome-associated poly(A) polymerase is most likely the enzyme responsible for the cytoplasmic polyadenylation of poly(A)-containing mRNA in vivo.  相似文献   

19.
A procedure is described for the purification from cultured mouse cells of two DNA polymerase "delta-like" enzymes, as defined by intrinsic 3'-exonuclease activity, inhibition by aphidicolin, and relative insensitivity to N2-(p-n-butylphenyl)-dGTP. One of the two enzymes has been purified to near homogeneity and, similar to the DNA polymerase delta from calf thymus described by Lee et al. (Lee, M. Y. W. T., Tan, C. K., Downey, K. M., and So, A. G. (1984) Biochemistry 23, 1906-1913), it has a total molecular mass of 178 kDa (from sedimentation velocity of 8.0 S and Stokes radius of 54 A) and is composed of one each of 125- and 50-kDa polypeptides. It also resembles the DNA polymerase delta of Lee et al. in being stimulated by proliferating cell nuclear antigen (PCNA). It is the first clear structural and functional counterpart of the calf thymus enzyme. The major difference between the mouse DNA polymerase delta and the calf thymus enzyme of Lee et al. is that, under specific conditions, the mouse enzyme is active with poly(dA).oligo(dT) in the absence of PCNA, whereas the activity of the calf thymus enzyme with this template is reported to be completely dependent on PCNA. The reason for this difference is not known at this time. The second mouse cell enzyme has a molecular mass of 112 kDa (from sedimentation velocity of 6.3 S and Stokes radius of 43.0 A) and consists of a single polypeptide of 123-125 kDa in denaturing gels (p125). On the basis of its apparent formation by dissociation of DNA polymerase delta, and multiple similarities with DNA polymerase delta in enzymatic properties, the p125 is provisionally identified as the 125-kDa polypeptide of DNA polymerase delta. The p125 does not respond to PCNA, suggesting that the 50-kDa polypeptide is required for the stimulation of DNA polymerase delta by PCNA. The presence of the p125 in cell extracts would explain reports that DNA polymerase delta consists of a single polypeptide of approximately 125 kDa and/or thast it has a smaller molecular mass than DNA polymerase delta of Lee et al. and is not affected by PCNA (this does not apply to PCNA-independent DNA polymerase delta-like enzymes with higher molecular mass than the polymerase delta of Lee et al., which have recently been named DNA polymerases epsilon).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号