首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extracellular alpha-amylase (1,4-alpha-D-glucanglucanohydrolase; EC 3.2.1.1) from maltose-grown Streptococcus bovis JB1 was purified to apparent homogeneity by ion-exchange chromatography (Mono Q). The enzyme had an isoelectric point of 4.50 and an apparent molecular mass of 77,000 Da, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was rich in acidic and hydrophobic amino acids. The 15-amino-acid NH2-terminal sequence was 40% homologous with the Bacillus subtilis saccharifying alpha-amylase and 27% homologous with the Clostridium acetobutylicum alpha-amylase. alpha-Amylase activity on soluble starch was optimal at pH 5.0 to 6.0. The enzyme was relatively stable between pH 5.5 and 8.5 and at temperatures below 50 degrees C. When soluble potato starch was used as the substrate, the enzyme had a Km of 0.88 mg.ml-1 and a kcat of 2,510 mumol of reducing sugar.min-1.mg of protein-1. The enzyme exhibited neither pullulanase nor dextranase activity and was 40 to 70% as active on amylopectin as on amylose. The major end products of amylose hydrolysis were maltose, maltotriose, and maltotetraose.  相似文献   

2.
An alpha-amylase (EC 3.2.1.1) secreted by Clostridium perfringens NCTC 8679 type A was purified to homogeneity and characterized. It was isolated from concentrated cell-free culture medium by ion-exchange and gel permeation chromatography. The enzyme exhibited maximal activity at pH 6.5 and 30 degrees C without the presence of calcium. The pI of the enzyme was 4.75. The estimated molecular weight of the purified enzyme was 76 kDa. The purified enzyme was inactivated between 35 and 40 degrees C, which increased to between 45 and 50 degrees C in the presence of calcium (5 mM). The purified enzyme produced a mixture of oligosaccharides as major end products of starch hydrolysis, indicating alpha-amylase activity.  相似文献   

3.
Some properties of immobilized alpha-amylase by Aspergillus sclerotiorum within calcium alginate gel beads were investigated and compared with soluble enzyme. Optimum pH and temperature were found to be 5.0 and 40 degrees C, respectively, for both soluble and immobilized enzymes. The immobilized enzyme had a better Km value, but kcat/Km values were the same for both enzymes. Entrapment within calcium alginate gel beads improved, remarkably, the thermal and storage stability of alpha-amylase. The half life values of immobilized enzyme and soluble enzyme at 60 degrees C were 164.2, and 26.2 min, respectively. The midpoint of thermal inactivation (Tm) shifted from 56 degrees C (for soluble enzyme) to 65.4 degrees C for immobilized enzyme. The percentages of soluble starch hydrolysis for soluble and immobilized alpha-amylase were determined to be 97.5 and 92.2% for 60 min, respectively.  相似文献   

4.
An alpha-amylase produced by Scytalidium thermophilum was purified using DEAE-cellulose and CM-cellulose ion exchange chromatography and Sepharose 6B gel filtration. The purified protein migrated as a single band in 6% PAGE and 7% SDS-PAGE. The estimated molecular mass was 36 kDa (SDS-PAGE) and 49 kDa (Sepharose 6B). Optima of pH and temperature were 6.0 and 60 degrees C, respectively. In the absence of substrate the purified alpha-amylase was stable for 1 h at 50 degrees C and had a half-life of 12 min at 60 degrees C, but was fully stable in the presence of starch. The enzyme was not activated by several metal ions tested, including Ca(2+) (up to 10 mM), but HgCl(2 )and CuCl(2) inhibited its activity. The alpha-amylase produced by S. thermophilum preferentially hydrolyzed starch, and to a lesser extent amylopectin, maltose, amylose and glycogen in that order. The products of starch hydrolysis (up to 6 h of reaction) analyzed by thin layer chromatography, showed oligosaccharides such as maltotrioses, maltotetraoses and maltopentaoses. Maltose and traces of glucose were formed only after 3 h of reaction. These results confirm the character of the enzyme studied to be an alpha-amylase (1,4-alpha-glucan glucanohydrolase).  相似文献   

5.
Liu XD  Xu Y 《Bioresource technology》2008,99(10):4315-4320
This study reports the purification and characterization of a novel raw starch digesting alpha-amylase from a newly isolated Bacillus sp. YX-1. Maximum alpha-amylase activity (53 U mL(-1)) was obtained at 45 degrees C after 44 h of incubation. The enzyme was purified using ammonium sulfate precipitation, ion exchange and gel filtration chromatography, and showed a molecular weight of 56 kDa by SDS-PAGE. This enzyme exhibited maximum activity at pH 5.0, performed stability over a broad range of pH 4.5-11.0, and was optimally active at 40-50 degrees C. The enzyme preparation had a strong digesting ability towards various raw starches and efficiently hydrolyzed raw corn starch at a concentration of 20% and pH 5.0, which were normally used in the starch industries, in a period of 12h. By analyzing its partial amino acid sequences, the enzyme was proposed to be a novel alpha-amylase.  相似文献   

6.
E Satoh  T Uchimura  T Kudo    K Komagata 《Applied microbiology》1997,63(12):4941-4944
An intracellular alpha-amylase from Streptococcus bovis 148 was purified and characterized. The enzyme was induced by maltose and soluble starch and produced about 80% maltotriose from soluble starch. Maltopentaose was hydrolyzed to maltotriose and maltose and maltohexaose was hydrolyzed mainly to maltotriose by the enzyme. Maltotetraose, maltotriose, and maltose were not hydrolyzed. This intracellular enzyme was considered to be a maltotriose-producing enzyme. The enzymatic characteristics and hydrolysis product from soluble starch were different from those of the extracellular raw-starch-hydrolyzing alpha-amylase of strain 148. The deduced amino acid sequence of the intracellular alpha-amylase was similar to the sequences of the mature forms of extracellular liquefying alpha-amylases from Bacillus strains, although the intracellular alpha-amylase did not contain a signal peptide. No homology between the intracellular and extracellular alpha-amylases of S. bovis 148 was observed.  相似文献   

7.
The alpha-amylase (1, 4-alpha-d-glucanohydrolase; EC 3.2.1.1) and alpha-glucosidase (alpha-d-glucoside glucohydrolase; EC 3.2.1.20) secreted by Geobacillus thermodenitrificans HRO10 were purified to homogeneity (13.6-fold; 11.5% yield and 25.4-fold; 32.0% yield, respectively) through a series of steps. The molecular weight of alpha-amylase was 58kDa, as estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The alpha-amylase activity on potato starch was optimal at pH 5.5 and 80 degrees Celsius. In the presence of Ca(2+), the alpha-amylase had residual activity of more than 92% after 1h of incubation at 70 degrees Celsius. The alpha-amylase did not lose any activity in the presence of phytate (a selective alpha-amylase inhibitor) at concentrations as high as 10mM, rather it retained 90% maximal activity after 1h of incubation at 70 degrees Celsius. EGTA and EDTA were strong inhibitory substances of the enzyme. The alpha-amylase hydrolyzed soluble starch at 80 degrees Celsius, with a K(m) of 3.05mgml(-1) and a V(max) of 7.35Uml(-1). The molecular weight of alpha-glucosidase was approximately 45kDa, as determined by SDS-PAGE. The enzyme activity was optimal at pH 6.5-7.5 and 55 degrees Celsius. Phytate did not inhibit G. thermodenitrificans HRO10 alpha-glucosidase activity, whereas pCMB was a potent inhibitor of the enzyme. The alpha-glucosidase exhibited Michaelis-Menten kinetics with maltose at 55 degrees Celsius (K(m): 17mM; V(max): 23micromolmin(-1)mg(-1)). Thin-layer chromatography studies with G. thermodenitrificans HRO10 alpha-amylase and alpha-glucosidase showed an excellent synergistic action and did not reveal any transglycosylation catalyzed reaction by the alpha-glucosidase.  相似文献   

8.
Bacillus amyloliquefaciens alpha-amylase was attached to dextran after activation of the polysaccharide by using a modification of the cyanogen bromide method. The soluble dextran-amylase conjugate was purified by molecular-sieve chromatography. The conjugated enzyme has greater stability than the unmodified enzyme at low pH values, during heat treatment, and on removal of calcium ions with a chelating agent. Attachment of dextran to alpha-amylase did not alter the Michaelis constant of the enzyme acting on starch. The polysaccharide-enzyme conjugate probably consists of a cross-linked aggregate of many dextran and many enzyme molecules, in which a proportion of the enzyme molecules, although not inactivated, are unable to express their activity, except after dextranase treatment.  相似文献   

9.
Thermotoga maritima MSB8 has a chromosomal alpha-amylase gene, designated amyA, that is predicted to code for a 553-amino-acid preprotein with significant amino acid sequence similarity to the 4-alpha-glucanotransferase of the same strain and to alpha-amylase primary structures of other organisms. Upstream of the amylase gene, a divergently oriented open reading frame which can be translated into a polypeptide with similarity to the maltose-binding protein MalE of Escherichia coli was found. The T. maritima alpha-amylase appears to be the first known example of a lipoprotein alpha-amylase. This is in agreement with observations pointing to the membrane localization of this enzyme in T. maritima. Following the signal peptide, a 25-residue putative linker sequence rich in serine and threonine was found. The amylase gene was expressed in E. coli, and the recombinant enzyme was purified and characterized. The molecular mass of the recombinant enzyme was estimated at 61 kDa by denaturing gel electrophoresis (63 kDa by gel permeation chromatography). In a 10-min assay at the optimum pH of 7.0, the optimum temperature of amylase activity was 85 to 90 degrees C. Like the alpha-amylases of many other organisms, the activity of the T. maritima alpha-amylase was dependent on Ca2+. The final products of hydrolysis of soluble starch and amylose were mainly glucose and maltose. The extraordinarily high specific activity of the T. maritima alpha-amylase (about 5.6 x 10(3) U/mg of protein at 80 degrees C, pH 7, with amylose as the substrate) together with its extreme thermal stability makes this enzyme an interesting candidate for biotechnological applications in the starch processing industry.  相似文献   

10.
Membrane-bound phospholipase B was purified to a homogeneous state from Torulaspora delbrueckii cell homogenate. Cell homogenate was extracted with Triton X-100, and the enzyme was precipitated with acetone. The acetone powder was washed repeatedly with Tris-HCl buffer (pH 8.0) until no phospholipae B activity was detected in the soluble fraction. The enzyme was extracted with Triton X-100 from the final residue and purified about 1,390-fold by sequential chromatofocusing, Sepharose 6B, and DEAE-Sephadex A-50 column chromatography. The final preparation showed a single broad protein band on SDS-polyacrylamide gel electrophoresis when stained with silver stain reagent and PAS-reagent. The molecular weight of phospholipase B was about 390,000 and 140,000-190,000 as estimated by gel filtration on Sepharose 6B and SDS-polyacrylamide gel electrophoresis, respectively, suggesting that phospholipase B is an oligomeric protein. The isoelectric point was at pH 4.5. Phospholipase B has two pH optima, one acidic (pH 2.5-3.0) and the other alkaline (pH 7.2-8.0). At acidic pH the phospholipase B activity was greatly increased in the presence of divalent metal ions, although metal ions are not a factor for enzyme activity. On the other hand, at alkaline pH the enzyme required Ca2+ or Mn2+ for activity. The pH- and thermal-stabilities at both pHs were similar. The phospholipase B hydrolyzed all diacylphospholipids tested at acidic pH, but hydrolyzed only phosphatidylcholine at alkaline pH. The hydrolysis rates of lysophospholipids were much higher (about 10-fold) than those of diacylphospholipids at both pHs.  相似文献   

11.
AIM: An investigation was carried out on the production of alpha-amylase by Bacillus thermooleovorans NP54, its partial purification and characterization. METHODS AND RESULTS: The thermophilic bacterium was grown in shake flasks and a laboratory fermenter containing 2% soluble starch, 0.3% tryptone, 0.3% yeast extract and 0.1% K2HPO4 at 70 degrees C and pH 7.0, agitated at 200 rev min(-1) with 6-h-old inoculum (2% v/v) for 12 h. When the enzyme was partially purified using acetone (80%[v/v] saturation), a 43.7% recovery of enzyme with 6.2-fold purification was recorded. The KM and Vmax (soluble starch) values were 0.83 mg ml(-1) and 250 micromol mg(-1) protein min(-1), respectively. The enzyme was optimally active at 100 degrees C and pH 8.0 with a half-life of 3 h at 100 degrees C. Both alpha-amylase activity and production were Ca2+ independent. CONCLUSIONS: Bacillus thermooleovorans NP54 produced calcium-independent and thermostable alpha-amylase. SIGNIFICANCE AND IMPACT OF THE STUDY: The calcium-independent and thermostable alpha-amylase of B. thermooleovorans NP54 will be extremely useful in starch saccharification since the alpha-amylases used in the starch industry are calcium dependent. The use of this enzyme in starch hydrolysis eliminates the use of calcium in starch liquefaction and subsequent removal by ion exchange.  相似文献   

12.
A hyperthermophilic archaeon, Thermococcus profundus DT5432, produced extracellular thermostable amylases. One of the amylases (amylase S) was purified to homogeneity by ammonium sulfate precipitation, DEAE-Toyopearl chromatography, and gel filtration on Superdex 200HR. The molecular weight of the enzyme was estimated to be 42,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amylase exhibited maximal activity at pH 5.5 to 6.0 and was stable in the range of pH 5.9 to 9.8. The optimum temperature for the activity was 80(deg)C. Half-life of the enzyme was 3 h at 80(deg)C and 15 min at 90(deg)C. Thermostability of the enzyme was enhanced in the presence of 5 mM Ca(sup2+) or 0.5% soluble starch at temperatures above 80(deg)C. The enzyme activity was inhibited in the presence of 5 mM iodoacetic acid or 1 mM N-bromosuccinimide, suggesting that cysteine and tryptophan residues play an important role in the catalytic action. The amylase hydrolyzed soluble starch, amylose, amylopectin, and glycogen to produce maltose and maltotriose of (alpha)-configuration as the main products. Smaller amounts of larger maltooligosaccharides were also produced with a trace amount of glucose. Pullulan; (alpha)-, (beta)-, and (gamma)-cyclodextrins; maltose; and maltotriose were not hydrolyzed.  相似文献   

13.
Yamasaki Y 《Phytochemistry》2003,64(5):935-939
Beta-amylase (EC 3.2.1.2) was isolated from germinating millet (Panicum miliaceum L.) seeds by a procedure that included ammonium sulfate fractionation, chromatography on DEAE-cellulofine and CM-cellulofine, and preparative isoelectric focusing. The enzyme was homogeneous by SDS-PAGE. The M(r) of the enzyme was estimated to be 58,000 based on its mobility on SDS-PAGE and gel filtration with TSKgel G4000SW(XL), which showed that it is composed of a single unit. The isoelectric point of the enzyme was 4.62. The enzyme hydrolyzed malto-oligosaccharides more readily as their degree of polymerization increased, this being strongest for malto-oligosaccharides larger than 13 glucose residues and very weakly for maltotriose. Amylose, amylopectin and soluble starch were the most suitable substrates for the enzyme. While the enzyme showed some activity against native starch by itself, starch digestion was accelerated 2.5-fold using alpha-amylase, pullulanase and alpha-glucosidase. This enzyme appears to be very important for the germination of millet seeds.  相似文献   

14.
Using soluble starch as a substrate five isoforms of alpha-amylase were identified in a crude extract of Morimus funereus larvae. The main alpha-amylase (termed AMF-3) was purified by gel filtration chromatography and anion exchange chromatography to obtain a single band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Its enzymatic purity was confirmed by an in-gel activity assay after SDS-PAGE. The purity of AMF-3 was increased 112-fold with a 15.4% yield. AMF-3 had apparent molecular masses of 33 and 31 kDa when analysed using SDS-PAGE and Superdex 75 FPLC gel filtration chromatography, respectively and a calculated isoelectric point of 3.2. Purified AMF-3 showed maximal activity at pH 5.2 and had an optimum activity temperature of 45 degrees C. AMF-3 retained over 90% of its maximum activity at temperatures from 45 to 60 degrees C. AMF-3 exhibited a high affinity towards soluble starch with a K(m) value of 0.43 mg/mL. Maximal AMF-3 activity was achieved in the presence of 0.1 mM CaCl(2), while at higher concentrations its activity decreased. AMF-3 activity increased with increasing NaCl concentration. AMF-3 activity was significantly inhibited by alpha-amylase wheat inhibitor. Using a number of raw starch substrates maximum AMF-3 activity was achieved with horse-radish starch, in contrast to undetectable activity towards potato starch.  相似文献   

15.
A soluble form of an alkaline phosphatase obtained from rat osseous plates was purified 204-fold with a yield of 24.3%. The purified enzyme showed a single protein band of Mr 80,000 on SDS-PAGE and an apparent molecular weight of 163,000 by gel filtration on Sephacryl S-300 suggesting a dimeric structure for the soluble enzyme. The specific activity of the enzyme at pH 9.4 in the presence of 2 mM MgCl2 was 19,027 U/mg and the hydrolysis of p-nitrophenyl phosphate (K0.5 = 92 microM) showed positive cooperativity (n = 1.5). The purified enzyme showed a broad substrate specificity, however, ATP, bis(p-nitrophenyl) phosphate and pyrophosphate were among the less hydrolyzed substrates assayed. Surprisingly the enzyme was not stimulated by cobalt and manganese ions, in contrast with a 20-25% stimulation observed for magnesium and calcium ions. Zinc ions exerted a strong inhibition on p-nitrophenylphosphatase activity of the enzyme. This paper provides a simple experimental procedure for the isolation of a soluble form of alkaline phosphatase which is induced by demineralized bone matrix during endochondral ossification.  相似文献   

16.
A haloalkaliphilic archaebacterium, Natronococcus sp. strain Ah-36, produced extracellularly a maltotriose-forming amylase. The amylase was purified to homogeneity by ethanol precipitation, hydroxylapatite chromatography, hydrophobic chromatography, and gel filtration. The molecular weight of the enzyme was estimated to be 74,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amylase exhibited maximal activity at pH 8.7 and 55 degrees C in the presence of 2.5 M NaCl. The activity was irreversibly lost at low ionic strength. KCl, RbCl, and CsCl could partially substitute for NaCl at higher concentrations. The amylase was stable in the range of pH 6.0 to 8.6 and up to 50 degrees C in the presence of 2.5 M NaCl. Stabilization of the enzyme by soluble starch was observed in all cases. The enzyme activity was inhibited by the addition of 1 mM ZnCl2 or 1 mM N-bromosuccinimide. The amylase hydrolyzed soluble starch, amylose, amylopectin, and, more slowly, glycogen to produce maltotriose with small amounts of maltose and glucose of an alpha-configuration. Malto-oligosaccharides ranging from maltotetraose to maltoheptaose were also hydrolyzed; however, maltotriose and maltose were not hydrolyzed even with a prolonged reaction time. Transferase activity was detected by using maltotetraose or maltopentaose as a substrate. The amylase hydrolyzed gamma-cyclodextrin. alpha-Cyclodextrin and beta-cyclodextrin, however, were not hydrolyzed, although these compounds acted as competitive inhibitors to the amylase activity. Amino acid analysis showed that the amylase was characteristically enriched in glutamic acid or glutamine and in glycine.  相似文献   

17.
A new chromogenic substrate for assay and detection of alpha-amylase   总被引:1,自引:0,他引:1  
A new soluble chromogenic substrate for alpha-amylase was prepared by coupling partially hydrolyzed starch with a dye, Ostazin brilliant red H-3B. The substrate is precipitable from buffered solutions with ethanol and is equally suitable for assay of alpha-amylase, detection of separated alpha-amylase isoenzymes in gels, and selection of microbial producers of the enzyme.  相似文献   

18.
The fungal strain Mortierella alliacea YN-15 is an arachidonic acid producer that assimilates soluble starch despite having undetectable alpha-amylase activity. Here, a alpha-glucosidase responsible for the starch hydrolysis was purified from the culture broth through four-step column chromatography. Maltose and other oligosaccharides were less preferentially hydrolyzed and were used as a glucosyl donor for transglucosylation by the enzyme, demonstrating distinct substrate specificity as a fungal alpha-glucosidase. The purified enzyme consisted of two heterosubunits of 61 and 31 kDa that were not linked by a covalent bond but stably aggregated to each other even at a high salt concentration (0.5 M), and behaved like a single 92-kDa component in gel-filtration chromatography. The hydrolytic activity on maltose reached a maximum at 55 degrees C and in a pH range of 5.0-6.0, and in the presence of ethanol, the transglucosylation reaction to form ethyl-alpha-D-glucoside was optimal at pH 5.0 and a temperature range of 45-50 degrees C.  相似文献   

19.
This work presents the purification and characterization of an extracellular alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) produced by a new lactic acid bacterium: Lactobacillus manihotivorans able to produce L(+) lactic acid from starch. The molecular weight was found to be 135 kDa. The temperature and pH optimum were 55 degrees C and 5.5, respectively, and pI was 3.8. The alpha-amylase had good stability at pH range from 5 to 6 and the enzyme was sensitive to temperature, losing activity within 1 h of incubation at 55 degrees C. Higher thermal stability was observed when the enzyme was incubated in presence of soluble starch. K(m) value and activation energy were 3.44 mg/ml and 32.55 kJ/mol, respectively. Amylose was found to be a better substrate than soluble starch and amylopectin. Al(3+), Fe(3+), and Hg(2+) (10 mM) almost completely inhibited the alpha-amylase.  相似文献   

20.
An extracellular alpha-amylase (1,4-alpha D-glucan glucan hydrolase; EC 3.2.1.1) was isolated from the cell free broth of Streptomyces megasporus SD12 grown in glucose, soluble starch and raw starch. The enzyme was purified 55-fold with a specific activity of 847.33 U mg-1 of protein and with a yield of 36% activity. The apparent molecular mass of the enzyme was 97 kDa, as estimated by SDS-PAGE. The pI of the enzyme was 5.4 and it was stable at a pH range of 5.5 to 8.5 with an optimum pH 6. The enzyme was stable upto 85 degrees C with a half life of 60 min. With soluble starch as substrate the enzyme exhibited a K(m) and kcat value of 4.4 mg ml-1 and 2335 U min-1 mg-1 of protein respectively. The major end products of starch hydrolysis were maltotriose and maltose depending on the incubation period. The production of the enzyme with agricultural wastes as substrates was 643 to 804 U min-1 mg-1 of protein in submerged fermentation whereas solid state fermentation could produce only 206 U min-1 mg-1 of protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号