首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nematode mitochondria expresses two types of extremely truncated tRNAs that are specifically recognized by two distinct elongation factor Tu (EF-Tu) species named EF-Tu1 and EF-Tu2. This is unlike the canonical EF-Tu molecule that participates in the standard protein biosynthesis systems, which basically recognizes all elongator tRNAs. EF-Tu2 specifically recognizes Ser-tRNASer that lacks a D arm but has a short T arm. Our previous study led us to speculate the lack of the D arm may be essential for the tRNA recognition of EF-Tu2. However, here, we showed that the EF-Tu2 can bind to D arm-bearing Ser-tRNAs, in which the D–T arm interaction was weakened by the mutations. The ethylnitrosourea-modification interference assay showed that EF-Tu2 is unique, in that it interacts with the phosphate groups on the T stem on the side that is opposite to where canonical EF-Tu binds. The hydrolysis protection assay using several EF-Tu2 mutants then strongly suggests that seven C-terminal amino acid residues of EF-Tu2 are essential for its aminoacyl-tRNA-binding activity. Our results indicate that the formation of the nematode mitochondrial (mt) EF-Tu2/GTP/aminoacyl-tRNA ternary complex is probably supported by a unique interaction between the C-terminal extension of EF-Tu2 and the tRNA.  相似文献   

2.
The effects of varying concentrations of GDP on the stability of homologous and heterologous EF-Tu:EF-Ts complexes formed with the elongation factors from the chloroplast of Euglena gracilis and from E. coli have been investigated. The complexes formed with chloroplast EF-Ts were significantly more stable to GDP-induced dissociation than those formed with E. coli EF-Ts. The complex between chloroplast EF-Tu and chloroplast EF-Ts required nearly 1,000-fold higher concentrations of GDP for dissociation than the complex between chloroplast EF-Tu and E. coli EF-Ts. The E. coli EF-Tu:chloroplast EF-Ts complex required nearly 100-fold higher levels of GDP for dissociation than the E. coli EF-Tu:E. coli EF-Ts complex.  相似文献   

3.
《Biophysical journal》2020,118(1):151-161
In each round of ribosomal translation, the translational GTPase elongation factor Tu (EF-Tu) delivers a transfer RNA (tRNA) to the ribosome. After successful decoding, EF-Tu hydrolyzes GTP, which triggers a conformational change that ultimately results in the release of the tRNA from EF-Tu. To identify the primary steps of these conformational changes and how they are prevented by the antibiotic kirromycin, we employed all-atom explicit-solvent molecular dynamics simulations of the full ribosome-EF-Tu complex. Our results suggest that after GTP hydrolysis and Pi release, the loss of interactions between the nucleotide and the switch 1 loop of EF-Tu allows domain D1 of EF-Tu to rotate relative to domains D2 and D3 and leads to an increased flexibility of the switch 1 loop. This rotation induces a closing of the D1-D3 interface and an opening of the D1-D2 interface. We propose that the opening of the D1-D2 interface, which binds the CCA tail of the tRNA, weakens the crucial EF-Tu-tRNA interactions, which lowers tRNA binding affinity, representing the first step of tRNA release. Kirromycin binds within the D1-D3 interface, sterically blocking its closure, but does not prevent hydrolysis. The resulting increased flexibility of switch 1 explains why it is not resolved in kirromycin-bound structures.  相似文献   

4.
Dynamic interactions between transposable elements and their hosts   总被引:1,自引:0,他引:1  
Transposable elements (TEs) have a unique ability to mobilize to new genomic locations, and the major advance of second-generation DNA sequencing has provided insights into the dynamic relationship between TEs and their hosts. It now is clear that TEs have adopted diverse strategies - such as specific integration sites or patterns of activity - to thrive in host environments that are replete with mechanisms, such as small RNAs or epigenetic marks, that combat TE amplification. Emerging evidence suggests that TE mobilization might sometimes benefit host genomes by enhancing genetic diversity, although TEs are also implicated in diseases such as cancer. Here, we discuss recent findings about how, where and when TEs insert in diverse organisms.  相似文献   

5.
Import of nucleus-encoded tRNAs into the mitochondria of the kinetoplastid protozoon Leishmania involves recognition of specific import signals by the membrane-bound import machinery. Multiple signals on different tRNA domains may be present, and further, importable RNAs interact positively (Type I) or negatively (Type II) with one another at the inner membrane in vitro. By co-transfection assays, it is shown here that tRNATyr (Type I) transiently stimulates the rate of entry of tRNAIle (Type II) into Leishmania mitochondria in transfected cells, and conversely, is inhibited by tRNAIle. Truncation and mutagenesis experiments led to the co-localization of the effector and import activities of tRNATyr to the D domain, and those of tRNAIle to the variable region–T domain (V-T region), indicating that both activities originate from a single RNA–receptor interaction. A third tRNA, human tRNALys, is imported into Leishmania mitochondria in vitro as well as in vivo. This tRNA has Type I and Type II motifs in the D domain and the V-T region, respectively, and shows both Type I and Type II effector activities. Such dual-type tRNAs may interact simultaneously with the Type I and Type II binding sites of the inner membrane import machinery.  相似文献   

6.
The structure of the human mitochondrial (hs mt) tRNALeu(UUR) features several domains that are predicted to exhibit limited thermodynamic stability. An elevated frequency of disease-related mutations within these domains suggests a link between structural instability and the functional effects of pathogenic mutations. A series of tRNAs featuring mutations within the D and anticodon stems were prepared and investigated using nuclease probing. Structural mapping studies indicated that these domains were partially denatured for the wild type (WT) hs mt tRNALeu(UUR) and were significantly stabilized by mutations introducing additional or stronger base pairs into the stem regions. In addition, trends in the aminoacylation activities of the D stem mutants suggested that the loose structure is required for function, with mutants displaying the most ordered structures exhibiting the lowest levels of aminoacylation activity. A pronounced interdependence of the structures of the anticodon and D stems was observed, with mutations strengthening the D stem stabilizing the anticodon stem and vice versa. The existence of strong interdomain communication was further elucidated with a mutant of hs mt tRNALeu(UUR) containing a stabilized D stem and a pathogenic mutation that disrupted the anticodon stem. Strengthening the structure of the D stem completely restored the function of the disease-related mutant to WT levels, indicating that propagated structural weaknesses contribute to the functional deactivation of this tRNA by mutations.  相似文献   

7.
Elongation factor Tu (EF-Tu) belongs to the family of GTP-binding proteins and requires elongation factor Ts (EF-Ts) for nucleotide exchange. Crystal structures suggested that one of the salient features in the EF-Tu x EF-Ts complex is a conformation change in the switch II region of EF-Tu that is initiated by intrusion of Phe81 of EF-Ts between His84 and His118 of EF-Tu and may result in a destabilization of Mg2+ coordination and guanine nucleotide release. In the present paper, the contribution of His84 to nucleotide release was studied by pre-steady-state kinetic analysis of nucleotide exchange in mutant EF-Tu in which His84 was replaced by Ala. Both intrinsic and EF-Ts-catalyzed nucleotide release was affected by the mutation, resulting in a 10-fold faster spontaneous GDP release and a 4-fold faster EF-Ts-catalyzed release of GTP and GDP. Removal of Mg2+ from the EF-Tu x EF-Ts complex increased the rate constant of GDP release 2-fold, suggesting a small contribution to nucleotide exchange. Together with published data on the effects of mutations interfering with other putative interactions between EF-Tu and EF-Ts, the results suggest that each of the contacts in the EF-Tu x EF-Ts complex alone contributes moderately to nucleotide destabilization, but together they act synergistically to bring about the overall 60,000-fold acceleration of nucleotide exchange in EF-Tu by EF-Ts.  相似文献   

8.
Elongation factor Tu (EF-Tu) exhibits significant specificity for the different elongator tRNA bodies in order to offset its variable affinity to the esterified amino acid. Three X-ray cocrystal structures reveal that while most of the contacts with the protein involve the phosphodiester backbone of tRNA, a single hydrogen bond is observed between the Glu390 and the amino group of a guanine in the 51-63 base pair in the T-stem of tRNA. Here we show that the Glu390Ala mutation of Thermus thermophilus EF-Tu selectively destabilizes binding of those tRNAs containing a guanine at either position 51 or 63 and that mutagenesis of the 51-63 base pair in several tRNAs modulates their binding affinities to EF-Tu. A comparison of Escherichia coli tRNA sequences suggests that this specificity mechanism is conserved across the bacterial domain. While this contact is an important specificity determinant, it is clear that others remain to be identified.  相似文献   

9.
A simplified method for the separation of a kirromycin-sensitive tufB-encoded elongation factor Tu (EF-TuBs) from a kirromycin-resistant tufA product (EF-TuAr) was obtained by exploiting the specific increase of negative [corrected] charges induced by the antibiotic, resulting in a retarded elution of kirromycin-bound EF-TuBs on ionic chromatography. The kirromycin-free EF-TuBs is active in poly(Phe) synthesis and shows similar properties to EF-TuAsBs. As expected for these two distinct species, the dissociation of the EF-TuArBs.GTP complex in the presence of kirromycin shows a biphasic curve; in contrast, a monophasic GTP dissociation rate was found for a combination of two mutated EF-Tu species, EF-TuArBo, revealing the existence of intermolecular interactions. These observations prove for the first time the existence of cooperative phenomena between EF-Tu species in vitro, as suggested earlier by in vivo experiments.  相似文献   

10.
J C Liu  M Liu    J Horowitz 《RNA (New York, N.Y.)》1998,4(6):639-646
Escherichia coli tRNA(Val) with pyrimidine substitutions for the universally conserved 3'-terminal adenine can be readily aminoacylated. It cannot, however, transfer valine into polypeptides. Conversely, despite being a poor substrate for valyl-tRNA synthetase, tRNA(Val) with a 3'-terminal guanine is active in in vitro polypeptide synthesis. To better understand the function of the 3'-CCA sequence of tRNA in protein synthesis, the effects of systematically varying all three bases on formation of the Val-tRNA(Val):EF-Tu:GTP ternary complex were investigated. Substitutions at C74 and C75 have no significant effect, but replacing A76 with pyrimidines decreases the affinity of valyl-tRNA(Val) for EF-Tu:GTP, thus explaining the inability of these tRNA(Val) variants to function in polypeptide synthesis. Valyl-tRNA(Val) terminating in 3'-guanine is readily recognized by EF-TU:GTP. Dissociation constants of the EF-Tu:GTP ternary complexes with valine tRNAs having nucleotide substitutions at the 3' end increase in the order adenine < guanine < uracil; EF-Tu has very little affinity for tRNA terminating in 3' cytosine. Similar observations were made in studies of the interaction of 3' end mutants of E. coli tRNA(Ala) and tRNA(Phe) with EF-Tu:GTP. These results indicate that EF-Tu:GTP preferentially recognizes purines and discriminates against pyrimidines, especially cytosine, at the 3' end of aminoacyl-tRNAs.  相似文献   

11.
Environmental signals can profoundly affect reproductive behavior, physiology and responses to steroids. One consequence of nutritional or temperature stress is altered plasma concentrations of thyroid hormone. Recent in vivo and in vitro data indicate that manipulations of estrogen and thyroid hormone levels can alter each other's functions. One possible mechanism for interaction may be that thyroid and estrogen receptors bind to parts of the same hormone response elements of target genes and compete with each other, thus serving to integrate environmental signals with neuroendocrine responses.  相似文献   

12.
There is evidence that tRNA bodies have evolved to reduce differences between aminoacyl-tRNAs in their affinity to EF-Tu. Here, we study the kinetics of incorporation of L-amino acids (AAs) Phe, Ala allyl-glycine (aG), methyl-serine (mS), and biotinyl-lysine (bK) using a tRNAAla-based body (tRNAAlaB) with a high affinity for EF-Tu. Results are compared with previous data on the kinetics of incorporation of the same AAs using a tRNAPheB body with a comparatively low affinity for EF-Tu. All incorporations exhibited fast and slow phases, reflecting the equilibrium fraction of AA-tRNA in active ternary complex with EF-Tu:GTP before the incorporation reaction. Increasing the concentration of EF-Tu increased the amplitude of the fast phase and left its rate unaltered. This allowed estimation of the affinity of each AA-tRNA to EF-Tu:GTP during translation, showing about a 10-fold higher EF-Tu affinity for AA-tRNAs formed from the tRNAAlaB body than from the tRNAPheB body. At ∼1 µM EF-Tu, tRNAAlaB conferred considerably faster incorporation kinetics than tRNAPheB, especially in the case of the bulky bK. In contrast, the swap to the tRNAAlaB body did not increase the fast phase fraction of N-methyl-Phe incorporation, suggesting that the slow incorporation of N-methyl-Phe had a different cause than low EF-Tu:GTP affinity. The total time for AA-tRNA release from EF-Tu:GDP, accommodation, and peptidyl transfer on the ribosome was similar for the tRNAAlaB and tRNAPheB bodies. We conclude that a tRNA body with high EF-Tu affinity can greatly improve incorporation of unnatural AAs in a potentially generalizable manner.  相似文献   

13.
14.
Summary Ribosomal mutants (rpsD) which are associated with a generally increased translational ambiguity were investigated for their effects in vivo on individual tRNA species using suppressor tRNAs as models. It was found that nonsense suppression is either increased, unaffected or decreased depending on the codon context and the rpsD allele involved as well as the nature of the suppressor tRNA. Missense suppression of AGA and AGG by glyT(SuAGA/G) tRNA as well as UGG by glyT(SuUGG-8) tRNA is unaffected whereas suppression of UGG by glyT(SuUGA/G) or glyV(SuUGA/G) tRNA is decreased in the presence of an rpsD mutation. The effects on suppressor tRNA are thus not correlated with the ribosomal ambiguity (Ram) phenotype of the rpsD mutants used in this study. It is suggested that the mutationally altered ribosomes are changed in functional interactions with the suppressor tRNA itself rather than with the competing translational release factor(s) or cognate aminoacyl tRNA. The structure of suppressor tRNA, particularly the anticodon loop, and the suppressed codon as well as the codon context determine the allele specific functional interactions with these ribosomal mutations.  相似文献   

15.
Escherichia coli elongation factor (EF-Tu) and the corresponding mammalian mitochondrial factor, EF-Tumt, show distinct differences in their affinities for guanine nucleotides and in their interactions with elongation factor Ts (EF-Ts) and mitochondrial tRNAs. To investigate the roles of the three domains of EF-Tu in these differences, six chimeric proteins were prepared in which the three domains were systematically switched. E. coli EF-Tu binds GDP much more tightly than EF-Tumt. This difference does not reside in domain I alone but is regulated by interactions with domains II and III. All the chimeric proteins formed ternary complexes with GTP and aminoacyl-tRNA although some had an increased or decreased activity in this assay. The activity of E. coli EF-Tu but not of EF-Tumt is stimulated by E. coli EF-Ts. The presence of any one of the domains of EF-Tumt in the prokaryotic factor reduced its interaction with E. coli EF-Ts 2-3-fold. In contrast, the presence of any of the three domains of E. coli EF-Tu in EF-Tumt allowed the mitochondrial factor to interact with bacterial EF-Ts. This observation indicates that even domain II which is not in contact with EF-Ts plays an important role in the nucleotide exchange reaction. EF-Tsmt interacts with all of the chimeras produced. However, with the exception of domain III exchanges, it inhibits the activities of the chimeras indicating that it could not be productively released to allow formation of the ternary complex. The unique ability of EF-Tumt to promote binding of mitochondrial Phe-tRNAPhe to the A-site of the ribosome resides in domains I and II. These studies indicate that the interactions of EF-Tu with its ligands is a complex process involving cross-talk between all three domains.  相似文献   

16.
Gene regulation involves various cis-regulatory elements that can act at a distance. They may physically interact each other or with their target genes to exert their effects. Such interactions are beginning to be uncovered in the imprinted Igf2/H19 domain.(1) The differentially methylated regions (DMRs), containing insulators, silencers and activators, were shown to have physical contacts between them. The interactions were changeable depending on their epigenetic state, presumably enabling Igf2 to move between an active and a silent chromatin domain. The study gives us a novel view on how regulatory elements influence gene expression and how epigenetic modifications modulate their long-range effects.  相似文献   

17.
The reactions of Pt(II) complexes, cis-[Pt(NH3)2Cl2], [Pt(terpy)Cl]+, [Pt(terpy)(S-cys)]2+, and [Pt(terpy)(N7-guo)]2+, where terpy=2,2':6',2'-terpyridine, S-cys=L-cysteine, and N7-guo=guanosine, with some biologically relevant ligands such as guanosine-5'-monophosphate (5'-GMP), L-cysteine, glutathione (GSH) and some strong sulfur-containing nucleophiles such as diethyldithiocarbamate (dedtc), thiosulfate (sts), and thiourea (tu), were studied in aqueous 0.1 M Hepes at pH of 7.4 using UV-vis, stopped-flow spectrophotometry, and 1H NMR spectroscopy.  相似文献   

18.
The mitochondrial genomes of a wide variety of species contain an insufficient number of functional tRNA genes, and translation of mitochondrial mRNAs is sustained by import of nucleus-encoded tRNAs. In Leishmania, transfer of tRNAs across the inner membrane can be regulated by positive and negative interactions between them. To define the factors involved in such interactions, a large multisubunit complex (molecular mass, approximately 640 kDa) from the inner mitochondrial membrane of the kinetoplastid protozoon Leishmania, consisting of approximately 130-A particles, was isolated. The complex, when incorporated into phospholipid vesicles, induced specific, ATP- and proton motive force-dependent transfer of Leishmania tRNA(Tyr) as well as of oligoribonucleotides containing the import signal YGGYAGAGC. Moreover, allosteric interactions between tRNA(Tyr) and tRNA(Ile) were observed in the RNA import complex-reconstituted system, indicating the presence of primary and secondary tRNA binding sites within the complex. By a combination of antibody inhibition, photochemical cross-linking, and immunoprecipitation, it was shown that binding of tRNA(Ile) to a 21-kDa component of the complex is dependent upon tRNA(Tyr), while binding of tRNA(Tyr) to a 45-kDa component is inhibited by tRNA(Ile). This "ping-pong" mechanism may be an effective means to maintain a balanced tRNA pool for mitochondrial translation.  相似文献   

19.
Ko YG  Park H  Kim S 《Proteomics》2002,2(9):1304-1310
Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to their cognate tRNAs, thereby ensuring the faithful translation of genetic code. In addition to their enzymatic function, these enzymes have been discovered to regulate various cellular functions such as tRNA export, ribosomal RNA synthesis, apoptosis, inflammation and angiogenesis in mammalian. The insights into the noncanonical activities of these enzymes have been obtained from their unique cellular localization, interacting partners, isoform generation and expression control. Mammalian ARSs also form a macromolecular protein complex with a few auxiliary factors. Although the physiological significance of this complex is poorly understood, it also supports the potential of mammalian ARSs as sophisticated multifunctional proteins for regulating various cellular procedures. In this review, the novel regulatory activities of mammalian ARSs will be discussed in different biological processes.  相似文献   

20.
We isolated several mutants with nucleotide substitutions in alanine tRNA (tRNAAla) that resulted in glutamine tRNA (tRNAGli) acceptor identity in Escherichia coli. These substitutions were in three regions of tRNA structure not previously associated with tRNAGln acceptor identity. Only the phosphate-sugar backbone moieties of these nucleotides interact with the enzyme in the previously determined X-ray crystal structure of the complex between tRNAGln and glutaminyl-tRNA synthetase. We conclude that these sequence-dependent phosphate-sugar backbone interactions contribute to tRNAGln identity, and argue that the interactions help communicate enzyme recognition of the anticodon to the acceptor end of the tRNA and the catalytic center of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号