共查询到20条相似文献,搜索用时 0 毫秒
1.
Nicole Dennhart Linda M.M. Weigang Maho Fujiwara Tamo Fukamizo Karen Skriver Thomas Letzel 《Journal of biotechnology》2009,143(4):274-283
A 26 kDa endochitinase from barley seeds was enzymatically characterized exclusively by electrospray ionization mass spectrometry (ESI-MS). At first, oligosaccharide hydrolysis catalyzed by the barley chitinase was monitored in real-time by ESI-MS. The reaction time-course obtained by ESI-MS monitoring was found to be consistent with the data obtained earlier by HPLC, and the quantitative profile was successfully simulated by kinetic modeling of the enzymatic hydrolysis. It is obvious that the real-time monitoring method by ESI-MS allows a faster and cheaper determination of the chitinase activity with unlabeled substrate. Further, the enzymatic activity of the E67Q mutant of the barley chitinase was analyzed and the role of Glu67 was discussed comparing the mass spectra of enzyme protein obtained in native and in denatured conditions. Then it was determined that the observed loss of the enzymatic activity in E67Q is definitely caused by a point mutation of Glu67 but not due to partial unfolding of the mutated enzyme. Finally, association constants of enzyme–oligosaccharide complexes were calculated from Scatchard plots obtained by mass spectra. The binding free energy values obtained for E67Q were found to be comparable to those previously obtained in liquid phase, but less dependent upon the chain length of the oligosaccharides. To our knowledge, this study is the first enzymatic characterization of chitinase exclusively by such an innovative ESI-MS system. 相似文献
2.
Higher plants contain several constitutively expressed proteins for protection against infections by viruses, bacteria and fungi. Here we report the crystallization of a polypeptide with antifungal activity, a 26,000 dalton endochitinase from barley (Hordeum vulgare L.) seeds, in a form suitable for high-resolution X-ray analysis. Crystals were grown by vapor diffusion under several different conditions. The best crystals, obtained with ammonium sulfate as the precipitant, belong to the tetragonal space group P4(1)2(1)2 (P4(3)2(1)2), with cell dimensions a = b = 62.9 A and c = 96.0 A. The cell dimensions are consistent with one endochitinase molecule per asymmetric unit, and the crystals diffract to at least 2.0 A resolution. 相似文献
3.
Höije A Sandström C Roubroeks JP Andersson R Gohil S Gatenholm P 《Carbohydrate research》2006,341(18):2959-2966
(Glucurono)arabinoxylans were extracted from barley husks and degraded with endo-beta-xylanase or subjected to periodate oxidation. The released oligosaccharide fragments were separated and isolated on Biogel-P2, and their structures were determined by NMR spectroscopy. The oligosaccharides identified consisted of beta-d-(1-->4)-linked xylopyranosyl residues, of which some were substituted at O-3 with alpha-l-arabinofuranosyl groups or at O-2 with 4-O-methylglucuronic acid. In addition to these substituents, a disaccharide side chain, 2-O-beta-d-xylopyranosyl-alpha-l-arabinofuranose, attached at position O-3 of the main chain, was proved to exist in arabinoxylan from barley husks. The compound was fully characterized with NMR, and all (1)H and (13)C NMR signals were assigned. The arabinose to xylose ratio was low (approximately 0.2) and no 2,3-disubstitution existed. No blocks of substituted xylose residues could be observed along the main chain. 相似文献
4.
5.
The glycoproteins of the cell walls of Chlamydomonas are lysed during the reproductive cycle by proteases (autolysins) which are specific for their substrates. The autolysin which digests the wall of sporangia to liberate the zoospore daughter cells in the vegetative life cycle is a collagenase-like enzyme which attacks only selected domains in its wall substrates containing (hydroxy)-proline clusters. Cell-wall fractions obtained by salt-extraction (NaClO4) and oxidizing agents (NaClO2) and the insoluble residue were tested as substrates. The most-crosslinked insoluble inner part of the wall is the best substrate for the sporangia autolysin. Oligosaccharides obtained from the insoluble cell-wall fraction of sporangia by hydrolysis with Ba(OH)2 inhibit autolysin action. We conclude that the oligosaccharide side chains of wall substrates are essential for forming the reactive enzyme-substrate complex.Abbreviations CSW
chlorite-soluble cell-wall fraction
- ICW
insoluble cell-wall fraction
- PSW
salt-soluble fraction
- SDS-PAGE
sodium dodecyl sulfate-polyacrylamide gel electrophoresis 相似文献
6.
7.
8.
Hubert H. Thole 《The Journal of steroid biochemistry and molecular biology》1994,48(5-6):463-466
Fragments of 32, 26 and 17 kDa of the porcine estradiol receptor were prepared, all of which contain the ligand-binding site. While dimers of the 32 and 26 kDa fragments like those of intact receptor can be dissociated by protonation, the dimer of the 17 kDa fragment obtained by trypsination of the 26 kDa fragment is resistant to lowering the pH from 7.0 to 6.5 and below. Its dissociation can be achieved by 0.5 M MgCl2 at pH 7.0. All fragments are recognized by the MAB 13H2 in Western blots. The antibody also reacts with native receptor and the three fragments, both in their monomer and dimer states. The combining ratios of antibody with receptor, or its fragments, in the monomer and dimer states and the weakening of the estradiol-receptor bond by antibody attachment support the back to back and head to toe model of receptor dimers. 相似文献
9.
Experimental data and homology modeling suggest a structure for the exofacial configuration of the Glut1 glucose transporter in which 8 transmembrane helices form an aqueous cavity in the bilayer that is stabilized by four outer helices. The role of transmembrane segment 6, predicted to be an outer helix in this model, was examined by cysteine-scanning mutagenesis and the substituted cysteine accessibility method using the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzene-sulfonate (pCMBS). A fully functional Glut1 molecule lacking all 6 native cysteine residues was used as a template to produce a series of 21 Glut1 point mutants in which each residue along helix 6 was individually changed to cysteine. These mutants were expressed in Xenopus oocytes, and their expression levels, functional activities, and sensitivities to inhibition by pCMBS were determined. Cysteine substitutions at Leu(204) and Pro(205) abolished transport activity, whereas substitutions at Ile(192), Pro(196), Gln(200), and Gly(201) resulted in inhibition of activity that ranged from approximately 35 to approximately 80%. Cysteine substitutions at Leu(188), Ser(191), and Leu(199) moderately augmented specific transport activity relative to the control. These results were dramatically different from those previously reported for helix 12, the structural cognate of helix 6 in the pseudo-symmetrical structural model, for which none of the 21 single-cysteine mutants exhibited reduced activity. Only the substitution at Leu(188) conferred inhibition by pCMBS, suggesting that most of helix 6 is not exposed to the external solvent, consistent with its proposed role as an outer helix. These data suggest that helix 6 contains amino acid side chains that are critical for transport activity and that structurally analogous outer helices may play distinct roles in the function of membrane transporters. 相似文献
10.
Cavada BS Moreno FB da Rocha BA de Azevedo WF Castellón RE Goersch GV Nagano CS de Souza EP Nascimento KS Radis-Baptista G Delatorre P Leroy Y Toyama MH Pinto VP Sampaio AH Barettino D Debray H Calvete JJ Sanz L 《The FEBS journal》2006,273(17):3962-3974
Parkia platycephala lectin 2 was purified from Parkia platycephala (Leguminosae, Mimosoideae) seeds by affinity chromatography and RP-HPLC. Equilibrium sedimentation and MS showed that Parkia platycephala lectin 2 is a nonglycosylated monomeric protein of molecular mass 29 407+/-15 Da, which contains six cysteine residues engaged in the formation of three intramolecular disulfide bonds. Parkia platycephala lectin 2 agglutinated rabbit erythrocytes, and this activity was specifically inhibited by N-acetylglucosamine. In addition, Parkia platycephala lectin 2 hydrolyzed beta(1-4) glycosidic bonds linking 2-acetoamido-2-deoxy-beta-D-glucopyranose units in chitin. The full-length amino acid sequence of Parkia platycephala lectin 2, determined by N-terminal sequencing and cDNA cloning, and its three-dimensional structure, established by X-ray crystallography at 1.75 A resolution, showed that Parkia platycephala lectin 2 is homologous to endochitinases of the glycosyl hydrolase family 18, which share the (betaalpha)8 barrel topology harboring the catalytic residues Asp125, Glu127, and Tyr182. 相似文献
11.
Protein farnesyltransferase (FTase) requires both Zn(2+) and Mg(2+) for efficient catalysis of the formation of a thioether bond between carbon-1 of farnesyldiphosphate (FPP) and the cysteine thiolate contained in the carboxy-terminal CaaX sequence of target proteins. Millimolar concentrations of Mg(2+) accelerate catalysis by as much as 700-fold in FTase. Although FTase lacks a typical DDXXD Mg(2+) binding site found in other enzymes that use Mg(2+) for diphosphate stabilization, D352beta in FTase has been implicated in binding Mg(2+) (Pickett et al. (2003) J. Biol. Chem. 278, 51243). Structural studies demonstrate that the diphosphate (PPi) group of FPP resides in a binding pocket made up of highly positively charged side chains, including residues R291beta and K294beta, prior to formation of an active conformation. Analysis of the Mg(2+) dependence of FTase mutants demonstrates that these positively charged residues decrease the Mg(2+) affinity up to 40-fold. In addition, these residues enhance the farnesylation rate constant by almost 80-fold in the presence of Mg(2+), indicating that these residues are not simply displaced by Mg(2+) during the reaction. Mutations at R291beta increase the pK(a) observed in the magnesium affinity, suggesting that this arginine stabilizes the deprotonated form of the PPi leaving group. Furthermore, binding and catalysis data using farnesylmonophosphate (FMP) as a substrate indicate that the side chains of R291beta and K294beta interact mainly with the beta-phosphate of FPP during the chemical reaction. These results allow refinement of the model of the Mg(2+) binding site and demonstrate that positive charge stabilizes the developing charge on the diphosphate leaving group. 相似文献
12.
13.
14.
Pyrimidoacridinetriones (PATs) are a new group of highly active antitumor compounds. It seems reasonable to assume that, like for some other acridine derivatives, intercalation into DNA is a necessary, however not a sufficient condition for antitumor activity of these compounds. Rational design of new compounds of this chemotype requires knowledge about the structure of the intercalation complex, as well as about interactions responsible for its stability. Computer simulation techniques such as molecular dynamics (MD) may provide valuable information about these problems. The results of MD simulations performed for three rationally selected PATs are presented in this paper. The compounds differ in the number and position of side chains. Each of the compounds was simulated in two systems: i) in water, and ii) in the intercalation complex with the dodecamer duplex d(GCGCGCGCGCGC)2. The orientation of the side chain in relation to the ring system is determined by the position of its attachment. Orientation of the ring system inside the intercalation cavity depends on the number and position of side chain(s). The conformations of the side chain(s) of all PATs studied in the intercalation complex were found to be very similar to those observed in water. 相似文献
15.
An undecaprenyl diphosphate synthase fraction, which was free of other prenyltransferases and was active without the addition of detergent or phospholipid, was obtained by Sephadex G-100 chromatography of cell-free extracts of Micrococcus luteus B-P 26 cells. The addition of small amounts of Triton X-100 to this fraction caused a marked loss of the enzyme activity, but the activity was gradually restored as further detergent was added. When the enzyme fraction was chromatographed on DEAE-cellulose, the synthase was partially purified, but the activity was not detected unless assayed with addition of the detergent or a lipid fraction of this bacterium. Among the three phospholipids isolated from this bacterium, cardiolipin and phosphatidylglycerol had a marked effect in activating lipid-depleted undecaprenyl diphosphate synthase, but O-lysylphosphatidylglycerol, which occurs prominently in this bacterium, had little effect. 相似文献
16.
Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome 总被引:1,自引:0,他引:1
下载免费PDF全文

Tongaonkar P Chen L Lambertson D Ko B Madura K 《Molecular and cellular biology》2000,20(13):4691-4698
The targeting of proteolytic substrates is accomplished by a family of ubiquitin-conjugating (E2) enzymes and a diverse set of substrate recognition (E3) factors. The ligation of a multiubiquitin chain to a substrate can promote its degradation by the proteasome. However, the mechanism that facilitates the translocation of a substrate to the proteasome in vivo is poorly understood. We have discovered that E2 proteins, including Ubc1, Ubc2, Ubc4, and Ubc5, can interact with the 26S proteasome. Significantly, the interaction between Ubc4 and the proteasome is strongly induced by heat stress, consistent with the requirement for this E2 for efficient stress tolerance. A catalytically inactive derivative of Ubc4 (Ubc4(C86A)), which causes toxicity in yeast cells, can also bind the proteasome. Purified proteasomes can ligate ubiquitin to a test substrate without the addition of exogenous E2 protein, suggesting that the ubiquitylation of some proteolytic substrates might be directly coupled to degradation by the proteasome. 相似文献
17.
Threonine accumulation in the seeds of a barley mutant with an altered aspartate kinase 总被引:1,自引:0,他引:1
Barley (Hordeum vulgare L.) mutants altered in the regulation of synthesis of aspartate-derived amino acids were sought by screening embryos for growth on a medium containing lysine plus threonine. One mutant, Rothamsted 2501, was selected with good growth. From the segregation of resistance in the following generations, it was concluded that the resistance was conferred by a dominant gene, Lt1. No homozygous Lt1/Lt1 fertile plants have been recovered. Partially purified aspartate kinase preparations from resistant and sensitive plants were separated on DEAE-cellulose chromatography into three peaks of activity (I, II, III) and the feedback regulatory properties of these peaks determined. These peaks are considered to be three isozymic forms of aspartate kinase, one predominantly sensitive to threonine and two sensitive to lysine or lysine plus S-adenosyl methionine. The feedback characteristics of one of the peaks of aspartate kinase activity from resistant plants were changed such that lysine was half-maximally inhibitory at 10 rather than 0.4mm. Increases in the concentrations of the free pools of threonine (4×) and methionine (2×) were measured in young plants grown on a basal medium. Threonine in the soluble fraction of mature seeds from resistant plants was increased from 0.8 to 9.6% of the total threonine content. The total content of both threonine and methionine of the seeds was increased by 6% compared with grain of similar nitrogen content.S.E.R. acknowledges the receipt of a Council of Europe Scholarship through The British Council. Part of this was also supported by EEC Grant 473. 相似文献
18.
Substrate interaction at an iron-sulfur face of the FeMo-cofactor during nitrogenase catalysis 总被引:2,自引:0,他引:2
Barney BM Igarashi RY Dos Santos PC Dean DR Seefeldt LC 《The Journal of biological chemistry》2004,279(51):53621-53624
Nitrogenase catalyzes biological dinitrogen fixation, the reduction of N(2) to 2NH(3). Recently, the binding site for a non-physiological alkyne substrate (propargyl alcohol, HC triple bond C-CH(2)OH) was localized to a specific Fe-S face of the FeMo-cofactor approached by the MoFe protein amino acid alpha-70(Val). Here we provide evidence to indicate that the smaller alkyne substrate acetylene (HC triple bond CH), the physiological substrate dinitrogen, and its semi-reduced form hydrazine (H(2)N-NH(2)) interact with the same Fe-S face of the FeMo-cofactor. Hydrazine is a relatively poor substrate for the wild-type (alpha-70(Val)) MoFe protein. Substitution of the alpha-70(Val) residue by an amino acid having a smaller side chain (alanine) dramatically enhanced hydrazine reduction activity. Conversely, substitution of alpha-70(Val) by an amino acid having a larger side chain (isoleucine) significantly lowered the capacity of the MoFe protein to reduce dinitrogen, hydrazine, or acetylene. 相似文献
19.
Accessibility of nitroxide side chains: absolute Heisenberg exchange rates from power saturation EPR
下载免费PDF全文

In site-directed spin labeling, the relative solvent accessibility of spin-labeled side chains is taken to be proportional to the Heisenberg exchange rate (W(ex)) of the nitroxide with a paramagnetic reagent in solution. In turn, relative values of W(ex) are determined by continuous wave power saturation methods and expressed as a proportional and dimensionless parameter Pi. In the experiments presented here, NiEDDA is characterized as a paramagnetic reagent for solvent accessibility studies, and it is shown that absolute values of W(ex) can be determined from Pi, and that the proportionality constant relating them is independent of the paramagnetic reagent and mobility of the nitroxide. Based on absolute exchange rates, an accessibility factor is defined (0 < rho < 1) that serves as a quantitative measure of side-chain solvent accessibility. The accessibility factors for a nitroxide side chain at 14 different sites in T4 lysozyme are shown to correlate with a structure-based accessibility parameter derived from the crystal structure of the protein. These results provide a useful means for relating crystallographic and site-directed spin labeling data, and hence comparing crystal and solution structures. 相似文献
20.
PaAMP is a small seed-specific antimicrobial protein from pokeweeds. It has a cysteine-knot fold with a positive patch and a hydrophobic surface. Site-specific mutagenesis was performed to study the roles of these two domains in antimicrobial activity and we found that the mutations in the hydrophobic surface had a more profound effect than that in the positive patch. A protein-membrane interaction was observed with the green fluorescence protein-PaAMP (GFP-AMP) fusion protein. The mutations that replace the amino acid residues forming hydrophobic surface with neutral residues abolished the interaction of PaAMP with the membrane and the binding of PaAMP to fungal sphingolipids while ergosterol enhanced the binding, suggesting that the hydrophobic surface was required for the interaction between PaAMP and fungal plasma membrane lipid raft. 相似文献