共查询到20条相似文献,搜索用时 0 毫秒
1.
A growing number of integral inner nuclear membrane (INM) proteins have been implicated in diverse cellular functions. Man1, an INM protein, has recently been shown to regulate transforming growth factor (Tgf) beta superfamily signaling by interacting with receptor-associated Smads. However, the in vivo roles of Man1 have not been fully characterized. Here, we show that Man1 regulates vascular remodeling by analyzing Man1-deficient embryos lacking the Smad interacting domain. Man1-deficient embryos die at midgestation because of defects in embryonic vasculature; the primary capillary plexus forms, but subsequent remodeling is perturbed. It has been proposed that the angiogenesis process is divided into two balanced phases, the activation and resolution/maturation phases, both of which are regulated by Tgfbeta1. We have demonstrated, in Man1-deficient embryos, the expression of Tgfb1 is upregulated and Smad2/3 signaling is abnormally activated, resulting in increased extracellular matrix deposition, a hallmark of the resolution phase of angiogenesis. We have also showed that the recruitment of mural cells to the vascular wall is severely disturbed in mutants, which may lead to disruption of intercellular communication between endothelial and mural cells required for proper vascular remodeling. These results have revealed a novel role for Man1 in angiogenesis and provide the first evidence that vascular remodeling can be regulated at the INM through the interaction between Man1 and Smads. 相似文献
2.
3.
Drosophila Nemo antagonizes BMP signaling by phosphorylation of Mad and inhibition of its nuclear accumulation 总被引:2,自引:0,他引:2
Zeng YA Rahnama M Wang S Sosu-Sedzorme W Verheyen EM 《Development (Cambridge, England)》2007,134(11):2061-2071
Drosophila Nemo is the founding member of the Nemo-like kinase (Nlk) family of serine/threonine protein kinases that are involved in several Wnt signal transduction pathways. Here we report a novel function for Nemo in the inhibition of bone morphogenetic protein (BMP) signaling. Genetic interaction studies demonstrate that nemo can antagonize BMP signaling and can inhibit the expression of BMP target genes during wing development. Nemo can bind to and phosphorylate the BMP effector Mad. In cell culture, phosphorylation by Nemo blocks the nuclear accumulation of Mad by promoting export of Mad from the nucleus in a kinase-dependent manner. This is the first example of the inhibition of Drosophila BMP signaling by a MAPK and represents a novel mechanism of Smad inhibition through the phosphorylation of a conserved serine residue within the MH1 domain of Mad. 相似文献
4.
Kermit 2/XGIPC, an IGF1 receptor interacting protein, is required for IGF signaling in Xenopus eye development 总被引:2,自引:0,他引:2
GIPC is a PDZ-domain-containing protein identified in vertebrate and invertebrate organisms through its interaction with a variety of binding partners including many membrane proteins. Despite the multiple reports identifying GIPC, its endogenous function and the physiological significance of these interactions are much less studied. We have previously identified the Xenopus GIPC homolog kermit as a frizzled 3 interacting protein that is required for frizzled 3 induction of neural crest in ectodermal explants. We identified a second Xenopus GIPC homolog, named kermit 2 (also recently described as an IGF receptor interacting protein and named XGIPC). Despite its high amino acid similarity with kermit, kermit 2/XGIPC has a distinct function in Xenopus embryos. Loss-of-function analysis indicates that kermit 2/XGIPC is specifically required for Xenopus eye development. Kermit 2/XGIPC functions downstream of IGF in eye formation and is required for maintaining IGF-induced AKT activation. A constitutively active PI3 kinase partially rescues the Kermit 2/XGIPC loss-of-function phenotype. Our results provide the first in vivo loss of function analysis of GIPC in embryonic development and also indicate that kermit 2/XGIPC is a novel component of the IGF pathway, potentially functioning through modulation of the IGF1 receptor. 相似文献
5.
Hiroshi Mamada 《Developmental biology》2009,327(2):497-1978
To clarify the molecular mechanisms of neural development in vertebrates, we analyzed a novel gene, termed nemp1 (nuclear envelope integral membrane protein 1), which is expressed in the Xenopus anterior neuroectoderm at the neurula stage. Nemp1 has a putative signal peptide and five transmembrane domains, but does not have any other known domains. We show that Nemp1 is localized to the inner nuclear membrane (INM) with its evolutionarily conserved C-terminal region facing the nucleoplasm. Both overexpression and knockdown of Nemp1 in Xenopus embryos reduced the expression of early eye marker genes, rax, tbx3, and pax6, and later resulted mainly in severe eye defects at the tailbud stage. In contrast, the expression of a forebrain/midbrain marker, otx2, and a pan-neural marker, sox2, was largely unaffected. Deletion analysis of Nemp1 showed that nuclear envelope-localization of the C-terminal region is necessary for its eye-reducing activity. Furthermore, nemp1 is coexpressed with baf (barrier-to-autointegration factor) in the eye anlagen, and that Nemp1 interacts with BAF through the BAF-binding site in the C-terminal region and this site is required for Nemp1 activity. These data suggest that Nemp1 is involved in the expression of eye marker genes by functioning at the INM at least partly through BAF. 相似文献
6.
MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin 总被引:17,自引:0,他引:17
Lin F Blake DL Callebaut I Skerjanc IS Holmer L McBurney MW Paulin-Levasseur M Worman HJ 《The Journal of biological chemistry》2000,275(7):4840-4847
The "MAN antigens" are polypeptides recognized by autoantibodies from a patient with a collagen vascular disease and localized to the nuclear envelope. We now show that one of the human MAN antigens termed MAN1 is a 82.3-kDa protein with an amino-terminal domain followed by two hydrophobic segments and a carboxyl-terminal tail. The MAN1 gene contains seven protein-coding exons and is assigned to human chromosome 12q14. Its mRNA is approximately 5.5 kilobases and is detected in several different cell types that were examined. Cell extraction experiments show that MAN1 is an integral membrane protein. When expressed in transfected cells, MAN1 is exclusively targeted to the nuclear envelope, consistent with an inner nuclear membrane localization. Protein sequence analysis reveals that MAN1 shares a conserved globular domain of approximately 40 amino acids, which we term the LEM module, with inner nuclear membrane proteins lamina-associated polypeptide 2 and emerin. The LEM module is also present in two proteins of Caenorhabditis elegans. These results show that MAN1 is an integral protein of the inner nuclear membrane that shares the LEM module with other proteins of this subcellular localization. 相似文献
7.
8.
Negative regulation of BMP/Smad signaling by Tob in osteoblasts 总被引:19,自引:0,他引:19
Yoshida Y Tanaka S Umemori H Minowa O Usui M Ikematsu N Hosoda E Imamura T Kuno J Yamashita T Miyazono K Noda M Noda T Yamamoto T 《Cell》2000,103(7):1085-1097
9.
10.
11.
Wolff N Gilquin B Courchay K Callebaut I Worman HJ Zinn-Justin S 《FEBS letters》2001,501(2-3):171-176
Like Duchenne and Becker muscular dystrophies, Emery-Dreifuss muscular dystrophy (EDMD) is characterized by myopathic and cardiomyopathic abnormalities. EDMD has the particularity of being linked to mutations in nuclear proteins. The X-linked form of EDMD is caused by mutations in the emerin gene, whereas autosomal dominant EDMD is caused by mutations in the lamin A/C gene. Emerin colocalizes with lamin A/C in interphase cells, and binds in vitro to lamin A/C. Recent work suggests that lamin A/C might serve as a receptor for emerin. We have undertaken a structural analysis of emerin, and in particular of its N-terminal domain, which is comprised in the emerin segment critical for binding to lamin A/C. We show that region 2-54 of emerin adopts the LEM fold. This fold was originally described in the two N-terminal domains of another inner nuclear membrane protein called lamina-associated protein 2 (LAP2). The existence of a conserved solvent-exposed surface on the LEM domains of LAP2 and emerin is discussed, as well as the nature of a possible common target. 相似文献
12.
Nicole Wagner Annika Weyhersmüller Tamara Schuhmann Georg Krohne 《Developmental biology》2010,339(1):1-724
BMP signaling responses are refined by distinct secreted and intracellular antagonists in different cellular and temporal contexts. Here, we show that the nuclear LEM-domain protein MAN1 is a tissue-specific antagonist of BMP signaling in Drosophila. MAN1 contains two potential Mad-binding sites. We generated MAN1ΔC mutants, harbouring a MAN1 protein that lacks part of the C-terminus including the RNA recognition motif, a putative Mad-binding domain. MAN1ΔC mutants show wing crossvein (CV) patterning defects but no detectable alterations in nuclear morphology. MAN1ΔC pupal wings display expanded phospho-Mad (pMad) accumulation and ectopic expression of the BMP-responsive gene crossveinless-2 (cv-2) indicating that MAN1 restricts BMP signaling. Conversely, MAN1 overexpression in wing imaginal discs inhibited crossvein development and BMP signaling responses. MAN1 is expressed at high levels in pupal wing veins and can be activated in intervein regions by ectopic BMP signaling. The specific upregulation of MAN1 in pupal wing veins may thus represent a negative feedback circuit that limits BMP signaling during CV formation. MAN1ΔC flies also show reduced locomotor activity, and electrophysiology recordings in MAN1ΔC larvae uncover a new presynaptic role of MAN1 at the neuromuscular junction (NMJ). Genetic interaction experiments suggest that MAN1 is a BMP signaling antagonist both at the NMJ and during CV formation. 相似文献
13.
Young-Don Kwak Brandon J. Hendrix Kiminobu Sugaya 《Biochemical and biophysical research communications》2014
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases leading to dementia. Although cytotoxicity of amyloid β peptides has been intensively studied within pathophysiology of AD, the physiological function of amyloid precursor protein (APP) still remains unclarified. We have shown previously that secreted APPα (sAPPα) is associated with glial differentiation of neural stem cells. To elucidate specific mechanisms underlying sAPPα-induced gliogenesis, we examined the potential involvement of bone morphogenic proteins (BMPs). BMPs are one of the factors involved in glial differentiation of neural progenitor cells. When expressions of BMP-2, -4, and -7 were examined, upregulation of BMP-4 expression was solely observed as a result of treatment with sAPPα in a time and dose-dependent manner. Furthermore, the treatment of sAPPα promoted phosphorylation of Smad1/5/8, a downstream signaling mediator of BMP receptors. Interestingly, N-terminal domain of APP (1–205) was sufficient to elevate BMP4 expression, resulting in an increase of glial fibrillary acidic protein (GFAP) expression and phosphorylation of Smad1/5/8. However, the application of APP neutralizing antibody and anti-BMP4 antibody significantly suppressed expression of BMP-4 as well as phosphorylation of Smad1/5/8. Thus, our results indicate that sAPPα-induced gliogenesis is in part mediated by the BMP-4 signaling pathway. We also observed upregulation of BMP-4 and phosphorylation of Smad1/5/8 in APP transgenic mice. It is imperative to unravel the mechanisms underlying the role of BMP-4 during APPα-induced glial differentiation in hope of providing novel prevention or treatment for AD. 相似文献
14.
Checkpoint pathways inhibit cyclin-dependent kinases (Cdks) to arrest cell cycles when DNA is damaged or unreplicated. Early embryonic cell cycles of Xenopus laevis lack these checkpoints. Completion of 12 divisions marks the midblastula transition (MBT), when the cell cycle lengthens, acquiring gap phases and checkpoints of a somatic cell cycle. Although Xenopus embryos lack checkpoints prior to the MBT, checkpoints are observed in cell-free egg extracts supplemented with sperm nuclei. These checkpoints depend upon the Xenopus Chk1 (XChk1)-signaling pathway. To understand why Xenopus embryos lack checkpoints, xchk1 was cloned, and its expression was examined and manipulated in Xenopus embryos. Although XChk1 mRNA is degraded at the MBT, XChk1 protein persists throughout development, including pre-MBT cell cycles that lack checkpoints. However, when DNA replication is blocked, XChk1 is activated only after stage 7, two cell cycles prior to the MBT. Likewise, DNA damage activates XChk1 only after the MBT. Furthermore, overexpression of XChk1 in Xenopus embryos creates a checkpoint in which cell division arrests, and both Cdc2 and Cdk2 are phosphorylated on tyrosine 15 and inhibited in catalytic activity. These data indicate that XChk1 signaling is intact but blocked upstream of XChk1 until the MBT. 相似文献
15.
H Shibuya H Iwata N Masuyama Y Gotoh K Yamaguchi K Irie K Matsumoto E Nishida N Ueno 《The EMBO journal》1998,17(4):1019-1028
Transforming growth factor-beta (TGF-beta) superfamily members elicit signals through stimulation of serine/threonine kinase receptors. Recent studies of this signaling pathway have identified two types of novel mediating molecules, the Smads and TGF-beta activated kinase 1 (TAK1). Smads were shown to mimic the effects of bone morphogenetic protein (BMP), activin and TGF-beta. TAK1 and TAB1 were identified as a MAPKKK and its activator, respectively, which might be involved in the up-regulation of TGF-beta superfamily-induced gene expression, but their biological role is poorly understood. Here, we have examined the role of TAK1 and TAB1 in the dorsoventral patterning of early Xenopus embryos. Ectopic expression of Xenopus TAK1 (xTAK1) in early embryos induced cell death. Interestingly, however, concomitant overexpression of bcl-2 with the activated form of xTAK1 or both xTAK1 and xTAB1 in dorsal blastomeres not only rescued the cells but also caused the ventralization of the embryos. In addition, a kinase-negative form of xTAK1 (xTAK1KN) which is known to inhibit endogenous signaling could partially rescue phenotypes generated by the expression of a constitutively active BMP-2/4 type IA receptor (BMPR-IA). Moreover, xTAK1KN could block the expression of ventral mesoderm marker genes induced by Smad1 or 5. These results thus suggest that xTAK1 and xTAB1 function in the BMP signal transduction pathway in Xenopus embryos in a cooperative manner. 相似文献
16.
17.
18.
Genome-wide screen for inner nuclear membrane protein targeting in Saccharomyces cerevisiae: roles for N-acetylation and an integral membrane protein 下载免费PDF全文
Appropriate nuclear membrane structure is important for all eukaryotic organisms as evidenced by the numerous human diseases and alterations in gene expression caused by inappropriate targeting of proteins to the inner nuclear membrane (INM). We report here the first genome-wide screen to identify proteins functioning in INM targeting. We transformed to near completion the 4850 members of the Saccharomyces cerevisiae deletion collection of unessential genes in the 96-well format with a plasmid encoding a reporter protein, Trm1-II-GFP, which normally resides at the INM. We found that deletion of genes encoding subunits of the N-terminal acetyltransferase, NatC, cause mislocation of Trm1-II-GFP from the INM to the nucleoplasm. Mass spectroscopic analysis indicates that Trm1-II-GFP is N-acetylated. N-terminal mutations of Trm1-II-GFP predicted to ablate N-acetylation cause nucleoplasmic location, whereas a variant with an N-terminal alteration predicted to allow N-acetylation by NatC is located at the INM, providing genetic support that Trm1p-II N-acetylation is necessary for its subnuclear INM location. However, because N-acetylation appears not to be sufficient for INM targeting, it may provide a necessary role for INM targeting by affecting Trm1-II-GFP structure and exposure of cis-acting INM targeting motifs. We also discovered that YIL090W/Ice2p, an integral membrane protein located in the endoplasmic reticulum, is necessary for efficient targeting of Trm1-II-GFP to the INM. YIL090W/Ice2p may serve as a tether for INM proteins or as a regulator of INM tethers. Our methodology can be extrapolated to obtain genome-wide perspectives of mechanisms necessary to achieve appropriate subcellular and/or suborganellar location for any resident protein. 相似文献
19.
ARID domain proteins are members of a highly conserved family involved in chromatin remodeling and cell-fate determination. Dril1 is the founding member of the ARID family and is involved in developmental processes in both Drosophila and Caenorhabditis elegans. We describe the first embryological characterization of this gene in chordates. Dril1 mRNA expression is spatiotemporally regulated and is detected in the involuting mesoderm during gastrulation. Inhibition of dril1 by either a morpholino or an engrailed repressor-dril1 DNA binding domain fusion construct inhibits gastrulation and perturbs induction of the zygotic mesodermal marker Xbra and the organizer markers chordin, noggin, and Xlim1. Xenopus tropicalis dril1 morphants also exhibit impaired gastrulation and axial deficiencies, which can be rescued by coinjection of Xenopus laevis dril1 mRNA. Loss of dril1 inhibits the response of animal caps to activin and secondary axis induction by smad2. Dril1 depletion in animal caps prevents both the smad2-mediated induction of dorsal mesodermal and endodermal markers and the induction of ventral mesoderm by smad1. Mesoderm induction by eFGF is uninhibited in dril1 morphant caps, reflecting pathway specificity for dril1. These experiments identify dril1 as a novel regulator of TGF(beta) signaling and a vital component of mesodermal patterning and embryonic morphogenesis. 相似文献
20.
Mylonis I Drosou V Brancorsini S Nikolakaki E Sassone-Corsi P Giannakouros T 《The Journal of biological chemistry》2004,279(12):11626-11631
During mammalian spermiogenesis, histones are replaced by transition proteins, which are in turn replaced by protamines P1 and P2. P1 protamine contains a short arginine/serine-rich (RS) domain that is highly phosphorylated before being deposited into sperm chromatin and almost completely dephosphorylated during sperm maturation. We now demonstrate that, in elongating spermatids, this phosphorylation is required for the temporal association of P1 protamine with lamin B receptor (LBR), an inner nuclear membrane protein that also possesses a stretch of RS dipeptides at its nucleoplasmic NH(2)-terminal domain. Previous studies have shown that the cellular protein p32 also binds tightly to the unmodified RS domain of LBR. Extending those findings, we now present evidence that p32 prevents phosphorylation of LBR and furthermore that dissociation of this protein precedes P1 protamine association. Our data suggest that docking of protamine 1 to the nuclear envelope is an important intermediate step in spermiogenesis and reveal a novel role for SR protein kinases and p32. 相似文献