首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A relative constancy of the acrophases of human circadian rhythms of autonomic functions was studied. Quantitative assessment was performed for interdaily, interindividual, intragroup, intraindividual, and total changes in the acrophases of the circadian rhythms of 22 parameters of hemodynamics, heart rate control, thermal status, and salivary electrolyte levels under comfortable environmental conditions and during early adaptation to high-altitude hypoxic and hot desert conditions. A biological interpretation was given for different criteria of changes in the acrophases. Phase-constant and phase-shifting circadian rhythms were determined.  相似文献   

2.
The circadian rhythms in plasma ACTH, TSH, LH and PRL were explored in sighted or blind, spayed and estrogen-implanted rats. A marked endogenous circadian rhythmicity was shown to persist in the blind animals for the 4 endocrine rhythms. The endogenous rhythms also kept very close reciprocal phase relationship as in the synchronized state, and they were peaking almost simultaneously, after 60 d. of free-running. Finally the endogenous hormonal rhythm maintained their usual phase relationships with the endogenous activity rhythm, so that the circadian phase of increased hormonal secretion coincided with the circadian resting phase of the sleep/wake rhythm. These results are discussed in the light of the alternate theory of one vs multiple but phase-locked circadian pacemakers driving endocrine and behavioral circadian rhythms.  相似文献   

3.
《Journal of Physiology》2013,107(4):327-334
The relationships between biological rhythms and human aggressive behavior are addressed and discussed in this article: First, circadian rhythms and aggression are considered. Studies of sleep/waking cycle disturbances in aggression are reported. Severe aggression is associated with profound changes in sleep architecture. Causal link is difficult to establish given that sleep disturbance and aggressive behavior could be the symptoms of the same disorder. Specific aggressive behavior developed during sleep is also described. In addition, hormonal circadian rhythm studies are reported. Thus, low cortisol levels, in particular low cortisol variability, are associated with aggressive behavior, suggesting an inhibitory role of cortisol. Testosterone has daily and seasonal fluctuations, but no link with aggression has been established. Neurophysiological underlying mechanisms are discussed in the last part of this article, with a focus on the relationship between brain rhythm and aggression. Increase of slow-wave EEG activities is observed in individuals with aggressive behavior. Epilepsy, as a disease of brain rhythm could be associated with aggressive behavior, in pre, post and inter ictal periodes. Incidence of aggression is not likely more prevalent in epileptic individuals compared to those with other neurological conditions. Ictal changes take the form of profound behavioral changes, including aggressive behavior which has been interpreted as the emergence of “archeical” or innate motor patterns. In this multidisciplinary approach, the main difficulty is the categorization of the differents types of aggression. Finally, taken together, these studies suggest that biological rhythms, especially circadian rhythms, could provide therapeutic benefits to human aggressive behavior. Biological rhythymicity seems to be a necessary permanent training offering interesting perspectives for the adaptation to changes in the field of aggression.  相似文献   

4.
In this study, hypo‐ and hyper‐reproductive conditions, as measured by concentrations of plasma testosterone in male Japanese quail held on long days LD 16:8, were experimentally simulated with injections of 5‐hydroxytryptophan (5‐HTP) and L‐dihydroxyphenylalanine, (L‐DOPA) with 8 h and 12 h phase angle differences between them in intact and melatonin‐treated birds. The effects of these treatments were assessed on the characteristics of the circadian rhythm in the hypothalamic concentration of serotonin (5‐HT), dopamine (DA), and plasma levels of thyroxine (T4), triiodothyronine (T3), and testosterone (T). These rhythms were also studied in sham‐operated (SO), pinealectomized (Px), vehicle‐ (Veh), and melatonin (Mel)‐treated birds. On the basis of the circadian mesors of the testosterone rhythms, three distinct categories could be identified: category A (i.e., normal breeding concentrations of plasma testosterone), which includes control, sham‐operated, and vehicle‐treated groups; category A+ (i.e., concentrations of plasma testosterone higher than that found in normal breeding quail), which includes 12 h, 12 h+vehicle‐treated, and Px quails; and category A? (concentrations of plasma testosterone lower than that found in normal breeding quail), which includes 8 h, melatonin‐, and 12 h+melatonin‐treated groups. It is evident that in normal and hypergonadal conditions (i.e., birds belonging to categories A and A+) the circadian rhythm in hypothalamic serotonin maintained a positive phase angle of about 16 h. In contrast, birds of category A? (i.e., in a hypogonadal condition) exhibited a negative phase angle of about 2 h. The present results clearly suggest that the internal phase relationship between the circadian rhythms in hypothalamic serotonin and dopamine might play a crucial role in strategizing and conferring a particular reproductive status to the birds. The role of circadian mechanisms involving circulating thyroid hormones in conferring reproductive status is completely ruled out, as no definite internal phase angle between these two hormonal rhythms was witnessed vis‐à‐vis different treatment groups. The testosterone peaks always occurred at the same time irrespective of breeding status of the bird, but with significant variation in its amplitude (high in hypergonadal and low in hypogonadal condition). It is suggested that administration of 5‐HTP and L‐DOPA at specific time interval and variation in pineal functions that modulate reproductive responses also alter the circadian pattern (acrophase and amplitude) of hypothalamic serotonin and dopamine, maintaining a specific phase relation between these cycles and breeding status. These findings strengthen our previous reports that a specific circadian phase relation of serotonergic and dopaminergic oscillations regulates reproduction. The present study strongly supports interdependence and specific relation of the two systems (gonadal activity and circadian pattern/phase relation of neural oscillation) in both natural and experimentally simulated conditions.  相似文献   

5.
Changes in circadian rhythms of dROMs, Oxy-ads and SHp during reproductive stages were studied in Comisana ewes. Twelve ewes were divided in two equal groups. The experimental group consisted of ewes undergoing gestation and lactation following artificial insemination and the control group consisted of non-pregnant ewes. Blood samples were collected every 3 h over a 24 h period, 20 days before insemination, on days 100 and 140 of pregnancy, on days 10, 30 and 200 post-partum and during the dry period. In the control group, blood samples were collected on the same days and with the same procedures as those used for the experimental group. A significant effect of time on all parameters studied was observed in the experimental group. Daily rhythms of the parameters studied were observed in the control group in all experimental conditions, and in the experimental group during pre-pregnancy and dry periods. We conclude that the reproductive status of sheep affects oxidative stress markers in blood and their circadian rhythms.  相似文献   

6.
Effects of hypophysectomy on circadian rhythms of ambulatory and drinking activities in adult male rats were automatically recorded and investigated with a Gundai-type ambulodrinkometer. The rats were maintained under LL conditions following an LD condition. When free-running rhythms had stabilized, the rats were hypophysectomized. The rhythmicities of both activities became indistinct over the 2-4 weeks following surgery, and then gradually recovered. At this time phase shifts (phase advance) were observed in the hypophysectomized rats, while these changes were not observed in sham-operated rats. All rats entrained to lighting when kept under LD conditions again. These results suggest that the pituitary does not play an essential role in maintaining circadian rhythms, but does function as an important subordinal oscillator.  相似文献   

7.
Within the limits of researches of medical and biologic problems of work on a rotational basis in regions with extreme climatic conditions, the concept of suboptimal strategy of adaptation as "incomplete adaptation" (IA) has been developed. A basic IA at work on a rotational basis makes synchronisation infringement of functions which develops at a change of time zones at cross-meridian migrations, and as a result of occurrence of climatic stress at cross-latitude migrations. The condition of IA is characterised by reactive anxiety, inversion of inter-hemisphere domination, infringement of circadian rhythms, boundary shifts of the hormonal status, the lowered physical and intellectual working capacity, features of psycho-somatic tiredness. In modelling experiments, it is shown that chronic infringement of circadian rhythms at IA has the expressed "acute" form which then later passes into the hidden form. In the phase of hidden form, functional reserves of the organism decrease and the risk of diseases increases.  相似文献   

8.
All living organisms exhibit rhythmic activities in a wide variety of endocrine and behavioural parameters. These biological rhythms are endogenously generated by a circadian clock, and they are entrained by cyclic variations of environmental factors called synchronizers. Aging is associated with changes in amplitude and temporal organization of many daily and seasonal rhythms. In humans, daily rhythms of sleep, thermoregulation and hormonal secretion are severely altered with aging. Except in humans, studies on primates are scarce. However, age-related effects on biological rhythms are relatively consistent among primate species studied to date, including humans. Therefore, non human primates are of valuable use for such investigations. Most studies have been performed on the Rhesus macaque (longevity 35-40 years) and on the gray mouse lemur (longevity 10-12 years). Like in humans, the rest-activity rhythm becomes fragmented in aged primates, and shows an increased activity during the resting period. Aging induces a decrease in amplitude of the body temperature rhythm and an increase in energy consumption. Various hormonal secretions exhibit a decrease with aging, but the rhythmic components of these declines have not always been depicted. Moreover, changes (amplitude or phase) in daily variations depended of the hormonal secretion tested. Taken together, these results suggest that the biological clock in the brain would be a primary target of aging. The main central clock is located in the suprachiasmatic nucleus of the hypothalamus whose endogenous oscillations are entrained by light. In this brain structure, cellular function and sensitivity to light show drastic changes with age in the mouse lemur. The precise knowledge of age-related alterations of biological rhythms in primates can have important consequences on the development of new treatments to maintain or restore biological rhythmicity in the elderly.  相似文献   

9.
Overt 24-h rhythmicity is composed of both exogenous and endogenous components, reflecting the product of multiple (periodic) feedback loops with a core pacemaker at their center. Researchers attempting to reveal the endogenous circadian (near 24-h) component of rhythms commonly conduct their experiments under constant environmental conditions. However, even under constant environmental conditions, rhythmic changes in behavior, such as food intake or the sleep-wake cycle, can contribute to observed rhythmicity in many physiological and endocrine variables. Assessment of characteristics of the core circadian pacemaker and its direct contribution to rhythmicity in different variables, including rhythmicity in gene expression, may be more reliable when such periodic behaviors are eliminated or kept constant across all circadian phases. This is relevant for the assessment of the status of the circadian pacemaker in situations in which the sleep-wake cycle or food intake regimes are altered because of external conditions, such as in shift work or jet lag. It is also relevant for situations in which differences in overt rhythmicity could be due to changes in either sleep oscillatory processes or circadian rhythmicity, such as advanced or delayed sleep phase syndromes, in aging, or in particular clinical conditions. Researchers studying human circadian rhythms have developed constant routine protocols to assess the status of the circadian pacemaker in constant behavioral and environmental conditions, whereas this technique is often thought to be unnecessary in the study of animal rhythms. In this short review, the authors summarize constant routine methodology and what has been learned from constant routines and argue that animal and human circadian rhythm researchers should (continue to) use constant routines as a step on the road to getting through to central and peripheral circadian oscillators in the intact organism.  相似文献   

10.
Even though peripheral circadian oscillators in the cardiovascular system are known to exist, the daily rhythms of the cardiovascular system are mainly attributed to autonomic or hormonal inputs under the control of the central oscillator, the suprachiasmatic nucleus (SCN). In order to examine the role of peripheral oscillators in the cardiovascular system, we used a transgenic mouse where the Clock gene is specifically disrupted in cardiomyocytes. In this cardiomyocyte-specific CLOCK mutant (CCM) mouse model, the circadian input from the SCN remains intact. Both CCM and wild-type (WT) littermates displayed circadian rhythms in wheel-running behavior. However, the overall wheel-running activities were significantly lower in CCM mice compared to WT over the course of 5 weeks, indicating that CCM mice either have lower baseline physical activities or they have lower physical adaptation abilities because daily wheel running, like routine exercise, induces physical adaptation over a period of time. Upon further biochemical analysis, it was revealed that the diurnal oscillations of phosphorylation states of several kinases and protein expression of the L-type voltage-gated calcium channel (L-VGCC) α1D subunit found in WT hearts were abolished in CCM hearts, indicating that in mammalian hearts, the daily oscillations of the activities of these kinases and L-VGCCs were downstream elements of the cardiac core oscillators. However, the phosphorylation of p38 MAPK exhibited robust diurnal rhythms in both WT and CCM hearts, indicating that cardiac p38 could be under the influence of the central clock through neurohormonal signals or be part of the circadian input pathway in cardiomyocytes. Taken together, these results indicate that the cardiac core oscillators have an impact in regulating circadian rhythmicities and cardiac function.  相似文献   

11.
Evaluating individual circadian rhythm traits is crucial for understanding the human biological clock system. The present study reports characterization of physiological and molecular parameters in 13 healthy male subjects under a constant routine condition, where interfering factors were kept to minimum. We measured hormonal secretion levels and examined temporal expression profiles of circadian clock genes in peripheral leukocytes and beard hair follicle cells. All 13 subjects had prominent daily rhythms in melatonin and cortisol secretion. Significant circadian rhythmicity was found for PER1 in 9 subjects, PER2 in 3 subjects, PER3 in all 13 subjects, and BMAL1 in 8 subjects in leukocytes. Additionally, significant circadian rhythmicity was found for PER1 in 5 of 8 subjects tested, PER2 in 2 subjects, PER3 in 6 subjects, and BMAL1 in 3 subjects in beard hair follicle cells. The phase of PER1 and PER3 rhythms in leukocytes correlated significantly with that of physiological rhythms. Our results demonstrate that leukocytes and beard hair follicle cells possess an endogenous circadian clock and suggest that PER1 and PER3 expression would be appropriate biomarkers and hair follicle cells could be a useful tissue source for the evaluation of biological clock traits in individuals.  相似文献   

12.
Most human variables exhibit rhythms with an about 24 hour (circadian) period. Each rhythm can be characterized by its acrophase (calculated peak time of the cosine curve best fitting to the data), its amplitude and rhythm adjusted mean (MESOR). The sequential array of the rhythms' acrophases represents the temporal order of the human time structure. In the present work we used circadian rhythms of 24 chemical and 15 hormonal variables extracted from published studies which were done in a defined area of southeastern Europe (Romania). All studies had a comparable experimental design and were analyzed biochemically and statistically in the same laboratory. The acrophases of these rhythms obtained from both genders of different age groups (from the 2nd to the 9th decade of age) were subjected to multiple correlation test, cluster and principal coordinates analyses. The results show that the temporal order is affected both by gender and age, and evaluate the degree of the effect, offer a “chronbiologic fingerprint” for the examined groups and assist in dissecting rhythm variability among populations.  相似文献   

13.
This paper rewers to effects of aging on changes in hormonal circadian rhythms. To the most frequent changes related to aging belong attenuation and shortening of amplitude as well as desynchronization of rhythms. These changes may determine pathophysiological and therapeutic base for hormonal therapy.  相似文献   

14.
Two clinically healthy pregnant women were studied in a single 24-h span during the third trimester. Blood drawn every 20 min was assayed for cortisol (F), dehydroepiandrosterone sulfate (DHEA-S), estriol (E3), and prolactin (PRL). Blood drawn hourly was assayed for progesterone (P), human placental lactogen (HPL) and 15alpha-hydroxyestriol (E4). Breast temperature (BT) was continuously monitored. Single cosinor analysis demonstrated statistically significant circadian rhythms for plasma concentrations of F, DHEA-S, and BT for both subjects, and of E3 for one subject. Statistically significant circadian rhythms in plasma concentrations of P, HPL, E4 or PRL could not be demonstrated in our third trimester subjects. However, analysis of data from subjects sampled at earlier gestational ages revealed highly significant PRL circadian rhythms. These results suggest that plasma concentrations of PRL show a progressive decrease in circadian amplitude despite a progressive increase in mesor with advancing gestational age. Frequent sampling and cosinor data analysis permit identification of circadian rhythms in BT. The use of BT as a potential marker for rhythms in plasma concentration of certain hormones awaits further scrutiny. The demonstration of several circadian endocrine rhythms in individual subjects in the third trimester of human pregnancy facilitates the usefulness of such marker rhythms.  相似文献   

15.
Cancer patients may exhibit normal or altered circadian rhythms in tumor and healthy tissues. Four rhythms known to reflect circadian clock function were studied in 18 patients with metastatic colorectal cancer and good performance status. Rest-activity was monitored by wrist actigraphy for 72 h before treatment, and its circadian rhythm was estimated by an autocorrelation coefficient at 24h and a dichotomy index that compared the activity level when in and out of bed. Blood samples (9-11 time points, 3-6 h apart) were drawn on day 1 and day 4 of the first course of chronochemotherapy (5-fluorouracil: 800 mg/m2/day; folinic acid: 300 mg/m2/day; oxaliplatin: 25 mg/m2/day). Group 24h rhythms were validated statistically for plasma concentrations of melatonin, 6-alpha-sulfatoxymelatonin, and cortisol and for lymphocyte counts. Significant individual 24h rhythms were displayed in melatonin by 15 patients, cortisol by seven patients, lymphocytes by five patients, and prominent circadian rhythms in activity were displayed by 10 patients; only one patient exhibited significant rhythms in all the variables. The results suggest the rhythms of melatonin, cortisol, lymphocytes, and rest/activity reflect different components of the circadian system, which may be altered differently during cancer processes. Such 24h rhythm alterations appeared to be independent of conventional clinical factors.  相似文献   

16.
Chronobiology of the intestinal tract of the mouse   总被引:1,自引:0,他引:1  
This paper summarizes recent and continuing work on circadian rhythms in the alimentary tract of rodents; these include: (1) cell proliferation, (2) activities of intestinal enzymes, and (3) behavioral aspects of spontaneous feeding and drinking. All regions of the intestinal tract show marked circadian behavior in cell proliferation. The roles of the light-dark cycle and meal timing in synchronizing such rhythms are discussed as well as the influence of epidermal growth factor, insulin, glucagon, and ACTH 1-17. Attention is called to the potential importance of these rhythms to basic research and medicine. Other circadian rhythms in the alimentary tract are reviewed briefly, such as those characterizing a host of intestinal enzymes, monosaccharide transport, and the height and width of the villi. Many of these have been shown to be cued to a feeding schedule; however, a number of the enzyme rhythms persist for one or two cycles in fasting animals, and this also is the case for the cell-proliferation rhythms. After having been acclimated to a circadian feeding schedule (within a range of 23-30 hr), rodents can on subsequent days anticipate the food an hour or more prior to its arrival. Some enzymes behave in a similar manner in that their activities increase prior to the expected intake of the daily food. These anticipatory response rhythms are under endogenous control, since both will persist in the fasted animal and both will free run when a mouse is placed under constant conditions. Somehow these animals are able to measure circadian intervals of time. This challenges the concept that the oscillations seen in enzyme activities are simply a passive consequence of feeding and fasting, respectively.  相似文献   

17.
A number of studies have been devoted to better understand the cardiovascular adaptation to space flights. These studies included hemodynamic and hormonal studies, but few investigations of the rhythms exist in the literature. However, the importance of the modifications of rhythms in true or simulated weightlessness was underlined in some published works. Several factors are probably associated to modify the circadian rhythms. First, there is a reduction or an absence of gravity, an important environmental factor: second, space missions or bed rest simulations are conducted under confinement conditions which may influence many psychological functions. The resulting instability of the circadian state will affect other physiological systems, because circadian variations are a fundamental feature of many biological systems (sleep, endocrine and cardiovascular functions). The present study was undertaken to study the effect of as well as a continuous 28-day bed rest on the rhythms of circulating PRA and ANP, the modification of rhythmicity of systolic and diastolic blood pressure and heart rate during bed rest.  相似文献   

18.
Most human variables exhibit rhythms with an about 24 hour (circadian) period. Each rhythm can be characterized by its acrophase (calculated peak time of the cosine curve best fitting to the data), its amplitude and rhythm adjusted mean (MESOR). The sequential array of the rhythms' acrophases represents the temporal order of the human time structure. In the present work we used circadian rhythms of 24 chemical and 15 hormonal variables extracted from published studies which were done in a defined area of southeastern Europe (Romania). All studies had a comparable experimental design and were analyzed biochemically and statistically in the same laboratory. The acrophases of these rhythms obtained from both genders of different age groups (from the 2nd to the 9th decade of age) were subjected to multiple correlation test, cluster and principal coordinates analyses. The results show that the temporal order is affected both by gender and age, and evaluate the degree of the effect, offer a “chronbiologic fingerprint” for the examined groups and assist in dissecting rhythm variability among populations.  相似文献   

19.
20.
The effects of Chagas disease on the mammalian circadian system were studied in Trypanosoma cruzi-infected C57-Bl6J mice. Animals were inoculated with CAI or RA strains of T. cruzi or vehicle, parasitism confirmed by blood specimen visualization and locomotor activity rhythms analyzed by wheel-running recording. RA-strain infected mice exhibited significantly decreased amplitude of circadian rhythms, both under light-dark and constant dark conditions, probably due to motor deficiencies. CAI-treated animals showed normal locomotor activity rhythms. However, in these mice, reentrainment to a 6h phase shift of the LD cycle took significantly longer than controls, and application of 15min light pulses in DD produced smaller phase delays of the rhythms. All groups exhibited light-induced Fos expression in the suprachiasmatic nuclei. We conclude that the main effect of T. cruzi infection on the circadian system is an impairment of the motor output from the clock toward controlled rhythms, together with an effect on circadian visual sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号