首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A deletion mutant was isolated from a kanamycin resistance R plasmid Rtsl. This mutant plasmid, pTW20, was found to enhance the lethal effect of UV irradiation on Escherichiacoli host, especially at 42°C. A cloning experiment with pTW20 DNA demonstrated that the gene, puv, being responsible for the UV sensitivity was located on the kanamycin resistance gene containing BamH1 fragment of pTW20. This fragment conferred a sensitivity to methyl methane sulfonate on its host along with the sensitivity to UV, suggesting that a reapir process of the host chromosome is impaired by the presence of puv.  相似文献   

2.
The prophages of the related temperate bacteriophages P1 and P7, which normally exist as plasmids, suppress Escherichia coli dnaA (ts) mutants by integrating into the host chromosome. The locations of the sites on the prophage used for integrative recombination were identified by restriction nuclease analysis and DNA-DNA hybridization techniques. The integration of P1 and P7 often involves a specific site on the host DNA and a specific site on the phage DNA; the latter is probably the end of the phage genetic map. When this site is utilized, the host Rec+ function is not required. In Rec+ strains, P1 and P7 may also recombine with homologous regions on the host chromosome; at least one of these regions is an IS1 element. In some integration events, prophage deletions are observed which are often associated with inverted repeat structures on the phage DNA. Thus, P1 and P7 may employ one of several different mechanisms for integration.  相似文献   

3.
Rts1 is a high-molecular-weight (126 x 10(6)) plasmid encoding resistance to kanamycin. It expresses unusual temperature-sensitive phenotypes, which affect plasmid maintenance and replication, as well as host cell growth. We have cloned the essential replication region of Rts1 from pAK8, a smaller derivative which is phenotypically similar to Rts1. Restriction endonuclease digests of isolated pAK8 deoxyribonucleic acid were allowed to "self-ligate" (ligation without an additional cloning vector) and subsequently were used to transform Escherichia coli strain 20SO to kanamycin resistance. Screening of these strains for the phenotypes of thermosensitive host growth and temperature-dependent plasmid elimination demonstrated that these two properties were expressed independently. Furthermore, it was shown that the Rts1 replication locus per se is not necessarily responsible for altered host growth at the nonpermissive temperature. The kanamycin resistance fragment of pAK8 was also cloned into pBR322. Electrophoretic analysis of BamHI restriction enzyme digests of this plasmid and similar digests of an Rts1 miniplasmid has allowed the identification of an 18.6-megadalton fragment carrying the replication locus and a 14.1-megadalton fragment carrying the kanamycin resistance gene.  相似文献   

4.
Control of replication and segregation of R plasmid Rts1.   总被引:7,自引:6,他引:1       下载免费PDF全文
A mutant plasmid, pTW2, which was derived from the integrated Rst1 genome in the Escherichia coli chromosome, was studied as to its mode of replication at 30 degrees C. When Proteus mirabilis Pm17 harboring pTW2 was grown in broth at 30 degrees C, a considerable number of R- segregants (approximately 40%) were consistently observed. This indicates that pTW2 is unstable even at the permissive temperature for the replication of Rts1. The pTW2+ cells in a culture were heterogeneous with respect to the level of kanamycin resistance, ranging from 500 to 4,000 mug of the drug per ml. The amount of pTW2 deoxyribonucleic acid (DNA) relative to the Pm17 chromosomal DNA was about fivefold as large as that of Rts1 DNA in an exponentially growing culture. In addition, pTW2 in P. mirabilis continued to replicate after the chromosome had ceased to replicate, which was shown in the study of the inhibition of protein synthesis. Contrary to pTW2, the parent plasmid Rts1 is highly stable, and the relative percent Rts1 DNA is maintained at approximately 7% in any cultural conditions at a permissive temperature. These results suggest that copies of pTW2 may not segregate evenly into the host progeny upon cell division and that the replication of pTW2 does not coordinate with that of the chromosome. A remarkable instability of pTW2 as well as an increase in the relative percent pTW2 DNA was also shown when E. coli were used as the host cells. These results suggest the possibility that there is a gene or a gene cluster on the Rst1 genome responsible for the control of both replication and segregation of Rts1.  相似文献   

5.
A multiphenotypically thermosensitive plasmid, Rts1, was found to confer upon the host cell of Escherichiacoli K12 an increased permeability through the cell surface to Actinomycin D and rifampicin as well as a detrimental host cell growth at 42°C only when it existed autonomously but not in an integrated state.  相似文献   

6.
A 16-base-pair fragment, deletion of which completely inactivated oriC, was replaced by a temperature-dependent runaway-replication derivative (the copy number of which increases with temperature) of the IncFII plasmid R1. The constructed strains were temperature sensitive, and flow cytometry revealed a severalfold increase in the DNA/mass ratio following shifts to nonpermissive temperatures. The cell size distribution was broader in the constructed strains relative to that in the wild type because of asynchrony between the chromosome replication and cell division cycles. This difference was more pronounced for counterclockwise initiation of chromosomal replication, in which small DNA-less cells and long filaments were abundant. Following a temperature shift the cell size distributions became even more broad, showing that changes in the frequency of chromosomal replication affect cell division and emphasizing the interplay between these two processes.  相似文献   

7.
Integration of broad host range RP1 plasmid into the chromosome of Escherichia coli K-12 recA- cells has been studied. Using temperature-sensitive for replication plasmids pVD1 and pVD3, the derivatives of RP1, it has been shown that integration of RP1 into the bacterial chromosome results in formation of two classes of Hfr strains. Properties of these Hfrs have been examined. From the data obtained, it has been concluded that the plasmid integration and formation of one of the Hfrs classes appear to be mediated by transposon Tn1 residing on RP1. The other class of Hfr strains is formed due to a stable integration of RP1. In the course of analysis of R+ transconjugants arising at low frequency in crosses between stable Hfrs and E. coli rec+ recipients, it has been found that the significant part of them contain plasmid-chromosome hybrids (R-prim plasmids). On the basis of the latter results, a new simple method for R' plasmids selection has been proposed. Using restriction endonuclease analysis, the structure of plasmids that were excised from chromosomes of the stable Hfr strains and were comparable in their size to RP1, has been investigated. Probable mechanisms of the stable Hfr strains formation are discussed.  相似文献   

8.
The glnB region of the Escherichia coli chromosome.   总被引:4,自引:3,他引:1       下载免费PDF全文
  相似文献   

9.
The stability of inheritance of plasmid R1drd-19 was tested. The copy number of the plasmid was determined in two different ways: As the ratio between covalently closed circular DNA and chromosomal DNA, and by quantitative determination of single-cell resistance to ampicillin. In the latter case, strains carrying the R1 ampicillin transposon Tn3 on prophage λ was used as standard. The values were transformed to copy number per cell by using the Cooper-Helmstetter model for chromosome replication as well as by determination of chromosomal DNA per cell by the diphenylamine method. The copy number was found to be five to six per cell (or about four per newborn cell). Nevertheless, plasmid R1drd-19 was found to be completely stably inherited. This stability was shown not to be due to retransfer of the plasmid by the R1 conjugation system, since transfer-negative derivatives of the plasmid were also completely stably inherited. Smaller derivatives of plasmid R1drd-19 were found to be lost at a frequency of about 1.5% per cell generation. The copy-number control was not affected in these miniplasmids, since their copy numbers were the same as that of the full size plasmid. Quantitatively, the instability of the miniplasmids was in accord with random partitioning. It is, therefore, suggested that the plasmid R1drd-19 carries genetic information for partitioning (par) of plasmid copies at cell division, and that the par mechanism is distinct from the copy number control (cop) system. Finally, the par gene maps on the resistance transfer part of the plasmid, but far away from the origin of replication and the so-called basic replicon; this is in accord with the approximate location of the repB gene (Yoshikawa, 1974, J. Bacteriol.,, 118, 1123–1131).  相似文献   

10.
The R-factor R1 is present in a low number of copies per genome (near unity, so-called stringent control of replication). The replication of R1 was studied in a density-shift experiment. One generation after the shift about 20% of the R1 copies had not replicated, whereas about 20% had replicated at least twice. The results are in quantitative accordance with a random replication of R1 in which the replicating molecules are taken from a cytoplasmic plasmid pool and transferred back to the pool after replication. This is analogous to the results obtained by Bazaral and Helinski (1970) and Rownd (1969) for plasmids that are present in 10 to 20 copies per genome (so-called relaxed control of replication). Hence, there seem to be no difference between stringent and relaxed plasmids with respect to selection of plasmid molecules for replication. However, we cannot tell whether all R1 copies in a cell replicate during a fraction of or throughout the cell cycle. The random selction of plasmid copies for replication has to be considered when models for control of replication are constructed.  相似文献   

11.
The 52 amino acid host killing peptide (Hok) from the hok/sok post-segregational killer system of the Escherichia coli plasmid R1 was synthesized using Fmoc (9-fluorenylmethoxycarbonyl) chemistry, and its molecular weight was confirmed by mass spectroscopy. Hok kills cells by depolarizing the cytoplasmic membrane when it is made in the cytosol. Six microorganisms, E. coli, Bacillus subtilis, Pseudomonas aeruginosa, P. putida, Salmonella typhimurium, and Staphylococcus aureus were exposed to the purified peptide but showed no significant killing. However, electroporation of Hok (200 microgml(-1)) into E. coli cells showed a dramatic reduction (100000-fold) in the number of cells transformed with plasmid DNA which indicates that the synthetic Hok peptide killed cells. Electroporation of Hok into P. putida was also very effective with a 500-fold reduction in electrocompetent cells (100 microgml(-1)). Heat shock in the presence of Hok (380 microgml(-1)) resulted in a 5-fold reduction in E. coli cells but had no effect on B. subtilis. In addition, three Hok fragments (Hok(1-28), Hok(31-52) and Hok(16-52)) killed cells when electroporated into E. coli at 200 microgml(-1) (over 1000-fold killing for Hok(1-28), 50-fold killing for Hok(16-52) and over 1000-fold killing for Hok(31-52)). E. coli cells electroporated with Hok and visualized using transmission electron microscopy showed the same morphological changes as control cells to which Hok was induced using a plasmid inside the cell.  相似文献   

12.
13.
Incompatibility of the R plasmid Rts1 and its replication mutant pTW2 was studied in recA host cells of Escherichia coli. When the R plasmid R401, belonging to the same incompatibility group as Rts1, was used as a test plasmid, R401 was eliminated preferentially from (Rts-R401)+ cells irrespective of the direction of transfer. In contrast, pTW2 and R401 were mutually excluded. The decreased incompatibility of pTW2 was confirmed by a direct incompatibility test in which a derivative of Rts1 expelled pTW2 exclusively. Alkaline sucrose gradients of pTW2 and Rts1 DNA indicated that approximately one-fourth of the Rts1 genome was deleted in pTW2. In addition, both the various temperature-dependent properties of Rts1 and the inhibitory effect on phage T4 development were also lost in pTW2. A possible mechanism that regulates the stringent replication of Rts1 is discussed.  相似文献   

14.
15.
A lambdacI857 prophage inserted into one of the genes of the rha locus was used to select deletions unambiguously ordering the markers polA-glnA-rha-pfkA-tpi-metBJF. Transduction with phage P1 indicates at least 70% linkage between glnA and polA. The order of the pfk and tpi markers is reversed from that previously published. Despite the relatively large distance separating the glnA and rha loci, deletions removing this entire region have no obvious phenotype. The isolation of Tn10 transposons integrated at different sites between rha and glnA greatly facilitated this work.  相似文献   

16.
Plasmid R1-19 and its copy number mutants markedly increase the recombinational efficiency of a recB- strain of E. coli K12 and its resistance to the lethal action of UV and mitomycin C. These effects are associated with the appearance of a new ATP-dependent exonuclease activity in recB- cells known to be deficient in the ATP-dependent exonuclease V. Using hybrid plasmids carrying different EcoRI fragments of R1-19 (in the pSF124 vector), the gene(s) responsible for effect of R1-19 in recB-cells were localized in the EcoRI-C fragment (8.5 MD) belonging to the RTF portion of R1-19. Expression of the gene(s) in hybrid plasmids depends on the orientation of EcoRI-C fragment in the vector. The copy number of the EcoRI-C fragment was not strictly correlated with the degree of expression of the effects in the recB- mutant.  相似文献   

17.
An Hfr strain of Escherichia coli K-12 was obtained by integrative suppression with a thermosensitive plasmid, Rts1. The R plasmid was integrated into the chromosome between rif and thr, and transfer of the chromosome occurred counterclockwise. The thermosensitivity of host cell growth due to the dnaA mutation was markedly but not completely reduced in this integratively suppressed Hfr strain. When the dnaA mutation was removed by transducing the dnaA+ genome to this Hfr, the thermosensitivity of cell growth due to existence of Rts1 was suppressed in contrast to strains carrying it autonomously. Thermosensitivity of cell growth appeared again when the plasmid was detached from the chromosome to exist autonomously. Contrary to the effect on cell growth, the transfer of the chromosome and the plasmid itself and the ability to "restrict" T-even phages were still thermosensitive in all of these strains carrying Rts1, irrespective of its state of existence. The detached plasmid as well as the original Rts1 were segregated upon growth at 42 C. These data are discussed in relation to chromosome-plasmid interaction. One of the most important conculusions is that some plasmid genes, related to their replication, are phenotypically suppressed by the chromosome when it is integrated.  相似文献   

18.
Summary The 30 megadalton (Mdal)-conjgaative, fi- plasmid pRSD1 determines inducible tetracycline resistance (Tc) in Escherichia coli. As shown by restriction analysis, a 3.5 Mdal-EcoRI fragment of pRSD1 spliced into the small plasmid pRSD2124 comprises the entire Tc determinant (tet) region. A restriction map of pRSD1 is presented which includes the location of the tet region and of an underwound loop not related to Tc (Burkardt et al., 1978). Selective amplification of tet genes is demonstrated by three lines of evidence. (i) The resistance level of cell harbouring pRSD1 increases approximately tenfold by induction with 10g/ml of tetracycline. Further groth in the presence of 100 g/ml of the drug (tet-racycline stress) selects for cells with even higher resistance levels (about 300 g/ml) in rec + cells. In a recA strain, a smaller proportion of cells attains these high resistance levels suggesting the involvement of host recombination. (ii) Electron micrographs of pRSD1-DNA isolated from tetracycline-stressed cells reveal a heterogeneous population of circular DNA molecules ranging between 1.7 and 21.6 m. The distribution of contour lengths shows a discrete pattern ascribed to the presence of autonomous single-and multiple-copy Tc determinants and to intact plasmids containing zero to six tet regions in tandem repeats. (iii) This interpretation is supported by heteroduplex and restriction analyses which demonstrate the presence of multiple copies of the 3.5 Mdal-element encompassing the tet region in pRSD1 molecules selected by tetracycline stress. It has been concluded that gene amplification leading to tandem repetition of the tet region ensues in pRSD1. Such plasmids confer increased tetracycline resistance and can, therefore, be selected by high doses of the drug.  相似文献   

19.
The isolation of conditional mutants with an altered copy number of the R plasmid R1drd-19 is described. Temperature-dependent as well as amber-suppressible mutants were found. These mutant plasmids have been named pKN301 and pKN303, respectively. Both types of mutations reside on the R plasmid. No difference in molecular weight could be detected by neutral sucrose gradient centrifugation for any of the mutant plasmids when compared with the wild-type plasmid. The number of copies of the plasmids was determined by measurement of the specific activity of the R plasmid-mediated β-lactamase and by measurement of covalently closed circular (CCC) DNA in alkaline sucrose gradients and dye-CsCl density gradients. Below 34 °C the temperature-dependent mutant, pKN301, had the same copy number as the wild type, while this was four times that of the wild type above 37 °C. The amber mutant pKN303 had a copy number indistinguishable from that of the wild-type plasmid in a strain containing a strong amber suppressor and a copy number about five times that of the wild-type plasmid in a strain lacking an amber suppressor. In a strain containing a temperature-sensitive amber suppressor, the amber mutant's copy number increased with the decrease in amber suppressor activity. Thus, the existence of the temperature-dependent and the amber-suppressible R-plasmid copy mutants indicates that the system that controls the replication of plasmid R1drd-19 contains an element with a negative function and that this element is a protein.  相似文献   

20.
An examination of the relationship of both nonreplicating and replicating forms of R6K plasmid DNA to the Escherichia coli folded chromosome showed that both forms cosediment with the chromosome in neutral sucrose gradients. Approximately 20% of the nonreplicatin molecules was found as freely sedimenting forms when the folded-configuration of the chromosomes was preserved. However, under the same conditions negligible amounts of the replicating forms were found as freely sedimenting molecules. Thus, it is concluded that the replicating forms, when compared with nonreplicating molecules, are preferentially associated with the folded chromosomal structure. Exposure of the folded chromosomal structure to RNase resulted in an unfolding of the chromosome and a concomitant increase in the amount of freely sedimenting replicating and nonreplicating forms of R6K DNA. Analyses of the single-stranded length of RNase-released nascent molecules suggest that they replicate in continuous association with the folded chromsome complex. Nonenzymatic unfolding of the chromosomes by progressively lowering the sodium ion concentration during lysis resulted in a progressive increase in the release of nonreplicating molecules. Replicating molecules wer not released by unfolding the chromosome in this fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号