首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prevention of abnormal misfolding and aggregation of α synuclein (syn) protein in vulnerable neurons should be viable therapeutic strategies for reducing pathogenesis in Parkinson's disease. The nonamyloid component (NAC) region of α-syn shows strong tendencies to form β-sheet structures, and deletion of this region has been shown to reduce aggregation and toxicity in vitro and in vivo. The binding of a molecular species to this region may mimic the effects of such deletions. Single-chain variable fragment (scFv) antibodies retain the binding specificity of antibodies and, when genetically manipulated to create high-diversity libraries, allow in vitro selection against peptides. Accordingly, we used a yeast surface display library of an entire naïve repertoire of human scFv antibodies to select for binding to a NAC peptide. Candidate scFv antibodies (after transfer to mammalian expression vectors) were screened for viability in a neuronal cell line by transient cotransfection with A53T mutant α-syn. This provided a ranking of the protective efficacies of the initial panel of intracellular antibodies (intrabodies). High steady-state expression levels and apparent conformational epitope binding appeared more important than in vitro affinity in these assays. None of the scFv antibodies selected matched the sequences of previously reported anti-α-syn scFv antibodies. A stable cell line expressing the most effective intrabody, NAC32, showed highly significant reductions in abnormal aggregation in two separate models. Recently, intrabodies have shown promising antiaggregation and neuroprotective effects against misfolded mutant huntingtin protein. The NAC32 study extends such work significantly by utilizing information about the pathogenic capacity of a specific α-syn region to offer a new generation of in vitro-derived antibody fragments, both for further engineering as direct therapeutics and as a tool for rational drug design for Parkinson's disease.  相似文献   

2.
Mutant huntingtin accumulates in the neuronal nuclei and processes, which suggests that its subcellular localization is critical for the pathology of Huntington's disease (HD). However, the contribution of cytoplasmic mutant huntingtin and its aggregates in neuronal processes (neuropil aggregates) has not been rigorously explored. We generated an intracellular antibody (intrabody) whose binding to a unique epitope of human huntingtin is enhanced by polyglutamine expansion. This intrabody decreases the cytotoxicity of mutant huntingtin and its distribution in neuronal processes. When expressed in the striatum of HD mice via adenoviral infection, the intrabody reduces neuropil aggregate formation and ameliorates neurological symptoms. Interaction of the intrabody with mutant huntingtin increases the ubiquitination of cytoplasmic huntingtin and its degradation. These findings suggest that the intrabody reduces the specific neurotoxicity of cytoplasmic mutant huntingtin and its associated neurological symptoms by preventing the accumulation of mutant huntingtin in neuronal processes and promoting its clearance in the cytoplasm.  相似文献   

3.
There is a major need in target validation and therapeutic applications for molecules that can interfere with protein function inside cells. Intracellular antibodies (intrabodies) can bind to specific targets in cells but isolation of intrabodies is currently difficult. Intrabodies are normally single chain Fv fragments comprising variable domains of the immunoglobulin heavy (VH) and light chains (VL). We now demonstrate that single VH domains have excellent intracellular properties of solubility, stability and expression within the cells of higher organisms and can exhibit specific antigen recognition in vivo. We have used this intracellular single variable domain (IDab) format, based on a previously characterised intrabody consensus scaffold, to generate diverse intrabody libraries for direct in vivo screening. IDabs were isolated using two distinct antigens and affinities of isolated IDabs ranged between 20 nM and 200 nM. Moreover, IDabs selected for binding to the RAS protein could inhibit RAS-dependent oncogenic transformation of NIH3T3 cells. The IDab format is therefore ideal for in vivo intrabody use. This approach to intrabodies obviates the need for phage antibody libraries, avoids the requirement for production of antigen in vitro and allows for direct selection of intrabodies in vivo.  相似文献   

4.
Intrabodies are recombinantly expressed intracellular antibody fragments that can be used to specifically bind and inhibit the function of cellular proteins of interest. Intrabodies can be targeted to various cell compartments by attaching an appropriate localization peptide sequence to them. An efficient strategy with a high success rate is to anchor intrabodies in the endoplasmatic reticulum where they can inhibit transitory target proteins by binding and preventing them to reach their site of action. Intrabodies can be assembled from antibody gene fragments from various sources into dedicated expression vectors. Conventionally, antibody cDNA sequences are derived from selected hybridoma cell clones that express antibodies with the desired specificity. Alternatively, appropriate clones can be isolated by affinity selection from an antibody in vitro display library. Here an evaluation of endoplasmatic reticulum targeted intrabodies with respect to other knockdown approaches is given and the characteristics of various intrabody expression vectors are discussed. A step by step protocol is provided that was repeatedly used to construct intrabodies derived from diverse antibody isotypes producing hybridoma cell clones. The inactivation of the cell surface receptor neural cell adhesion molecule (NCAM) by a highly efficacious novel endoplasmatic reticulum-anchored intrabody is demonstrated.  相似文献   

5.
6.
We have applied in vivo intracellular antibody capture (IAC) technology to isolate human intrabodies which bind to the oncogenic RAS protein. IAC facilitates the capture of antibody fragments, in this case single-chain Fvs (scFvs), which tolerate reducing environments, such as the cytoplasm of cancer cells. Three anti-RAS scFvs with different affinity, solubility and intracellular binding activity were characterized. The anti-RAS scFvs with highest affinity were expressed relatively poorly in mammalian cells, and greater soluble expression was achieved by mutating the antibody framework to canonical consensus scaffolds, previously derived from IAC, without losing antigen specificity. Mutagenesis experiments showed that the consensus scaffolds are functional as intrabody fragments without an intra-domain disulfide bond. Furthermore, we could convert an intrabody which does not bind RAS in mammalian cells into a high-affinity reagent capable of inhibiting RAS-mediated NIH 3T3 transformation by exchanging VH and VL complementarity-determining regions onto its consensus scaffold. These data show that the consensus scaffold is a robust framework by which to improve intrabody function.  相似文献   

7.
The use of antibodies in medicine and research depends on their specificity and affinity in the recogniton and binding of individual molecules. However, these applications are limited to the extracellular targets. Advances in antibody engineering has allowed the manipulation of the antibody segments containing the antigen-binding regions and generation of small fragments that can be stably expressed in cells. These entities are called intracellular antibodies or intrabodies and have being successfully applied, mainly in the scFv format, to inhibit the function of intracellular target proteins in specific cellular compartments. As new techniques to select and isolate intrabody fragments have been developed, intrabodies are beginning to be used to interfere with the function of a greater number of relevant disease targets. Just as monoclonal antibodies are opening a new era in human therapeutics, intrabodies promise a new prospective for antibody tools for therapy and research. Their varied mode of action gives intrabodies great potential in different approaches in the treatment of human diseases, as well as in the area of functional genomics for characterisation of novel gene products and subsequent validation as potential drug targets. While techniques for identifying functional intrabodies have improved, there are still many significant problems to be overcome before intrabodies can actually be used in treatment of diseases such as cancer, AIDS or neuro-degenerative disorders.  相似文献   

8.
Many therapeutic targets are intracellular proteins and molecules designed to interact with them must effectively bind to their target inside the cell. Intracellular antibodies (intrabodies) recognise and bind to proteins in cells and various methods have been developed to produce such molecules. Intracellular antibody capture (IAC) is based on a genetic screening approach and is a facile methodology with which effective intracellular antibodies can be obtained. During the development of the IAC technology, consensus immunoglobulin variable frameworks were identified which can form the basis of intrabody libraries for direct screening. In this paper, we describe the de novo synthesis of intrabody libraries based on the IAC consensus sequence. The procedure comprises in vitro production of a single antibody gene fragment from oligonucleotides and diversification of CDRs of the immunoglobulin variable domain by mutagenic PCR. Completely de novo intrabody libraries can be rapidly generated in vitro by these approaches. As an example, a single immunoglobulin VH domain intrabody library was screened directly in yeast with an oncogenic BCR-ABL antigen bait and distinct antigen binders were isolated illustrating the functional utility of the library. This second generation IAC approach (IAC2) has many practical advantages, in particular the ability to isolate intrabodies by direct genetic selection, which obviates the need for in vitro production of antigen for pre-selection of antibody fragments.  相似文献   

9.
The specific and high affinity binding properties of intracellular antibodies (intrabodies), combined with their ability to be stably expressed in defined organelles, provides powerful tools with a wide range of applications in the field of functional genomics and gene therapy. Intrabodies have been used to specifically target intracellular proteins, manipulate biological processes, and contribute to the understanding of their functions as well as for the generation of phenotypic knockouts in vivo by surface depletion of extracellular or transmembrane proteins. In order to study the biological consequences of knocking down two receptor-tyrosine kinases, we developed a novel intrabody-based strategy. Here we describe the design, engineering, and characterization of a bispecific, tetravalent endoplasmic reticulum (ER)-targeted intradiabody for simultaneous surface depletion of two endothelial transmembrane receptors, Tie-2 and vascular endothelial growth factor receptor 2 (VEGF-R2). Comparison of the ER-targeted intradiabody with the corresponding conventional ER-targeted single-chain antibody fragment (scFv) intrabodies demonstrated that the intradiabody is significantly more efficient with respect to efficiency and duration of surface depletion of Tie-2 and VEGF-R2. In vitro endothelial cell tube formation assays suggest that the bispecific intradiabody exhibits strong antiangiogenic activity, whereas the effect of the monospecific scFv intrabodies was weaker. These findings suggest that simultaneous interference with the VEGF and the Tie-2 receptor pathways results in at least additive antiangiogenic effects, which may have implications for future drug developments. In conclusion, we have identified a highly effective ER-targeted intrabody format for the simultaneous functional knockout of two cell surface receptors.  相似文献   

10.
Many attempts have been made to develop antibody fragments that can be expressed in the cytoplasm ("intrabodies") in a stable and functional form. The recombinant antibody fragment scFv(F8) is characterised by peculiarly high in vitro stability and functional folding in both prokaryotic and eukaryotic cytoplasm. To dissect the relative contribution of different scFv(F8) regions to cytoplasmic stability and specificity we designed and constructed five chimeric molecules (scFv-P1 to P5) in which several groups of residues important for antigen binding in the poorly stable anti-hen egg lysozyme (HEL) scFv(D1.3) were progressively grafted onto the scFv(F8) scaffold. All five chimeric scFvs were expressed in a soluble form in the periplasm and cytoplasm of Escherichia coli. All the periplasmic oxidised forms and the scFv(P3) extracted from the cytoplasm in reducing conditions had HEL binding affinities essentially identical (K(d)=15nM) to that of the cognate scFv(D1.3) fragment (K(d)=16nM). The successful grafting of the antigen binding properties of D1.3 onto the scFv(F8) opens the road to the exploitation of this molecule as a scaffold for the reshaping of intrabodies with desired specificities to be targeted to the cytoplasm.  相似文献   

11.
A cellular assay system for measuring the activity of cytoplasmically expressed anti-GCN4 scFv fragments directed against the Gcn4p dimerization domain was established in the budding yeast Saccharomyces cerevisiae. The inhibitory potential of different constitutively expressed anti-GCN4 scFv intrabodies was monitored by measuring the activity of beta-galactosidase expressed from a GCN4-dependent reporter gene. The in vivo performance of these scFv intrabodies in specifically decreasing reporter gene activity was related to their in vitro stability, measured by denaturant-induced equilibrium unfolding. A framework-engineered stabilized version showed significantly improved activity, while a destabilized point mutant of the anti-GCN4 wild-type showed decreased effects in vivo. These results indicate that stability engineering can result in improved performance of scFv fragments as intrabodies. Increasing the thermodynamic stability appears to be an essential factor for improving the yield of functional scFv in the reducing environment of the cytoplasm, where the conserved intradomain disulfides of antibody fragments cannot form.  相似文献   

12.
Yeast display is a powerful technology for the isolation of monoclonal antibodies (mAbs) against a target antigen. Antibody libraries have been displayed on the surface of yeast as both single-chain variable fragment (scFv) and antigen binding fragment (Fab). Here, we combine these two formats to display well-characterized mAbs as single-chain Fabs (scFabs) on the surface of yeast and construct the first scFab yeast display antibody library. When expressed on the surface of yeast, two out of three anti-human immunodeficiency virus (HIV)-1 mAbs bound with higher affinity as scFabs than scFvs. Also, the soluble scFab preparations exhibited binding and neutralization profiles comparable to that of the corresponding Fab fragments. Display of an immune HIV-1 scFab library on the surface of yeast, followed by rounds of sorting against HIV-1 gp120, allowed for the selection of 13 antigen-specific clones. When the same cDNA was used to construct the library in an scFv format, a similar number but a lower affinity set of clones were selected. Based on these results, yeast-displayed scFab libraries can be constructed and selected with high efficiency, characterized without the need for a reformatting step, and used to isolate higher-affinity antibodies than scFv libraries.  相似文献   

13.
Single-chain Fv antibody fragments (scFv) represent a convenient antibody format for intracellular expression in eukaryotic or prokaryotic cells. These so-called intrabodies have great potential in functional genomics as a tool to study the function of newly identified proteins in vivo, for example by binding-induced modulation of their activity or by blocking interactions with other proteins. However, the intracellular expression and activity of many single-chain Fvs are limited by their instability and folding efficiency in the reducing intracellular environment, where the highly conserved intrachain disulfide bonds do not form. In the present work, we used an in vivo selection system to isolate novel antigen-binding intrabodies. We screened two intrabody libraries carrying a randomized third hypervariable loop onto the heavy chain of a stable framework, which had been further optimized by random mutagenesis for better behavior in the selection system, and we biophysically characterized the selected variants to interpret the outcome of the selection. Our results show that single-framework intrabody libraries can be directly screened in vivo to rapidly select antigen-specific intrabodies.  相似文献   

14.
Butler DC  Messer A 《PloS one》2011,6(12):e29199
Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by a trinucleotide (CAG)(n) repeat expansion in the coding sequence of the huntingtin gene, and an expanded polyglutamine (>37Q) tract in the protein. This results in misfolding and accumulation of huntingtin protein (htt), formation of neuronal intranuclear and cytoplasmic inclusions, and neuronal dysfunction/degeneration. Single-chain Fv antibodies (scFvs), expressed as intrabodies that bind htt and prevent aggregation, show promise as immunotherapeutics for HD. Intrastriatal delivery of anti-N-terminal htt scFv-C4 using an adeno-associated virus vector (AAV2/1) significantly reduces the size and number of aggregates in HDR6/1 transgenic mice; however, this protective effect diminishes with age and time after injection. We therefore explored enhancing intrabody efficacy via fusions to heterologous functional domains. Proteins containing a PEST motif are often targeted for proteasomal degradation and generally have a short half life. In ST14A cells, fusion of the C-terminal PEST region of mouse ornithine decarboxylase (mODC) to scFv-C4 reduces htt exon 1 protein fragments with 72 glutamine repeats (httex1-72Q) by ~80-90% when compared to scFv-C4 alone. Proteasomal targeting was verified by either scrambling the mODC-PEST motif, or via proteasomal inhibition with epoxomicin. For these constructs, the proteasomal degradation of the scFv intrabody proteins themselves was reduced<25% by the addition of the mODC-PEST motif, with or without antigens. The remaining intrabody levels were amply sufficient to target N-terminal httex1-72Q protein fragment turnover. Critically, scFv-C4-PEST prevents aggregation and toxicity of httex1-72Q fragments at significantly lower doses than scFv-C4. Fusion of the mODC-PEST motif to intrabodies is a valuable general approach to specifically target toxic antigens to the proteasome for degradation.  相似文献   

15.
Although intracellular antibodies (intrabodies) are being explored as putative therapeutic and research reagents, little is known about the principles that dictate the efficacy of these molecules. In our efforts to address this issue, we generated a panel of five intrabodies, directed against catalytically inactive murine caspase-3, by screening single-chain antibody (Fv) phage display libraries. Here we determined criteria that single-chain Fv fragments must fulfill to act as efficient intrabodies. The affinities of these intrabodies, as measured by surface plasmon resonance, varied approximately 5-fold (50-250 nm). Despite their substantial sequence similarity, only two of the five intrabodies were able to significantly accumulate intracellularly. These disparities in intracellular expression levels were reflected by differences in the stability of the purified protein species when analyzed by urea denaturation studies. We observed varied efficiencies in retargeting the antigen murine caspase-3, from the cytosol to the nucleus, mediated by intrabodies tagged with an SV40 nuclear localization signal. Our results demonstrate that the intrinsic stability of the intrabody, rather than its affinity for the antigen, dictates its intracellular efficacy.  相似文献   

16.
《MABS-AUSTIN》2013,5(6):686-693
Intrabodies can be powerful reagents to effect modulation of aberrant intracellular proteins that underlie a range of diseases. However, their cytoplasmic solubility can be limiting. We previously reported that overall charge and hydrophilicity can be combined to provide initial estimates of intracellular solubility, and that charge engineering via fusion can alter solubility properties experimentally. Additional studies showed that fusion of a proteasome-targeting PEST motif to the anti-huntingtin intrabody scFv-C4 can degrade mutant huntingtin proteins by directing them to the proteasome, while also increasing the negative charge. We now validate the generality of this approach with intrabodies against α-synuclein (α-syn), an important target in Parkinson disease. In this study, fusion of the PEST sequence to a set of four diverse, poorly soluble anti-α-syn intrabodies (D5E, 10H, D10 scFv, VH14 nanobody) significantly increased steady-state soluble intrabody protein levels in all cases, despite fusion with the PEST proteasomal-targeting signal. Furthermore, adding this PEST motif to the least soluble construct, VH14, significantly enhanced degradation of the target protein, α-syn~GFP. The intrabody-PEST fusion approach thus has dual advantages of potentially solubilizing intrabodies and enhancing their functionality in parallel. Empirical testing of intrabody-PEST fusions is recommended for enhancement of intrabody solubility from diverse sources.  相似文献   

17.
Intrabodies can be powerful reagents to effect modulation of aberrant intracellular proteins that underlie a range of diseases. However, their cytoplasmic solubility can be limiting. We previously reported that overall charge and hydrophilicity can be combined to provide initial estimates of intracellular solubility, and that charge engineering via fusion can alter solubility properties experimentally. Additional studies showed that fusion of a proteasome-targeting PEST motif to the anti-huntingtin intrabody scFv-C4 can degrade mutant huntingtin proteins by directing them to the proteasome, while also increasing the negative charge. We now validate the generality of this approach with intrabodies against α-synuclein (α-syn), an important target in Parkinson disease. In this study, fusion of the PEST sequence to a set of four diverse, poorly soluble anti-α-syn intrabodies (D5E, 10H, D10 scFv, VH14 nanobody) significantly increased steady-state soluble intrabody protein levels in all cases, despite fusion with the PEST proteasomal-targeting signal. Furthermore, adding this PEST motif to the least soluble construct, VH14, significantly enhanced degradation of the target protein, α-syn~GFP. The intrabody-PEST fusion approach thus has dual advantages of potentially solubilizing intrabodies and enhancing their functionality in parallel. Empirical testing of intrabody-PEST fusions is recommended for enhancement of intrabody solubility from diverse sources.  相似文献   

18.
《MABS-AUSTIN》2013,5(1):204-218
Today, most approved therapeutic antibodies are provided as immunoglobulin G (IgG), whereas small recombinant antibody formats are required for in vitro antibody generation and engineering during drug development. Particularly, single chain (sc) antibody fragments like scFv or scFab are well suited for phage display and bacterial expression, but some have been found to lose affinity during conversion into IgG.

In this study, we compared the influence of the antibody format on affinity maturation of the CD30-specific scFv antibody fragment SH313-F9, with the overall objective being improvement of the IgG. The variable genes of SH313-F9 were randomly mutated and then cloned into libraries encoding different recombinant antibody formats, including scFv, Fab, scFabΔC, and FabΔC. All tested antibody formats except Fab allowed functional phage display of the parental antibody SH313-F9, and the corresponding mutated antibody gene libraries allowed isolation of candidates with enhanced CD30 binding. Moreover, scFv and scFabΔC antibody variants retained improved antigen binding after subcloning into the single gene encoded IgG-like formats scFv-Fc or scIgG, but lost affinity after conversion into IgGs. Only affinity maturation using the Fab-like FabΔC format, which does not contain the carboxy terminal cysteines, allowed successful selection of molecules with improved binding that was retained after conversion to IgG. Thus, affinity maturation of IgGs is dependent on the antibody format employed for selection and screening. In this study, only FabΔC resulted in the efficient selection of IgG candidates with higher affinity by combination of Fab-like conformation and improved phage display compared with Fab.  相似文献   

19.

Background

Misfolding- and aggregation-prone proteins underlying Parkinson''s, Huntington''s and Machado-Joseph diseases, namely α-synuclein, huntingtin, and ataxin-3 respectively, adopt numerous intracellular conformations during pathogenesis, including globular intermediates and insoluble amyloid-like fibrils. Such conformational diversity has complicated research into amyloid-associated intracellular dysfunction and neurodegeneration. To this end, recombinant single-chain Fv antibodies (scFvs) are compelling molecular tools that can be selected against specific protein conformations, and expressed inside cells as intrabodies, for investigative and therapeutic purposes.

Methodology/Principal Findings

Using atomic force microscopy (AFM) and live-cell fluorescence microscopy, we report that a human scFv selected against the fibrillar form of α-synuclein targets isomorphic conformations of misfolded polyglutamine proteins. When expressed in the cytoplasm of striatal cells, this conformation-specific intrabody co-localizes with intracellular aggregates of misfolded ataxin-3 and a pathological fragment of huntingtin, and enhances the aggregation propensity of both disease-linked polyglutamine proteins. Using this intrabody as a tool for modulating the kinetics of amyloidogenesis, we show that escalating aggregate formation of a pathologic huntingtin fragment is not cytoprotective in striatal cells, but rather heightens oxidative stress and cell death as detected by flow cytometry. Instead, cellular protection is achieved by suppressing aggregation using a previously described intrabody that binds to the amyloidogenic N-terminus of huntingtin. Analogous cytotoxic results are observed following conformational targeting of normal or polyglutamine-expanded human ataxin-3, which partially aggregate through non-polyglutamine domains.

Conclusions/Significance

These findings validate that the rate of aggregation modulates polyglutamine-mediated intracellular dysfunction, and caution that molecules designed to specifically hasten aggregation may be detrimental as therapies for polyglutamine disorders. Moreover, our findings introduce a novel antibody-based tool that, as a consequence of its general specificity for fibrillar conformations and its ability to function intracellularly, offers broad research potential for a variety of human amyloid diseases.  相似文献   

20.
单链抗体(single chain antibody fragment,scFv)是由抗体重链可变区(variable region of heavy chain,VH)和轻链可变区(variable region of light chain,VL)通过柔性短肽连接组成的小分子,是具有完整抗原结合活性的最小功能片段,包含抗体识别及抗原结合部位。相比于其他抗体,scFv具有分子量小、穿透性强、免疫原性弱、易构建表达等优点。目前,scFv最常用的展示系统主要有噬菌体展示系统、核糖体展示系统、mRNA展示系统、酵母细胞表面展示系统和哺乳动物细胞展示系统等。近年来,随着scFv在医学、生物学、食品安全学等领域的发展,使得其在生物合成和应用研究方面备受关注。本文对近年来scFv展示系统的研究进展作一综述,以期为scFv的筛选及应用提供理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号