首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
VISA is an adapter protein required for virus-triggered IFN-beta signaling   总被引:14,自引:0,他引:14  
Xu LG  Wang YY  Han KJ  Li LY  Zhai Z  Shu HB 《Molecular cell》2005,19(6):727-740
  相似文献   

4.
A monoclonal antibody (mAb) against human Toll-like receptor (TLR) 3 was established and its effect on TLR3-mediated responses was tested using human fibroblast cell lines expressing TLR3 on the cell surface. Fibroblasts are known to produce IFN-beta upon viral infection or treatment with double-stranded RNA (dsRNA) through distinct signaling pathways. Here, we show the mAb to TLR3 suppressed poly(I):poly(C)-mediated IFN-beta production by human fibroblasts naturally expressing TLR3 on their surface. By reporter gene assay using HEK293 cells transfected with a human TLR3 expression vector, TLR3 recognized dsRNA to activate NF-kappaB and the IFN-beta promoter. TLR3 signaling was not elicited by either single-stranded RNA (ssRNA) or dsDNA. Thus, specific recognition of dsRNA by extracellular TLR3 is essential for induction of type I IFN: the interassociation between dsRNA and TLR3, regardless of direct or indirect binding, should be disrupted by mAb being attached to TLR3. The mAb against TLR3 reported herein may serve as a regulator for virus-mediated immune response via an alternative pathway involving the dsRNA-TLR3 recognition which might occur on host cells.  相似文献   

5.
TLRs mediate diverse signaling after recognition of evolutionary conserved pathogen-associated molecular patterns such as LPS and lipopeptides. Both TLR2 and TLR4 are known to trigger a protective immune response as well as cellular apoptosis. In this study, we present evidence that TLR4, but not TLR2, mediates an autoregulatory apoptosis of activated microglia. Brain microglia underwent apoptosis upon stimulation with TLR4 ligand (LPS), but not TLR2 ligands (Pam(3)Cys-Ser-Lys(4), peptidoglycan, and lipoteichoic acid). Based on studies using TLR2-deficient or TLR4 mutant mice and TLR dominant-negative mutants, we also demonstrated that TLR4, but not TLR2, is necessary for microglial apoptosis. The critical difference between TLR2 and TLR4 signalings in microglia was IFN regulatory factor-3 (IRF-3) activation, followed by IFN-beta expression: while TLR4 agonist induced the activation of IRF-3/IFN-beta pathway, TLR2 did not. Nevertheless, both TLR2 and TLR4 agonists strongly induced NF-kappaB activation and NO production in microglia. Neutralizing Ab against IFN-beta attenuated TLR4-mediated microglial apoptosis. IFN-beta alone, however, did not induce a significant cell death. Meanwhile, TLR2 activation induced microglial apoptosis with help of IFN-beta, indicating that IFN-beta production following IRF-3 activation determines the apoptogenic action of TLR signaling. TLR4-mediated microglial apoptosis was mediated by MyD88 and Toll/IL-1R domain-containing adaptor-inducing IFN-beta, and was associated with caspase-11 and -3 activation rather than Fas-associated death domain protein/caspase-8 pathway. Taken together, TLR4 appears to signal a microglial apoptosis via autocrine/paracrine IFN-beta production, which may act as an apoptotic sensitizer.  相似文献   

6.
7.
8.
9.
10.
Small interfering (si) and short hairpin (sh) RNAs induce robust degradation of homologous mRNAs, making them a potent tool to achieve gene silencing in mammalian cells. Silencing by siRNAs is used widely because it is considered highly specific for the targeted gene, although a recent report suggests that siRNA also induce signaling through the type I IFN system. When human embryonic kidney 293 (HEK293) or keratinocyte (HaCaT) cell lines or human primary dendritic cells or macrophages were transfected with siRNA or shRNAs, suppression of nontargeted mRNA expression was detected. Additionally, siRNA and shRNA, independent of their sequences, initiated immune activation, including IFN-alpha and TNF-alpha production and increased HLA-DR expression, in transfected macrophages and dendritic cells. The siRNAs induced low, but significant, levels of IFN-beta in HEK293 and HaCaT cells. Secretion of these cytokines increased tremendously when HEK293 cells overexpressed Toll-like receptor 3 (TLR3), and the increased secretion of IFN-beta was inhibited by coexpression of an inhibitor of TIR domain-containing adapter-inducing IFN-beta, the TLR3 adaptor protein linked to IFN regulatory factor 3 signaling. Although siRNA and shRNA knockdown of genes represents a new and powerful tool, it is not without nonspecific effects, which we demonstrate are mediated in part by signaling through TLR3.  相似文献   

11.
TLRs can activate two distinct branches of downstream signaling pathways. MyD88 and Toll/IL-1R domain-containing adaptor inducing IFN-beta (TRIF) pathways lead to the expression of proinflammatory cytokines and type I IFN genes, respectively. Numerous reports have demonstrated that resveratrol, a phytoalexin with anti-inflammatory effects, inhibits NF-kappaB activation and other downstream signaling pathways leading to the suppression of target gene expression. However, the direct targets of resveratrol have not been identified. In this study, we attempted to identify the molecular target for resveratrol in TLR-mediated signaling pathways. Resveratrol suppressed NF-kappaB activation and cyclooxygenase-2 expression in RAW264.7 cells following TLR3 and TLR4 stimulation, but not TLR2 or TLR9. Further, resveratrol inhibited NF-kappaB activation induced by TRIF, but not by MyD88. The activation of IFN regulatory factor 3 and the expression of IFN-beta induced by LPS, poly(I:C), or TRIF were also suppressed by resveratrol. The suppressive effect of resveratrol on LPS-induced NF-kappaB activation was abolished in TRIF-deficient mouse embryonic fibroblasts, whereas LPS-induced degradation of IkappaBalpha and expression of cyclooxygenase-2 and inducible NO synthase were still inhibited in MyD88-deficient macrophages. Furthermore, resveratrol inhibited the kinase activity of TANK-binding kinase 1 and the NF-kappaB activation induced by RIP1 in RAW264.7 cells. Together, these results demonstrate that resveratrol specifically inhibits TRIF signaling in the TLR3 and TLR4 pathway by targeting TANK-binding kinase 1 and RIP1 in TRIF complex. The results raise the possibility that certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression and can alter susceptibility to microbial infection and chronic inflammatory diseases.  相似文献   

12.
Erythromycin (EM) has attracted attention because of its anti-inflammatory effect. Because dendritic cells (DCs) are the most potent APCs involved in numerous pathologic processes including innate immunity, we examined effects of EM on the activation of human DCs by pathogen-derived stimuli. Monocyte-derived DCs were pretreated with EM and subsequently stimulated with peptidoglycan, polyriboinosinic:polyribocytidylic acid (poly(I:C)), or LPS. The activation of DCs was assessed by surface molecule expression and cytokine production. To reveal the signaling pathways affected by EM, TLR expression, NF-kappaB, IFN regulatory factor-3, and AP-1 activation were examined. EM inhibited costimulatory molecule expression and cytokine production that was induced by poly(I:C) and LPS but not by peptidoglycan. EM pretreatment down- and up-regulated mRNA levels of TLR3 and TLR2, respectively, but did not affect that of TLR4. EM suppressed IFN regulatory factor-3 activation and IFN-beta production but not AP-1 activation induced by poly(I:C) and LPS. The inhibitory effect of EM on NF-kappaB activation was observed only in poly(I:C)-stimulated DCs. EM selectively suppressed activation of DCs induced by LPS and poly(I:C) in different ways, suggesting that the immuno-modulating effects of EM depend on the nature of pathogens. These results might explain why EM prevents the virus-induced exacerbation in the chronic inflammatory respiratory diseases and give us the clue to design new drugs to treat these diseases.  相似文献   

13.
14.
15.
TLR3 can directly trigger apoptosis in human cancer cells   总被引:11,自引:0,他引:11  
TLRs function as molecular sensors to detect pathogen-derived products and trigger protective responses ranging from secretion of cytokines that increase the resistance of infected cells and chemokines that recruit immune cells to cell death that limits microbe spreading. Viral dsRNA participate in virus-infected cell apoptosis, but the signaling pathway involved remains unclear. In this study we show that synthetic dsRNA induces apoptosis of human breast cancer cells in a TLR3-dependent manner, which involves the molecular adaptor Toll/IL-1R domain-containing adapter inducing IFN-beta and type I IFN autocrine signaling, but occurs independently of the dsRNA-activated kinase. Moreover, detailed molecular analysis of dsRNA-induced cell death established the proapoptotic role of IL-1R-associated kinase-4 and NF-kappaB downstream of TLR3 as well as the activation of the extrinsic caspases. The direct proapoptotic activity of endogenous human TLR3 expressed by cancerous cells reveals a novel aspect of the multiple-faced TLR biology, which may open new clinical prospects for using TLR3 agonists as cytotoxic agents in selected cancers.  相似文献   

16.
17.
18.
19.
20.
Virus replication induces the expression of antiviral type I (IFN-alphabeta) and type III (IFN-lambda1-3 or IL-28A/B and IL-29) IFN genes via TLR-dependent and -independent pathways. Although type III IFNs differ genetically from type I IFNs, their similar biological antiviral functions suggest that their expression is regulated in a similar fashion. Structural and functional characterization of the IFN-lambda1 and IFN-lambda3 gene promoters revealed them to be similar to IFN-beta and IFN-alpha genes, respectively. Both of these promoters had functional IFN-stimulated response element and NF-kappaB binding sites. The binding of IFN regulatory factors (IRF) to type III IFN promoter IFN-stimulated response element sites was the most important event regulating the expression of these genes. Ectopic expression of the components of TLR7 (MyD88 plus IRF1/IRF7), TLR3 (Toll/IL-1R domain-containing adapter-inducing factor), or retinoic acid-inducible gene I (RIG-I) signal transduction pathways induced the activation of IFN-lambda1 promoter, whereas the IFN-lambda3 promoter was efficiently activated only by overexpression of MyD88 and IRF7. The ectopic expression of Pin1, a recently identified suppressor for IRF3-dependent antiviral response, decreased the IFN promoter activation induced by any of these three signal transduction pathways, including the MyD88-dependent one. To conclude, the data suggest that the IFN-lambda1 gene is regulated by virus-activated IRF3 and IRF7, thus resembling that of the IFN-beta gene, whereas IFN-lambda2/3 gene expression is mainly controlled by IRF7, thus resembling those of IFN-alpha genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号