首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effects of temperature, pH, and NaCl concentrations on the infectivity of zoospores of Leptolegnia chapmanii (Argentine isolate) were determined for Aedes aegypti and Culex pipiens under laboratory conditions. Zoospores of L. chapmanii were infectious at temperatures between 10 and 35 degrees C but not at 5 or 40 degrees C. At the permissive temperatures, mortality rates in young instars were much higher than in older instars and larvae of Ae. aegypti were more susceptible to L. chapmanii than larvae of Cx. pipiens. At 25 degrees C, Ae. aegypti larvae challenged with L. chapmanii zoospores resulted in 100% infection at pH levels ranging from 4 to 10. Larvae of Cx. pipiens exposed to similar pH and zoospore concentrations resulted in increasing mortality rates from 62% to 99% at pH 4 to 7, respectively, and then decreased to 71% at pH 10. Aedes aegypti larvae exposed to L. chapmanii zoospores in NaCl concentrations ranging from 0 to 7 parts per thousand (ppt) at 25 degrees C resulted in 100% mortality while mortality rates for Cx. pipiens decreases from 96% in distilled water to 31.5% in water with 6 ppt NaCl. Control Cx. pipiens larvae died when exposed at a NaCl concentration of 7 ppt. Vegetative growth of L. chapmanii was negatively affected by NaCl concentrations. These results have demonstrated that the Argentinean isolate of L. chapmanii tolerated a wide range of temperatures, pH, and salinity, suggesting that it has the potential to adapt to a wide variety of mosquito habitats.  相似文献   

2.
The epizootiology of the microsporidium Amblyospora albifasciati was studied in natural populations of its definitive host, a multivoltine, neotropical, floodwater mosquito, Aedes albifasciatus, and its intermediate copepod host, Mesocyclops annulatus, in an ephemeral floodwater habitat during a 12-month period. A. albifasciati was enzootic in mosquitoes. Vertically (transovarially) transmitted meiospore infections occurred regularly and were detected in five of eight larval broods but the prevalence of infection was always low, ranging from 0.5 to 6.9% with an overall average of 0.7%. Horizontal transmission of A. albifasciati infection from copepods to mosquitoes was nominal and limited. It was detected at levels of 6.4 to 20% in larval Ae. albifasciatus populations on two occasions, the month of August and late September through early October. The low levels of horizontal transmission of infection to mosquito larvae appeared to be the principal limiting factor that prevented the proliferation of A. albifasciati in Ae. albifasciatus populations. Copepod populations were abundant from May through September and weekly prevalence rates of A. albifasciati averaged over 50% (range = 5.8 to 100%). The moderately high infection rates in M. annulatus copepods were inconsistent with the low prevalence of meiospore infection in Ae. albifasciatus mosquito larvae. Results suggest that either meiospores of A. albifasciati produced in the mosquito host are highly infectious to copepods or they are long-lived and remain viable within the pool as long as some standing water is present. Observations further indicate that A. albifasciati has a significant detrimental impact on M. annulatus copepod populations but minimal impact on larval populations of Ae. albifasciatus at this site.  相似文献   

3.
Developmental instars of four species of mosquitoes have been analyzed for growth and synthesis of biomass with respect to their caloric content of protein, lipids, and carbohydrates for each instar of Aedes aegypti and Culex pipiens of the subfamily Culicinae, and Anopheles albimanus, and An. gambiae of the subfamily Anophelinae. The diameter of the thorax grows during the intermolt, reflecting continuous increase in biomass because it correlates significantly with the larval synthesis of total protein, lipids, and carbohydrates. For Ae. aegypti the fourth instar was sexed to disclose the sex-specific synthetic potential. In Ae. aegypti the protein increased in linear proportion with larval body size, whereas lipid synthesis followed a significant, exponential regression, which was clearly steeper in male larvae and most pronounced in the last instar. When normalized for size, the size-specific protein and lipid contents showed minimal levels of 0.25 and 0.1, respectively, regardless of standard or crowded rearing conditions. The rate of lipid synthesis in Ae. aegypti was determined by incubating fourth instar larvae with (14)C-acetate and estimating the lipids. The rate was highest in the early larvae and decreased towards the end shortly before pupation; in male larvae incorporation was twice the rate of female larvae. Cx. pipiens reached the largest body sizes of all species tested, with protein and lipids increasing linearly with size. Their minimal levels of size-specific caloric contents were around 0.35 for protein and 0.25 for lipids. Anopheles also showed a linear relationship between larval size and caloric protein and lipid contents. Their minimal threshold levels in size-specific contents were 0.35 for protein and 0.2 for total lipids, similar to Culex, but slightly higher than in Aedes. Starvation of Ae. aegypti larvae and subsequent feeding partially improved their lipid contents, but never to the levels of non-starving, optimal controls. Conversely, well-fed final instars exposed to complete starvation showed a tremendous reduction of the protein and lipids contents in the surviving imagines, accompanied by 73% mortality. These results demonstrate the biosynthetic plasticity and the significance of the phagoperiod in Ae. aegypti during the final fourth instar for growth. The characteristic differences between these two subfamilies in their larval physiology are discussed in relation to ecological factors as encountered in the field under natural conditions, and in relation to our earlier findings on the reproductive physiology.  相似文献   

4.
Previously we described the mosquito larvicidal properties of decomposed leaf-litter from deciduous trees, especially the alder Alnus glutinosa (L) Gaertn., due to toxic polyphenols and other secondary compounds. To further examine the biocontrol potential of toxic leaf-litter for mosquito control, feeding rates of third-instar mosquito larvae were assessed for examples of three genera: Anopheles stephensi Liston, Aedes aegypti (L) and Culex pipiens L. (Diptera: Culicidae). When immersed in a suspension of non-toxic leaf-litter particles (approximately 0.4 mm), pre-starved larvae of all three species ingested sufficient material in 30 min to fill the anterior gut lumen (thorax plus two to three abdominal segments). Gut filling peaked after 1-2 h ingestion time, filling the intestine up to six to seven abdominal segments for Ae. aegypti, but maxima of five abdominal segments for Cx. pipiens and An. stephensi. Using three methods to quantify consumption of three materials by third-instar larvae of Ae. aegypti, the average amount of leaf-litter (non-toxic 0.4 mm particles) ingested during 3 h was determined as approximately 20 microg/larva (by dry weight and by lignin spectrophotometric assay). Consumption of humine (approximately 100 microm particles extracted from leaf-litter) during 3 h was approximately 80 microg/larva for Ae. aegypti, but only approximately 30 microg/larva for Cx. pipiens and 15 microg/larva for An. stephensi, with good concordance of determinations by dry weight and by radiometric assay. Cellulose consumption by Ae. aegypti was intermediate: approximately 40 microg/larva determined by radiometric assay. Apparent differences between the amounts of these materials ingested by Ae. aegypti larvae (humine four-fold, cellulose two-fold more than leaf-litter) may be attributed to contrasts in palatability (perhaps related to particle size or form), rather than technical discrepancies, because there was good concordance between results of both methods used to determine the amounts of humine and leaf-litter ingested. Bioassays of toxic leaf-litter (decomposed 10 months) with 4-h exposure period (ingestion time) ranked the order of sensitivity: Ae. aegypti (LC50 < 0.03 g/L) > An. stephensi (LC50 = 0.35 g/L) > Cx. pipiens (LC20 > 0.4 g/L). When immersed in the high concentration of 0.5 g/L toxic leaf-litter (0.4 mm particles), as little as 15-30 min ingestion time (exposure period) was sufficient to kill the majority of larvae of all three species, as soon as the gut lumen was filled for only the first few abdominal segments. Possibilities for mosquito larval control with toxic leaf-litter products and the need for standardized ingestion bioassays of larvicidal particles are discussed.  相似文献   

5.
Ten species of mosquitoes (Diptera: Culicidae) from five genera were exposed to preparasites of the tropical mermithid nematode species Romanomermis iyengari (Welch) (Nematoda: Mermithidae), a strain isolated in 1978 from Pondicherry. By exposing mosquito larvae during the second instar, nematode infection was invariably lethal, the rate being highest in Culex sitiens Wiedemann (95%) followed by Cx. quinquefasciatus Say (90%), Aedes aegypti (L.) (79%), Anopheles subpictus Grassi (64%), Ae. albopictus (Skuse) and Armigeres subalbatus Coquillett (62%), Cx. tritaeniorhynchus Giles (57%), Mansonia annulifera (Theobald) (46%), An. stephensi Liston (40%) and An. culicifacies Giles (36%). When fourth-instar larvae were exposed, the infection was highest in Ar. subalbatus (66%), followed by An. stephensi (52%), Cx. quinquefasciatus (47%), Ae. aegypti and An. subpictus (42%), Ae. albopictus (30%), An. culicifacies (29%), Cx. sitiens (24%), Cx. tritaeniorhynchus (19%) and Ma. annulifera (8%), with 2-45% of infected culicines surviving to adulthood. The parasitic phase of the nematode lasted 5-7 days in all the host species, yielding 1.1-3.2 parasites per II instar and 1.1-2.5 parasites per IV instar. The overall output of parasites per 100 mosquito larvae (infected + uninfected) was highest for Ae. aegypti when mosquitoes were exposed during II instar (2.53 parasites/larva) and for Ar. subalbatus when mosquitoes were exposed during IV instar (1.65/larva), and lowest for Ma. annulifera exposed during IV instar (0.09/larva). For routine laboratory culture of R. iyengari it is convenient to employ Cx. quinquefasciatus as the host yielding 90-190 parasites/100 larva.  相似文献   

6.
采用浸液法测试了竹叶花椒果实的水蒸汽蒸馏精油对白纹伊蚊和致倦库蚊幼虫的毒杀效果,并用三角瓶密闭熏蒸法研究了精油对这两种成蚊的熏杀活性;此外,采用GC-MS分析了该精油的化学成分。研究结果:(1)精油对白纹伊蚊和致倦库蚊的Ⅰ、Ⅱ、Ⅲ、Ⅳ龄期幼虫及蛹的LC50值分别为25.634/61.472、31.763/76.431、52.356/110.172、258.497/121.884和198.263/162.048mg.L-1;(2)精油对白纹伊蚊和致倦库蚊成蚊的LC50值分别为24.957和29.517μg.cm-3;(3)在147.52μg.cm-3熏杀剂量下,精油对白纹伊蚊和致倦库蚊成蚊的KT50值分别为3.493和2.993min,24h致死率均为100%;(4)共鉴定出18种化合物,其中萜烯类10种,占精油总量的67.122%,为竹叶花椒果实精油的主要成分。竹叶花椒果实精油对白纹伊蚊和致倦库蚊均有明显的致死作用,且作用速度快,具有开发为植物源杀蚊剂的潜力。  相似文献   

7.
Trypsin and chymotrypsin-like enzymes were detected in the gut of Aedes aegypti in the four larval instar and pupal developmental stages. Although overall the amount of trypsin synthesized in the larval gut was 2-fold higher than chymotrypsin, both enzymes are important in food digestion. Feeding Aea-Trypsin Modulating Oostatic Factor (TMOF) to Ae. aegypti and Culex quinquefasciatus larvae inhibited trypsin biosynthesis in the larval gut, stunted larval growth and development, and caused mortality. Aea-TMOF induced mortality in Ae. aegypti, Cx. quinquefasciatus, Culex nigripalpus, Anopheles quadrimaculatus, and Aedes taeniorhynchus larvae, indicating that many mosquito species have a TMOF-like hormone. The differences in potency of TMOF on different mosquito species suggest that analogues in other species are similar but may differ in amino acid sequence or are transported differently through the gut. Feeding of 29 different Aea-TMOF analogues to mosquito larvae indicated that full biological activity of the hormone is achieved with the tetrapeptide YDPA. Using cytoimmunochemical analysis, intrinsic TMOF was localized to ganglia of the central nervous system in larvae and male and female Ae. aegypti adults. The subesophageal, thoracic, and abdominal ganglia of both larval and adult mosquitoes contained immunoreactive cells. Immunoreactive cells were absent in the corpus cardiacum of newly molted 4th instar larvae but were found in late 4th instar larvae. In both males and females, the intrinsic neurosecretory cells of the corpus cardiacum were filled with densely stained immunoreactive material. These results indicate that TMOF-immunoreactive material is synthesized in sugar-fed male and female adults and larvae by the central nervous system cells.  相似文献   

8.
Abstract  The control efficacy of a predatory copepod, Mesocyclops leukarti , collected in Jining, and its compatibility with Bacillus sphaericus (B.s. ) and B. thuringiensis var. csraefensis H-14 ( B. t. i. ) against mosquito larvae were evaluated in the laboratory and in the field. In the laboratory, M. leukarti showed higher predatory activity toward first instar larvae of Aedes albopictus than toward that of Anopheles sinensis and Culex pipiens pallens. Cage simulation test showed that larvae of Cx. pipiens pallens, An. sinensis and Ae. albopictus could be eliminated within 9, 10 and 7 weeks after interaction with the copepods respectively. M. leukarti population can grow quickly, and its mass production is easy and economic. However, pilot field trials indicated that M. leukarti alone could not eradicate mosquito larvae of the three species rapidly and completely as by chemical insecticides, although they could persist in mosquito breeding habitats longer than the mosquito season. When Mesocyclops was used in combination with B. s. and B. t. i. , higher and sustainable control effects were achieved. So this combination, which achieved the rapid larvicidal and sustainable control effect, was presumed to be practical and could be integrated into mosquito control program.  相似文献   

9.
The naturally-derived insecticide spinosad (Conserve SC) was evaluated against larval Culex pipiens L. (Diptera: Culicidae) under laboratory and field conditions in Antalya, Turkey. Laboratory bioassays showed that the 24 h LC50 and LC90 against late 3rd and early 4th instars were estimated at 0.027 and 0.111 parts per million, respectively, while adult emergence was eliminated at concentrations above 0.06 ppm. Larval mortality from septic tanks that were treated with spinosad at rates of 25, 50, 100, and 200 g ai/ha ranged between 22 to 78% 1 day after application. At 7 days post-treatment, larval mortality ranged from 2 to 50% and at 14 days mortality was <10% for all treatments. Larval bioassays of the water from those septic tanks treated at 100 and 200 g ai/ha resulted in an elimination of Cx. pipiens larvae 7 days after treatment. After this time, larval reduction declined to 79 and 83%, respectively, 14 days after treatment. Larval reduction in septic tanks treated at the two lowest rates (i.e. 25 and 50 g ai/ha) ranged from 14 to 74% during the 14-day study. These results indicated that spinosad can be considered an effective larvicide for treatment of septic tanks against Cx. pipiens.  相似文献   

10.
A preliminary study was conducted to investigate the effects of the extracts of 112 medicinal plant species, collected from the southern part of Thailand, on Aedes aegypti. Studies on larvicidal properties of plant extracts against the fourth instar larvae revealed that extracts of 14 species showed evidence of larvicidal activity. Eight out of the 14 plant species showed 100% mosquito larvae mortality. The LC50 values were less than 100μg/mL (4.1μg/ mL-89.4μg/mL). Six plant species were comparatively more effective against the fourth instar larvae at very low concentrations. These extracts demonstrated no or very low toxicity to guppy fish (Poecilia reticulata), which was selected to represent most common non-target organism found in habitats ofAe. aegypti, at concentrations active to mosquito larvae. Three medicinal plants with promising larvicidal activity, having LC50 and LC50 values being 4.1 and 16.4 μg/mL for Mammea siamensis, 20.2 and 34.7 μg/mL forAnethum graveolens and 67.4 and 110.3μg/mL forAnnona muricata, respectively, were used to study the impact of the extracts on the life cycle ofAe. aegypti. These plants affected pupal and adult mortality and also affected the reproductive potential of surviving adults by reducing the number of eggs laid and the percentage of egg hatchability. When each larval stage was treated with successive extracts at the LC50 value, the first instar larvae were found to be very susceptible to A. muricata and the second instar larvae were found to be susceptible to A. graveolens, while the third and fourth instar larvae were found to be susceptible to M. siamensis. These extracts delayed larval development and inhibited adult emergence and had no adverse effects on P. reticulata at LC50 and LC50 values, except for the M. siamensis extract at its LC50 value.  相似文献   

11.
The copepod Mesocyclops aspericornis Daday and the larvivorous fishes Gambusia affinis (B. & G.) and Poecilia reticulata R. & B., were released into mosquito breeding sites in Tuherahera village, Tikehau atoll, French Polynesia, to control larvae of Aedes aegypti (L.), Ae.polynesiensis Marks, Culex annulirostris Skuse and Cx quinquefasciatus Say. Treatments were completed within a week, in January 1990. Fish quickly eliminated mosquito larvae from the open breeding sites (ponds, wells). The impact of copepods in water tanks, drums and covered wells was inconsistent, apparently depending on the availability of microfaunal diet for growth of copepod nauplii. As the biting rate of adult Ae.aegypti seemed to be unaffected by the biological control of larvae, this village-scale experiment was judged to be unsuccessful as a means of vector control.  相似文献   

12.
《Bioresource technology》2000,71(3):267-271
Oil of Mentha piperita L. (Peppermint oil), a widely used essential oil, was evaluated for larvicidal activity against different mosquito species: Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus by exposing IIIrd instar larvae of mosquitoes in enamel trays 6 × 4 inch2 size filled to a depth of 3 inch with water. Of the three species tested Cx. quinquefasciatus was most susceptible followed by Ae. aegypti and An. stephensi. Application of oil at 3 ml/m2 of water surface area resulted in 100% mortality within 24 h for Cx. quinquefasciatus, 90% for Ae. aegypti and 85% for An. stephensi. For Ae. aegypti 100% mortality was achieved at 3 ml/m2 in 48 h or 4 ml/m2 in 24 h. For An. stephensi 100% mortality was observed at 4 ml/m2 in 72 h. The emergence at 3 ml/m2 was also inhibited to a great extent and the few adults which emerged did not ovipost even after taking a blood meal. The oil showed strong repellent action against adult mosquitoes when applied on human skin. Percent protection obtained against An. annularis, An. culicifacies, and Cx. quinquefasciatus was 100%, 92.3% and 84.5%, respectively. The repellent action of Mentha oil was comparable to that of Mylol oil consisting of dibutyl and dimethyl phthalates.  相似文献   

13.
Beauveria bassiana, an entomopathogenic fungus, was evaluated for its potential against second and third instar larvae of Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Conidiospores of this fungus were effective in causing infection leading to mortality of different larval instars. Larvae of Cx. quinquefasciatus were more susceptible to infection than An. stephensi and the second instar larvae of these two species were more susceptible than third instar larvae. Larvae of Ae. aegypti were resistant to infection by B. bassiana.  相似文献   

14.
本研究在室内评价了在济宁采集的捕食性刘氏中剑水蚤单用及与球形芽孢杆菌(B.s.)或苏云金杆菌以色列变种(B.t.i.)合用对蚊幼虫的控制效果。在室内,刘氏中剑水蚤对白蚊伊蚊Ⅰ龄幼虫的捕食效果好于对中华按蚊和淡色库蚊幼虫的效果。蚊笼模拟试验表明,刘氏中剑水蚤可分别于9、10和7周内消灭淡色库蚊、中华按蚊和白蚊伊蚊的幼虫种群。该剑水蚤增长速率快,大量培养经济易行。现场试验证明,刘氏中剑水蚤虽可在蚊虫孳生地存活时间长于蚊虫季节,但单用该剑水蚤不能象化学杀虫剂一样快速完全地控制三种蚊虫。刘氏中剑水蚤与B.s.或B.t.i.合用,应用刘氏中剑水蚤的长持效和生物杀虫剂的速效,取得了高效、持久的防治效果。因此二者合用可用于蚊虫防治并可作为蚊虫综合防治的一个组成部分。  相似文献   

15.
Abstract .The effect of the introduction of the entomophagous copepod Mesocyclops longisetus (Acuacultura F.C.B. strain) on the survival of Aedes aegypti immature stages in car tyres was evaluated under semi-natural conditions in the municipality of Merida, Yucatan, Mexico. Life tables were constructed for the immature stages of the mosquito in the presence and absence of M. longisetus , and the survival data were compared using log–linear models. The data set was adjusted using the GLIM statistical package and the quality of adjustment was evaluated with a chi-squared test . Survivorship curves were constructed for each treatment.
In the absence of M. longisetus , the survivorship of Ae. aegypti immature stages averaged 9%. The highest mortality rate was observed during the fourth larval instar (54%) and the resulting survival pattern corresponded to a type II survivorship curve. The mortality rate of Ae. aegypti first-instar larvae (fifty per tyre) increased more than 200-fold in the presence of M. longisetus (twenty per tyre) and the highest mortality was during the first two larval instars, where it reached 98.9%, with a resulting survivorship of 0.2%. Overall mortality was sixfold greater in the presence of the copepod than in its absence. The survival pattern of immature stages of Ae. aegypti in the presence of the copepod corresponded to a type III survivorship curve. As M. longisetus was so effective against Ae. aegypti immature stages in tyres under semi-natural conditions, its long-term effectiveness should be evaluated under socially and ecologically realistic field conditions in Mexico.  相似文献   

16.
We evaluated the potential of Mesocyclops annulatus as a control agent of Aedes aegypti in La Plata city (Argentina). Mosquito larval survivorship due to predation by these copepods was estimated at weekly intervals during the oviposition period of A. aegypti. Mean weekly A. aegypti larval survivorship in cylindrical plastic containers (12 cm height and 11 cm diameter) with copepods was significantly lower than in control containers. Furthermore, weekly larval survival was negatively correlated with M. annulatus adult density, and approximately 23 adult copepods/container would be a threshold density over which the weekly mosquito larval survivorship approached zero. The copepods were able to persist in all containers during approximately 100 days (in three of them until the end of the experiment: 155 days) without the resource represented by A. aegypti larvae. The predation and persistence observed suggest that M. annulatus is a potential control agent to be considered in biological control programs.  相似文献   

17.
The aim of the study was to determine the existence of Ascogregarina spp. in larvae of Aedes albopictus and Aedes aegypti collected in urban and suburban areas of Manaus, Amazon region, Brazil. Between May 2004 and July 2005, the mid-gut of 3rd and 4th instar larvae, collected in tire traps in six neighborhoods of Manaus, was examined for the presence of trophozoites of Ascogregarina. Coexistence of Ae. albopictus larvae infected by A. taiwanensis, and Ae. aegypti larvae by A. culicis, was detected in traps in the field. The percentage of Ae. albopictus larvae infected by A. taiwanensis ranged from 21% to 93.5% and of Ae. aegypti larvae infected by A. culicis from 22% to 95%. The mean infection intensity was similar in both species of Aedes. In traps located in Mauazinho, the replacement of Ae. aegypti by Ae. albopictus larvae was observed. In Manaus, Ae. albopictus larvae were parasitized by A. taiwanensis, and Ae. aegypti larvae by A. culicis. Infection rates were high when the species of Aedes were found separately.  相似文献   

18.
Crude rhizome extracts and volatile oils of Curcuma aromatica were evaluated for chemical composition and anti-mosquito potential, including larvicidal, adulticidal, and repellent activities against the Aedes aegypti mosquito. Chemical identification achieved by GC/MS analysis revealed that xanthorrhizol, 1H-3a, 7-methanoazulene and curcumene at 35.08 and 13.65%, 21.81 and 30.02%, and 13.75 and 25.71%, were the main constituents in hexane extracts and volatile oils, respectively. Volatile oil of Cu. aromatica possessed a significantly higher larvicidal activity against the 4th instar larvae of Ae. aegypti than that of hexane extracts, with LC50 values of 36.30 and 57.15 ppm, respectively. In testing for adulticidal activity, on the other hand, hexane-extracted Cu. aromatica (LC50: 1.60 microg/mg female) was found to be slightly more effective against female Ae. aegypti than volatile oil (LC50: 2.86 microg/mg female). However, the repellency of these two products against Ae. aegypti adult females differed significantly. The hexane-extracted Cu. aromatica, with a median complete protection time of 1 h (range = 1-1.5 h) when applied at a concentration of 25%, appeared to have significantly higher repellency than that of distillate oil (0.5 h, range = 0-0.5 h). The different results obtained from both products of Cu. aromatica were probably due to variety in quantity and type of active ingredients as well as the biological and physiological characteristics that differed between both developmental stages of mosquitoes, larvae, and adults.  相似文献   

19.
The efficacy of a local Thai-strain of the copepod, Mesocyclops thermocyclopoides and the larvicide, Bacillus thuringiensis var. israelensis (Bti), used jointly and singly, was studied against Aedes aegypti in water containers. In a laboratory test, copepods alone produced mortality of 98-100% in 1st instar larvae of Ae. aegypti at copepod:larvae ratios ranging from 1:1 to 1:4. In an outdoor field simulated experiment that ran for 16 wk, after a single inoculation, the treatment of copepods and Bti combined yielded the better, more sustainable results than the agents used individually. Numbers of mosquito larvae per sample in the combined treatment were zero during the first 8 wk; larval numbers then increased but were maintained at a very low level for the next 4 wk after which the larval numbers increased moderately but still remained below numbers in the control. Bti alone kept the larvae at the zero level for the first 4 wk after which their numbers increased slightly and were at low levels up to 12 wk. Copepods alone maintained larval numbers at a low level as compared with those of the control. During the course of the experiment the larval numbers in the control were greater than 20 per sample. Statistically significant differences were noted among treatment means (F = 23.083, df = 3/60, P<0.01) over the total period of the study. The number of copepods in the joint treatment was significantly higher than in the copepod alone treatment for the first 8 wk (t = -4.97, df = 14, P<0.01). The density of copepods, however, for the whole 16-wk period was not significantly different in these two treatments (t = -1.51, df = 30, P>0.1).  相似文献   

20.
Two neotropical freshwater fish species, Cnesterodom decemmaculatus (Poeciliidae) and Jenynsia multidentata (Anablepidae), were collected from human-made ditches, a common habitat of the house mosquito Culex pipiens in La Plata, Argentina. Cnesterodom decemmaculatus was recorded in 62 of the 100 examined ditches, whereas J. multidentata was collected from only 21 ditches sympatrically with C. decemmaculatus. Culex pipiens was the only mosquito species collected, and its larvae and pupae were found in 38 of the 100 ditches. Fish and mosquito larvae and pupae were collected together in only two ditches and were significantly negatively correlated. Siphons of larval Culex and remnants of chironomid larvae, copepods, aquatic mites, and fish were present in the gut contents of two C. decemmaculatus from mosquito-positive ditches, while diatoms and filamentous algae were recorded in every fish dissected. Adult C. decemmaculatus and J. multidentata needed approximately 6.2 h to completely digest one Cx. pipiens 4th instar larva under laboratory conditions. When fish were confined with a density of 60 or fewer Cx. pipiens 4th instar larvae, C. decemmaculatus and J. multidentata adults consumed 100% of them in one day but only 35% and 42%, respectively, when confined with 150 larvae. Eradication of Cx. pipiens from a ditch, where densities had averaged 250 immatures per dip, was achieved 17 days after the introduction of 1,700 C. decemmaculatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号