首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains.  相似文献   

2.
Class XIVa myosins comprise a unique group of myosin motor proteins found in apicomplexan parasites, including those that cause malaria and toxoplasmosis. The founding member of the class XIVa family, Toxoplasma gondii myosin A (TgMyoA), is a monomeric unconventional myosin that functions at the parasite periphery to control gliding motility, host cell invasion, and host cell egress. How the motor activity of TgMyoA is regulated during these critical steps in the parasite''s lytic cycle is unknown. We show here that a small-molecule enhancer of T. gondii motility and invasion (compound 130038) causes an increase in parasite intracellular calcium levels, leading to a calcium-dependent increase in TgMyoA phosphorylation. Mutation of the major sites of phosphorylation altered parasite motile behavior upon compound 130038 treatment, and parasites expressing a nonphosphorylatable mutant myosin egressed from host cells more slowly in response to treatment with calcium ionophore. These data demonstrate that TgMyoA undergoes calcium-dependent phosphorylation, which modulates myosin-driven processes in this important human pathogen.  相似文献   

3.
Invasive infection with Entamoeba histolytica causes intestinal and hepatic amoebiasis. In liver, parasites cross the endothelial barrier before abscess formation in the parenchyma. We focussed on amoebae interactions with human hepatic endothelial cells, the latter potentially playing a dual role in the infection process: as a barrier and as modulators of host defence responses. We characterized early responses of a human liver sinusoidal endothelial cell line to virulent and virulence-attenuated E. histolytica. Within the first minutes human cells start to retract, enter into apoptosis and die. In the presence of virulent amoebae, expression of genes related to cell cycle, cell death and integrin-mediated adhesion signalling was modulated, and actin fibre, focal adhesion kinase and paxillin localizations changed. Effects of inhibitors and amoeba strains not expressing pathogenic factors amoebapore A and cysteine protease A5 indicated that cell death and cytoskeleton disorganization depend upon parasite adhesion and amoebic cysteine proteinase activities. The data establish a relation between cytotoxic effects of E. histolytica and altered human target cell adhesion and suggest that interference with adhesion signalling triggers endothelial cell retraction and death. Understanding the roles of integrin signalling in endothelial cells will provide clues to unravel host-pathogen interactions during amoebic liver infection.  相似文献   

4.
The processes leading to systemic dissemination of the obligate intracellular parasite Toxoplasma gondii remain unelucidated. In vitro studies on human and murine dendritic cells (DC) revealed that active invasion of DC by Toxoplasma induces a state of hypermotility in DC, enabling transmigration of infected DC across endothelial cell monolayers in the absence of chemotactic stimuli. Infected DC exhibited upregulation of maturation markers and co-stimulatory molecules. While modulation of cell adhesion molecules CD11/CD18 was similar for Toxoplasma-infected DC and lipopolysaccharide (LPS)-matured DC, Toxoplasma-infected DC did not exhibit upregulation of CD54/ICAM-1. Induction of host cell migration in vitro required live intracellular parasite(s) and was inhibited by uncoupling the Gi-protein signalling pathway with pertussis toxin, but did not depend on CCR5, CCR7 or Toll/interleukin-1 receptor signalling. When migration of Toxoplasma-infected DC was compared with migration of LPS-stimulated DC in vivo, similar or higher numbers of Toxoplasma-infected DC reached the mesenteric lymph nodes and spleen respectively. Adoptive transfer of Toxoplasma-infected DC resulted in more rapid dissemination of parasites to distant organs and in exacerbation of infection compared with inoculation with free parasites. Altogether, these findings show that Toxoplasma is able to subvert the regulation of host cell motility and likely exploits the host's natural pathways of cellular migration for parasite dissemination.  相似文献   

5.
Toxoplasma gondii is an obligate intracellular parasite that actively invades mammalian cells using a unique form of gliding motility that critically depends on actin filaments in the parasite. To determine if parasite motility is driven by a myosin motor, we examined the distribution of myosin and tested the effects of specific inhibitors on gliding and host cell invasion. A single 90 kDa isoform of myosin was detected in parasite lysates using an antisera that recognizes a highly conserved myosin peptide. Myosin was localized in T. gondii beneath the plasma membrane in a circumferential pattern that overlapped with the distribution of actin. The myosin ATPase inhibitor, butanedione monoxime (BDM), reversibly inhibited gliding motility across serum-coated slides. The myosin light-chain kinase inhibitor, KT5926, also blocked parasite motility and greatly reduced host cell attachment; however, these effects were primarily caused by its ability to block the secretion of microneme proteins, which are involved in cell attachment. In contrast, while BDM partially reduced cell attachment, it prevented invasion even under conditions in which microneme secretion was not affected, indicating a potential role for myosin in cell entry. Collectively, these results indicate that myosin(s) probably participate(s) in powering gliding motility, a process that is essential for cell invasion by T. gondii .  相似文献   

6.
Host cell invasion by apicomplexan parasites requires coordinated interactions between cell surface adhesins and the parasite cytoskeleton. We have identified a complex of parasite proteins, including the actin binding protein aldolase, which specifically interacts with the C-terminal domains of several parasite adhesins belonging to the thrombospondin-related anonymous protein (TRAP) family. Binding of aldolase to the adhesin was disrupted by mutation of a critical tryptophan in the C domain, a residue that was previously shown to be essential for parasite motility. Our findings reveal a potential role for aldolase in connecting TRAP family adhesins with the cytoskeleton, and provide a model linking adhesion with motility in apicomplexan parasites.  相似文献   

7.
Gliding motility is an essential and fascinating apicomplexan-typical adaptation to an intracellular lifestyle. Apicomplexan parasites rely on gliding motility for their migration across biological barriers and for host cell invasion and egress. This unusual substratedependent mode of locomotion involves the concerted action of secretory adhesins, a myosin motor, factors regulating actin dynamics and proteases. During invasion, complexes of soluble and transmembrane micronemes proteins (MICs) and rhoptry neck proteins (RONs) are discharged to the apical pole of the parasite, some protein acts as adhesins and bind to host cell receptors whereas others are involved in the moving junction formation. These complexes redistribute towards the posterior pole of the parasite via a physical connection to the parasite actomyosin system and are eventually released from the parasite surface by the action of parasite proteases.  相似文献   

8.
The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility.  相似文献   

9.
The protozoan intestinal parasite Entamoeba histolytica remains a significant cause of morbidity and mortality worldwide. E. histolytica causes two major clinical syndromes, amebic colitis and amebic liver abscess. Recent advances in the development of in vitro and in vivo models of disease, new genetic approaches, the identification of key E. histolytica virulence factors, and the recognition of crucial elements of the host response to infection have led to significant insights into the pathogenesis of amebic infection. E. histolytica virulence factors include 1) a surface galactose binding lectin that mediates E. histolytica binding to host cells and may contribute to amebic resistance to complement, 2) amebapores, small peptides capable of lysing cells, which may play a role in killing intestinal epithelial cells, hepatocytes, and host defense cells, and 3) a family of secreted cysteine proteinases that play a key role in E. histolytica tissue invasion, evasion of host defenses, and parasite induction of gut inflammation. Amebae can both lyse host cells and induce their suicide through programmed cell death. The host response is also an important factor in the outcome of infection, and neutrophils may play a key role in contributing to the tissue damage seen in amebiasis and in controlling amebic infection.  相似文献   

10.
The human gut parasite Entamoeba histolytica, uses a lectin complex on its cell surface to bind to mucin and to ligands on the intestinal epithelia. Binding to mucin is necessary for colonisation and binding to intestinal epithelia for invasion, therefore blocking this binding may protect against amoebiasis. Acquired protective immunity raised against the lectin complex should create a selection pressure to change the amino acid sequence of lectin genes in order to avoid future detection. We present evidence that gene conversion has occurred in lineages leading to E. histolytica strain HM1:IMSS and E. dispar strain SAW760. This evolutionary mechanism generates diversity and could contribute to immune evasion by the parasites.  相似文献   

11.
Most Apicomplexan parasites, including the human pathogens Plasmodium, Toxoplasma, and Cryptosporidium, actively invade host cells and display gliding motility, both actions powered by parasite microfilaments. In Plasmodium sporozoites, thrombospondin-related anonymous protein (TRAP), a member of a group of Apicomplexan transmembrane proteins that have common adhesion domains, is necessary for gliding motility and infection of the vertebrate host. Here, we provide genetic evidence that TRAP is directly involved in a capping process that drives both sporozoite gliding and cell invasion. We also demonstrate that TRAP-related proteins in other Apicomplexa fulfill the same function and that their cytoplasmic tails interact with homologous partners in the respective parasite. Therefore, a mechanism of surface redistribution of TRAP-related proteins driving gliding locomotion and cell invasion is conserved among Apicomplexan parasites.  相似文献   

12.
Apicomplexan parasites rely on actin-based gliding motility to move across the substratum, cross biological barriers, and invade their host cells. Gliding motility depends on polymerization of parasite actin filaments, yet ~98% of actin is nonfilamentous in resting parasites. Previous studies suggest that the lack of actin filaments in the parasite is due to inherent instability, leaving uncertain the role of actin-binding proteins in controlling dynamics. We have previously shown that the single allele of Toxoplasma gondii actin depolymerizing factor (TgADF) has strong actin monomer-sequestering and weak filament-severing activities in vitro. Here we used a conditional knockout strategy to investigate the role of TgADF in vivo. Suppression of TgADF led to accumulation of actin-rich filaments that were detected by immunofluorescence and electron microscopy. Parasites deficient in TgADF showed reduced speed of motility, increased aberrant patterns of motion, and inhibition of sustained helical gliding. Lack of TgADF also led to severe defects in entry and egress from host cells, thus blocking infection in vitro. These studies establish that the absence of stable actin structures in the parasite are not simply the result of intrinsic instability, but that TgADF is required for the rapid turnover of parasite actin filaments, gliding motility, and cell invasion.  相似文献   

13.
Intracellular microbes have evolved efficient strategies for transitioning from one cell to another in a process termed intercellular transmission. Here we show that host cell transmission of the obligate intracellular parasite Toxoplasma gondii is closely tied to specific cell cycle distributions, with egress and reinvasion occurring most proficiently by parasites in the G1 phase. We also reveal that Toxoplasma undergoes marked changes in mRNA expression when transitioning from the extracellular environment to its intracellular niche. These mRNA level changes reflect a modal switch from expression of proteins involved in invasion, motility and signal transduction in extracellular parasites to expression of metabolic and DNA replication proteins in intracellular parasites. Host cell binding and signalling associated with the discharge of parasite secretory proteins was not sufficient to induce this switch in gene expression, suggesting that the regulatory mechanisms responsible are tied to the establishment of the intracellular environment. The genes whose expression increased after parasite invasion belong to a progressive cascade known to underlie the parasite division cycle indicating that the unique relationship between the G1 phase and invasion effectively synchronizes short-term population growth. This work provides new insight into how this highly successful parasite competently transits from cell to cell.  相似文献   

14.
Motion is an intrinsic property of all living organisms, and each cell displays a variety of shapes and modes of locomotion. How structural proteins support cellular movement and how cytoskeletal dynamics and motor proteins are harnessed to generate order and movement are among the fundamental and not fully resolved questions in biology today. Protozoan parasites belonging to the Apicomplexa are of enormous medical and veterinary significance, being responsible for a wide variety of diseases in human and animals, including malaria, toxoplasmosis, coccidiosis and cryptosporidiosis. These obligate intracellular parasites exhibit a unique form of actin-based gliding motility, which is essential for host cell invasion and spreading of parasites throughout the infected hosts. A motor complex composed of a small myosin of class XIV associated with a myosin light chain and a plasma membrane-docking protein is present beneath the parasite's plasma membrane. According to the capping model, this complex is connected directly or indirectly to transmembrane adhesin complexes, which are delivered to the parasite surface upon microneme secretion. Together with F-actin and as yet unknown bridging molecules and proteases, these complexes are among the structural and functional components of the 'glideosome'.  相似文献   

15.
The parasite Entamoeba histolytica colonizes the human intestine causing amoebic colitis and disseminates through the vascular route to form liver abscesses. The Gal/GalNAc lectin is an adhesion protein complex which sustains tissue invasion by E. histolytica. Disruption of the Gal/GalNAc lectin function in engineered parasites (HGL-2 trophozoites) changed the pathophysiology of hamster liver abscess formation. HGL-2 trophozoites produced numerous small inflammatory foci located in the vicinity of blood vessels. The low penetration of HGL-2 trophozoites into hepatic tissue was shown to be associated with weak attraction of neutrophils and macrophages to the infiltrated areas and absence of pro-inflammatory tumour necrosis factor, in contrast to wild type or control vector infections. The low host inflammatory response in HGL-2 infections correlated with a delay in apoptosis of hepatic cells, whereas apoptosis of endothelial cells was not detected. Triggering of apoptosis in both host cell types most likely has a central role in modulating inflammation, a major landmark in hepatic amoebiasis. These data highlight the key role of the Gal/GalNAc lectin in initiation of E. histolytica hepatic infection.  相似文献   

16.
Apicomplexan parasites are obligate intracellular parasites that infect a variety of hosts, causing significant diseases in livestock and humans. The invasive forms of the parasites invade their host cells by gliding motility, an active process driven by parasite adhesion proteins and molecular motors. A crucial point during host cell invasion is the formation of a ring-shaped area of intimate contact between the parasite and the host known as a tight junction. As the invasive zoite propels itself into the host-cell, the junction moves down the length of the parasite. This process must be tightly regulated and signalling is likely to play a role in this event. One crucial protein for tight-junction formation is the apical membrane antigen 1 (AMA1). Here we have investigated the phosphorylation status of this key player in the invasion process in the human malaria parasite Plasmodium falciparum. We show that the cytoplasmic tail of P. falciparum AMA1 is phosphorylated at serine 610. We provide evidence that the enzyme responsible for serine 610 phosphorylation is the cAMP regulated protein kinase A (PfPKA). Importantly, mutation of AMA1 serine 610 to alanine abrogates phosphorylation of AMA1 in vivo and dramatically impedes invasion. In addition to shedding unexpected new light on AMA1 function, this work represents the first time PKA has been implicated in merozoite invasion.  相似文献   

17.
18.
The site specificity that avian Eimeria sporozoites and, to a more limited degree, other apicomplexan parasites exhibit for invasion in vivo suggests that specific interactions between the sporozoites and the target host cells may mediate the invasion process. Although sporozoite motility and structural and secreted antigens appear to provide the mechanisms for propelling the sporozoite into the host cell,there is a growing body of evidence that the host cell provides characteristics by which the sporozoites recognise and interact with the host cell as a prelude to invasion. Molecules on the surface of cells in the intestinal epithelium, that act as receptor or recognition sites for sporozoite invasion, may be included among these characteristics. The existence of receptor molecules for invasion by apicomplexan parasites was suggested by in vitro studies in which parasite invasion was inhibited in cultured cells that were treated with a variety of substances designed to selectively alter the host cell membrane. These substance included cationic compounds or molecules, enzymes that cleave specific linkages, protease inhibitors, monoclonal antibodies, etc. More specific evidence for the presence of receptors was provided by the binding of parasite antigens to specific host cell surface molecules.Analyses of host cells have implicated 22, 31, and 37 kDa antigens, surface membrane glycoconjugates,conserved epitopes of host cells and sporozoites, etc., but no treatment that perturbs these putative receptors has completely inhibited invasion of the cells by parasites. Regardless of the mechanism,sporozoites of the avian Eimeria also invade the same specific sites in foreign host birds that they invade in the natural host. Thus, site specificity for invasion may be a response to characteristics of the intestine that are shared by a number of hosts rather than to a unique trait of the natural host. Protective immunity elicited against avian Eimeria species is not manifested in a total blockade of parasite invasion. In fact, the effect of immunity on invasion differs according to the eliciting species and depends upon the area of the intestine that is invaded. Immunity produced against caecal species of avian Eimeria, for example Eimeria tenella and Eimeria adenoeides, inhibits subsequent invasion by homologous or heterologous challenge species, regardless of the area of the intestine that the challenge species invade. Conversely, in birds immunised with upper intestinal species, Eimeria acervulina and Eimeria meleagrimitis, invasion by challenge species is not decreased and often is significantly increased.  相似文献   

19.
The Madin-Darby canine kidney epithelial cell line (MDCK) was used as a model for trichomonad-host cell interaction. Two laboratory strains of the human parasite Trichomonas vaginalis and the cattle's parasite Tritrichomonas foetus or their supernatants from axenic cultures were allowed to interact with confluent epithelial cultures. The interaction process studied by transmission and scanning electron microscopy revealed that both parasites adhere to monolayers through flagella, cell body and particularly for T. foetus, through the posterior projection of the axostyle. A close contact region between the trichomonad's surface and MDCK cells was observed. A study of the involvement of trichomonad surface component in the interaction process indicated that cytochalasin B treated-parasites adhere much less to epithelial monolayers than untreated parasites. Colchicine treatment did not affect such adhesion. Treatment of the parasites with trypsin reduced the adhesion of trichomonads to monolayers but did not interfere with the cytopathic effect. In contrast, treatment of the parasites with neuraminidase did not interfere with their adhesion to epithelial cells and the monolayer destruction was further increased.  相似文献   

20.
Apicomplexan parasites exhibit actin-dependent gliding motility that is essential for migration across biological barriers and host cell invasion. Profilins are key contributors to actin polymerization, and the parasite Toxoplasma gondii possesses a profilin-like protein that is recognized by Toll-like receptor TLR11 in the host innate immune system. Here, we show by conditional disruption of the corresponding gene that T.gondii profilin, while not required for intracellular growth, is indispensable for gliding motility, host cell invasion, active egress from host cells, and virulence in mice. Furthermore, parasites lacking profilin are unable to induce TLR11-dependent production in vitro and in vivo of the defensive host cytokine interleukin-12. Thus, profilin is an essential element of two aspects of T. gondii infection. Like bacterial flagellin, profilin plays a role in motility while serving as a microbial ligand recognized by the host innate immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号