首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The behaviour of Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 was investigated in response to fungal and oomycete infections. The importance of NpPDR1 in plant defence was demonstrated for two organs in which NpPDR1 is constitutively expressed: the roots and the petal epidermis. The roots of the plantlets of two lines silenced for NpPDR1 expression were clearly more sensitive than those of controls to the fungal pathogens Botrytis cinerea , Fusarium oxysporum sp., F. oxysporum f. sp. nicotianae , F. oxysporum f. sp. melonis and Rhizoctonia solani , as well as to the oomycete pathogen Phytophthora nicotianae race 0. The Ph gene-linked resistance of N. plumbaginifolia to P. nicotianae race 0 was totally ineffective in NpPDR1 -silenced lines. In addition, the petals of the NpPDR1 -silenced lines were spotted 15%–20% more rapidly by B. cinerea than were the controls. The rapid induction (after 2–4 days) of NpPDR1 expression in N. plumbaginifolia and N. tabacum mature leaves in response to pathogen presence was demonstrated for the first time with fungi and one oomycete: R. solani , F. oxysporum and P. nicotianae . With B. cinerea , such rapid expression was not observed in healthy mature leaves. NpPDR1 expression was not observed during latent infections of B. cinerea in N. plumbaginifolia and N. tabacum , but was induced when conditions facilitated B. cinerea development in leaves, such as leaf ageing or an initial root infection. This work demonstrates the increased sensitivity of NpPDR1 -silenced N. plumbaginifolia plants to all of the fungal and oomycete pathogens investigated.  相似文献   

2.
Nicotiana plumbaginifolia NpPDR1, a plasma membrane pleiotropic drug resistance-type ATP-binding cassette transporter formerly named NpABC1, has been suggested to transport the diterpene sclareol, an antifungal compound. However, direct evidence for a role of pleiotropic drug resistance transporters in the plant defense is still lacking. In situ immunolocalization and histochemical analysis using the gusA reporter gene showed that NpPDR1 was constitutively expressed in the whole root, in the leaf glandular trichomes, and in the flower petals. However, NpPDR1 expression was induced in the whole leaf following infection with the fungus Botrytis cinerea, and the bacteria Pseudomonas syringae pv tabaci, Pseudomonas fluorescens, and Pseudomonas marginalis pv marginalis, which do not induce a hypersensitive response in N. plumbaginifolia, whereas a weaker response was observed using P. syringae pv syringae, which does induce a hypersensitive response. Induced NpPDR1 expression was more associated with the jasmonic acid than the salicylic acid signaling pathway. These data suggest that NpPDR1 is involved in both constitutive and jasmonic acid-dependent induced defense. Transgenic plants in which NpPDR1 expression was prevented by RNA interference showed increased sensitivity to sclareol and reduced resistance to B. cinerea. These data show that NpPDR1 is involved in pathogen resistance and thus demonstrate a new role for the ATP-binding cassette transporter family.  相似文献   

3.
4.
The Nicotiana plumbaginifolia gn1 gene encoding a beta-1,3-glucanase isoform has been characterized. The gn1 product represents an isoform distinct from the previously identified tobacco beta-1,3-glucanases. By expressing gn1 in Escherichia coli, we have determined directly that the encoded protein does, indeed, correspond to a beta-1,3-glucanase. In N. plumbaginifolia, gn1 was found to be expressed in roots and older leaves. Transgenic tobacco plants containing the 5'-noncoding region of gn1 fused to the beta-glucuronidase (GUS) reporter gene also showed maximum levels of GUS activity in roots and older leaves. No detectable activity was present in the upper part of the transgenic plants with the exception of stem cells at the bases of emerging shoots. The expression conferred by the gn1 promoter was differentially induced in response to specific plant stress treatments. Studies of three plant-bacteria interactions showed high levels of GUS activity when infection resulted in a hypersensitive reaction. Increased gene expression was confined to cells surrounding the necrotic lesions. The observed expression pattern suggests that the characterized beta-1,3-glucanase plays a role both in plant development and in the defense response against pathogen infection.  相似文献   

5.
6.
Insect galls are abnormal plant tissues induced by parasitic insect(s) for use as their habitat. In previous work, we suggested that gall tissues induced by the aphid Tetraneura nigriabdominalis on Japanese elm trees are less responsive than leaf tissues to jasmonic acid (JA), which is involved in the production of volatile organic compounds as a typical defensive reaction of plants against attack by insect pests. A comprehensive analysis of gene expression by RNA sequencing indicated that the number of JA responsive genes was markedly lower in gall tissues than in leaf tissues. This suggests that gall tissues are mostly defective in JA signaling, although JA signaling is not entirely compromised in gall tissue. Gene ontology analysis sheds light on some stress-related unigenes with higher expression levels in gall tissues, suggesting that host plants sense aphids as a biotic stress but are defective in the JA-mediated defense response in gall tissues.  相似文献   

7.
8.
Moons A 《FEBS letters》2003,553(3):370-376
Little is known about the role of pleiotropic drug resistance (PDR)-type ATP-binding (ABC) proteins in plant responses to environmental stresses. We characterised ospdr9, which encodes a rice ABC protein with a reverse (ABC-TMS(6))(2) configuration. Polyethylene glycol and the heavy metals Cd (20 microM) and Zn (30 microM) rapidly and markedly induced ospdr9 in roots of rice seedlings. Hypoxic stress also induced ospdr9 in rice roots, salt stress induced ospdr9 at low levels but cold and heat shock had no effect. The plant growth regulator jasmonic acid, the auxin alpha-naphthalene acetic acid and the cytokinin 6-benzylaminopurine triggered ospdr9 expression. The antioxidants dithiothreitol and ascorbic acid rapidly and markedly induced ospdr9 in rice roots; the strong oxidant hydrogen peroxide also induced ospdr9 but at three times lower levels. The results suggested that redox changes may be involved in the abiotic stress response regulation of ospdr9 in rice roots.  相似文献   

9.
10.
11.
The expression of resveratrol synthase (RS) genes is induced by biotic and abiotic factors in peanut cell cultures. However, little is known about the regulation of the RS gene expression in peanut plants. The expression of RS genes was investigated in peanut plants with a peanut RS clone, pPRS3C, which encodes two polypeptides that show about a 96% amino acid sequence identity to peanut RS2 and RS3, respectively. A low level of RS mRNA was detected in the roots of peanut plants grown aseptically in vitro. In mature peanut plants that were grown in the field, however, RS mRNAs were present at relatively high levels in both the roots and pods, but at below the detection limit in leaves. RS mRNAs were abundant in young pods and decreased dramatically in mature pods. The RS mRNA expression was induced by yeast extract and UV in leaves and roots, and also by wounding in leaves. Stress hormones, such as ethylene, jasmonic acid, and salicylic acid, induced RS mRNA accumulation in leaves. These results indicate that the RS gene expression is induced by biotic and abiotic stresses through the stress hormones in peanut plants. The induction of the RS gene expression by biotic and abiotic stresses could provide peanut plants with protection from microbial infections through resveratrol synthesis. The RS gene expression in developing pods has significant implications in terms of the role of resveratrol as a phytochemical for human health.  相似文献   

12.
Crouzet J  Trombik T  Fraysse AS  Boutry M 《FEBS letters》2006,580(4):1123-1130
Among the ABC transporters, the pleiotropic drug resistance (PDR) family is particular in that its members are found only in fungi and plants and have a reverse domain organization, i.e., the nucleotide binding domain precedes the transmembrane domain. In Arabidopsis and rice, for which the full genome has been sequenced, the family of plant ABC transporters contains 15 and 23 PDR genes, respectively, which can be tentatively organized using the sequence data into five subfamilies. Most of the plant PDR genes so far characterized belong to subfamily I and have been shown to be involved in responses to abiotic and biotic stress, in the latter case, probably by transporting antimicrobial secondary metabolites to the cell surface. Only a single subfamily II member has been characterized. Induction of its expression by iron deficiency suggests its involvement in iron deficiency stress, thus, enlightening a new physiological role for a PDR gene.  相似文献   

13.
盐生植物海滨锦葵幼苗盐胁迫下基因差异表达分析   总被引:2,自引:0,他引:2  
郭予琦  田曾元  闫道良  张洁  钦佩 《遗传》2008,30(7):941-950
利用cDNA-AFLP技术对海滨锦葵幼苗盐胁迫下叶片和根部的基因差异表达模式进行分析和比较, 并对部分盐胁迫应答的转录衍生片段进行了回收、测序和功能推测, 以从转录水平分析海滨锦葵的耐盐分子机制。结果显示:(1) 盐胁迫下海滨锦葵幼苗叶片和根部的基因差异表达多以量的变化为主, 包括盐胁迫下基因表达上调、下调或随盐处理浓度高低和胁迫时间长短而波动的差异表达模式; 只有少量基因的差异表达表现出质的变化, 如盐胁迫下基因沉默或诱导表达; (2) 仅在盐胁迫处理2 h的海滨锦葵幼苗根部, 基因的差异表达以质的变化为主的类型比例略高于量的变化类型比例; (3) 盐胁迫应答基因在不同组织中上调、下调、诱导或沉默的比例随胁迫处理时段而动态变化, 在刚胁迫时基因表达的差异加剧, 而后随胁迫处理时段的延长而渐趋稳定。结果预示, 从基因表达水平探讨植物的耐盐分子机理, 尽管有一定的规律可循, 但由于不同组织对盐胁迫的应答是动态变化的过程, 海滨锦葵不同组织在盐胁迫不同阶段的基因时、空、序表达特征并没有固定的程式。对部分盐胁迫下上调或诱导表达的转录衍生片段(Trivially distributed file system, TDFs)进行的序列分析和功能推测表明, 苗期海滨锦葵在盐胁迫下应答基因至少涉及3类:(1) 离子平衡重建或减少胁迫损伤相关基因(特别是运转蛋白类); (2) 恢复盐胁迫下植物生长和发育相关基因:如参与能量合成和激素调节途径相关基因等; (3)信号转导相关基因及功能未确定的新基因。文章并对盐胁迫应答基因的差异表达模式与海滨锦葵的耐盐性关系进行了讨论。  相似文献   

14.
NAC转录因子在调控植物生长发育、生物及非生物逆境应答中发挥着重要作用。前期,我们通过对番茄幼苗在低温胁迫下的基因表达谱进行分析,发现Unigene SGN-U212711受低温诱导表达强烈。本研究从番茄中克隆了该基因,命名为Sl NAC41,其开放阅读框(ORF)1 173 bp,编码390个氨基酸,蛋白N端具有典型的NAM结构域,属于NAC转录因子家族成员。预测Sl NAC41蛋白分子量为43.5 k Da,等电点为5.2。实时荧光定量PCR分析表明,Sl NAC41在番茄各组织均有表达,在花中的表达量最高,在红熟果中的表达量最低。低温、干旱、高盐、甲基紫精(MV)、脱落酸(ABA)及乙烯利(ETH)处理均能诱导该基因的表达,其中,以低温和干旱诱导表达最为强烈。利用PLACE和Plant CARE对启动子序列进行预测分析发现,Sl NAC41启动子区含有大量响应光、病原菌侵染、激素、低温、脱水及盐胁迫的顺式作用元件。这些结果表明,Sl NAC41可能在番茄生物及非生物胁迫应答中发挥重要调控作用。  相似文献   

15.
16.
17.
18.
19.
Plants encode a distinct set of polygalacturonase inhibitory proteins (PGIPs) that function to inhibit polygalacturonase enzymes produced by soft-rot fungal pathogens. We characterized two PGIP-encoding genes ( Bnpgip1 and Bnpgip2) from Brassica napus DH12075 (a double-haploid line derived from a cross between 'Crésor' and 'Westar'). The two proteins exhibit 67.4% identity at the amino acid level and contain 10 imperfect leucine-rich repeats. The pgip genes are present as a small multigene family in B. napus with at least four members. Bnpgip1 and Bnpgip2 are constitutively expressed in roots, stems, flower buds and open flowers. In mature leaf tissue, different levels of induction were observed in response to biotic and abiotic stresses. Bnpgip1 expression was highly responsive to flea beetle feeding and mechanical wounding, weakly responsive to Sclerotinia sclerotiorum infection and exposure to cold but not to dehydration. Conversely, Bnpgip2 expression was strongly induced by S. sclerotiorum infection and to a lesser degree by wounding but not by flea beetle feeding. Application of jasmonic acid to leaves induced both Bnpgip1 and Bnpgip2 gene expression; however, salicylic acid did not activate either gene. Taken together, these results suggest that separate pathways regulate Bnpgip1 and Bnpgip2, and that their roles in plant development or resistance to biotic and abiotic stress differ.  相似文献   

20.
Seedling roots display not only gravitropism but also hydrotropism, and the two tropisms interfere with one another. In Arabidopsis (Arabidopsis thaliana) roots, amyloplasts in columella cells are rapidly degraded during the hydrotropic response. Degradation of amyloplasts involved in gravisensing enhances the hydrotropic response by reducing the gravitropic response. However, the mechanism by which amyloplasts are degraded in hydrotropically responding roots remains unknown. In this study, the mechanistic aspects of the degradation of amyloplasts in columella cells during hydrotropic response were investigated by analyzing organellar morphology, cell polarity and changes in gene expression. The results showed that hydrotropic stimulation or systemic water stress caused dramatic changes in organellar form and positioning in columella cells. Specifically, the columella cells of hydrotropically responding or water-stressed roots lost polarity in the distribution of the endoplasmic reticulum (ER), and showed accelerated vacuolization and nuclear movement. Analysis of ER-localized GFP showed that ER redistributed around the developed vacuoles. Cells often showed decomposing amyloplasts in autophagosome-like structures. Both hydrotropic stimulation and water stress upregulated the expression of AtATG18a, which is required for autophagosome formation. Furthermore, analysis with GFP-AtATG8a revealed that both hydrotropic stimulation and water stress induced the formation of autophagosomes in the columella cells. In addition, expression of plastid marker, pt-GFP, in the columella cells dramatically decreased in response to both hydrotropic stimulation and water stress, but its decrease was much less in the autophagy mutant atg5. These results suggest that hydrotropic stimulation confers water stress in the roots, which triggers an autophagic response responsible for the degradation of amyloplasts in columella cells of Arabidopsis roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号