首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO.) inhibits mitochondrial respiration by binding to the binuclear heme a3/CuB center in cytochrome c oxidase. However, the significance of this reaction at physiological O2 levels (5-10 microM) and the effects of respiratory state are unknown. In this study mitochondrial respiration, absorption spectra, [O2], and [NO.] were measured simultaneously at physiological O2 levels with constant O2 delivery, to model in vivo respiratory dynamics. Under these conditions NO. inhibited mitochondrial respiration with an IC50 of 0.14 +/- 0.01 microm in state 3 versus 0.31 +/- 0.04 microM in state 4. Spectral data indicate that the higher sensitivity of state 3 respiration to NO. is due to greater control over respiration by an NO.-dependent spectral species in the respiratory chain in this state. These results are discussed in the context of regulation of respiration by NO. in vivo and its implications for the control of vessel-parenchymal O2 gradients.  相似文献   

2.
Nitrite, NO, CO, and C2H2 inhibited O2-dependent H2 uptake (H3H oxidation) in denitrifying Azospirillum brasilense Sp7 grown anaerobically on N2O or NO3-. The apparent Ki values for inhibition of O2-dependent H2 uptake were 20 microM for NO2-, 0.4 microM for NO, 28 microM for CO, and 88 microM for C2H2. These inhibitors also affected methylene blue-dependent H2 uptake, presumably by acting directly on the hydrogenase. Nitrite and NO inhibited H2 uptake irreversibly, whereas inhibition due to CO was easily reversed by repeatedly evacuating and backfilling with N2. The C2H2 inhibition was not readily reversed, partly due to difficulty in removing the last traces of this gas from solution. The NO2- inhibition of malate-dependent respiration was readily reversed by repeatedly washing the cells, in contrast to the effect of NO2- on H2-dependent respiration. These results suggest that the low hydrogenase activities observed in NO3(-)-grown cultures of A. brasilense may be due to the irreversible inhibition of hydrogenase by NO2- and NO produced by NO3- reduction.  相似文献   

3.
Respiration of Escherichia coli catalyzed either by cytochrome bo' or bd is sensitive to micromolar extracellular NO; extensive, transient inhibition of respiration increases as dissolved oxygen tension in the medium decreases. At low oxygen concentrations (25-33 microm), the duration of inhibition of respiration by 9 microm NO is increased by mutation of either oxidase. Respiration of an hmp mutant defective in flavohemoglobin (Hmp) synthesis is extremely NO-sensitive (I(50) about 0.8 microm); conversely, cells pre-grown with sodium nitroprusside or overexpressing plasmid-borne hmp(+) are insensitive to 60 microm NO and have elevated levels of immunologically detectable Hmp. Purified Hmp consumes O(2) at a rate that is instantaneously and extensively (>10-fold) stimulated by NO due to NO oxygenase activity but, in the absence of NO, Hmp does not contribute measurably to cell oxygen consumption. Cyanide binds to Hmp (K(d) 3 microm). Concentrations of KCN (100 microm) that do not significantly inhibit cell respiration markedly suppress the protection of respiration from NO afforded by Hmp and abolish NO oxygenase activity of purified Hmp. The results demonstrate the role of Hmp in protecting respiration from NO stress and are discussed in relation to the energy metabolism of E. coli in natural O(2)-depleted environments.  相似文献   

4.
Mechanism of nitrogenase switch-off by oxygen.   总被引:5,自引:1,他引:4       下载免费PDF全文
Oxygen caused a reversible inhibition (switch-off) of nitrogenase activity in whole cells of four strains of diazotrophs, the facultative anaerobe Klebsiella pneumoniae and three strains of photosynthetic bacteria (Rhodopseudomonas sphaeroides f. sp. denitrificans and Rhodopseudomonas capsulata strains AD2 and BK5). In K. pneumoniae 50% inhibition of acetylene reduction was attained at an O2 concentration of 0.37 microM. Cyanide (90 microM), which did not affect acetylene reduction but inhibited whole-cell respiration by 60 to 70%, shifted the O2 concentration that caused 50% inhibition of nitrogenase activity to 2.9 microM. A mutant strain of K. pneumoniae, strain AH11, has a respiration rate that is 65 to 75% higher than that of the wild type, but its nitrogenase activity is similar to wild-type activity. Acetylene reduction by whole cells of this mutant was inhibited 50% by 0.20 microM O2. Inhibition by CN- of 40 to 50% of the O2 uptake in the mutant shifted the O2 concentration that caused 50% inhibition of nitrogenase to 1.58 microM. Thus, when the respiration rates were lower, higher oxygen concentrations were required to inhibit nitrogenase. Reversible inhibition of nitrogenase activity in vivo was caused under anaerobic conditions by other electron acceptors. Addition of 2 mM sulfite to cell suspensions of R. capsulata B10 and R. sphaeroides inhibited nitrogenase activity. Nitrite also inhibited acetylene reduction in whole cells of the photodenitrifier R. sphaeroides but not in R. capsulata B10, which is not capable of enzymatic reduction of NO2-. Lower concentrations of NO2- were required to inhibit the activity in NO3- -grown cells, which have higher activities of nitrite reductase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Microbial flavohemoglobins (flavoHbs) and hemoglobins (Hbs) show large *NO dioxygenation rate constants ranging from 745 to 2900 microM(-1) s(-1) suggesting a primal *NO dioxygenase (NOD) (EC 1.14.12.17) function for the ancient Hb superfamily. Indeed, modern O2-transporting and storing mammalian red blood cell Hb and related muscle myoglobin (Mb) show vestigial *NO dioxygenation activity with rate constants of 34-89 microM(-1) s(-1). In support of a NOD function, microbial flavoHbs and Hbs catalyze O2-dependent cellular *NO metabolism, protect cells from *NO poisoning, and are induced by *NO exposures. Red blood cell Hb, myocyte Mb, and flavoHb-like activities metabolize *NO in the vascular lumen, muscle, and other mammalian cells, respectively, decreasing *NO signalling and toxicity. HbFe(III)-OO*, HbFe(III)-OONO and protein-caged [HbFe(III)-O**NO2] are proposed intermediates in a reaction mechanism that combines both O-atoms of O2 with *NO to form nitrate and HbFe(III). A conserved Hb heme pocket structure facilitates the dioxygenation reaction and efficient turnover is achieved through the univalent reduction of HbFe(III) by associated reductases. High affinity flavoHb and Hb heme ligands, and other inhibitors, may find application as antibiotics and antitumor agents that enhance the toxicity of immune cell-derived *NO or as vasorelaxants that increase *NO signalling.  相似文献   

7.
The endogenous vasodilator nitric oxide (NO) is metabolized in tissues in an O(2)-dependent manner. This regulates NO levels in the vascular wall; however, the underlying molecular basis of this O(2)-dependent NO consumption remains unclear. While cytoglobin (Cygb) was discovered a decade ago, its physiological function remains uncertain. Cygb is expressed in the vascular wall and can consume NO in an O(2)-dependent manner. Therefore, we characterize the process of the O(2)-dependent consumption of NO by Cygb in the presence of the cellular reductants and reducing systems ascorbate (Asc) and cytochrome P(450) reductase (CPR), measure rate constants of Cygb reduction by Asc and CPR, and propose a reaction mechanism and derive a related kinetic model for this O(2)-dependent NO consumption involving Cygb(Fe(3+)) as the main intermediate reduced back to ferrous Cygb by cellular reductants. This kinetic model expresses the relationship between the rate of O(2)-dependent consumption of NO by Cygb and rate constants of the molecular reactions involved. The predicted rate of O(2)-dependent consumption of NO by Cygb is consistent with experimental results supporting the validity of the kinetic model. Simulations based on this kinetic model suggest that the high efficiency of Cygb in regulating the NO consumption rate is due to the rapid reduction of Cygb by cellular reductants, which greatly increases the rate of consumption of NO at higher O(2) concentrations, and binding of NO to Cygb, which reduces the rate of consumption of NO at lower O(2) concentrations. Thus, the coexistence of Cygb with efficient reductants in tissues allows Cygb to function as an O(2)-dependent regulator of NO decay.  相似文献   

8.
Escherichia coli expresses an inducible flavohemoglobin possessing robust NO dioxygenase activity. At 37 degrees C, the enzyme shows a maximal turnover number (V(max)) of 670 s(-1) and K(m) values for NADH, NO, and O(2) equal to 4.8, 0.28, and approximately 100 microM, respectively. Individual reduction, ligand binding, and NO dioxygenation reactions were examined at 20 degrees C, where V(max) is approximately 94 s(-1). Reduction by NADH occurs in two steps. NADH reduces bound FAD with a rate constant of approximately 15 microM(-1) s(-1), and heme iron is reduced by FADH(2) with a rate constant of 150 s(-1). Dioxygen binds tightly to reduced flavohemoglobin, with association and dissociation rate constants equal to 38 microM(-1) s(-1) and 0.44 s(-1), respectively, and the oxygenated flavohemoglobin dioxygenates NO to form nitrate. NO also binds reversibly to reduced flavohemoglobin in competition with O(2), dissociates slowly, and inhibits NO dioxygenase activity at [NO]/[O(2)] ratios of 1:100. Replacement of the heme pocket B10 tyrosine with phenylalanine increases the O(2) dissociation rate constant approximately 80-fold and reduces NO dioxygenase activity approximately 30-fold, demonstrating the importance of the tyrosine hydroxyl for O(2) affinity and NO scavenging activity. At 37 degrees C, V(max)/K(m)(NO) is 2,400 microM(-1) s(-1), demonstrating that the enzyme is extremely efficient at converting toxic NO into nitrate under physiological conditions.  相似文献   

9.
The effects of ambient O(2) tension on epithelial metabolism and nitric oxide (NO) production (VNO) in the nasal airway were examined in nine healthy volunteers. Nasal VNO, O(2) consumption (VO(2)), and CO(2) production (VCO(2)) were measured during normoxia followed by gradual hypoxia from 21 to 0% O(2) concentration. Nasal VO(2), VCO(2), and respiratory quotient during normoxia were determined to be 1.19 +/- 0.04 ml/min, 1.60 +/- 0.04 ml/min, and 1.35 +/- 0.04, respectively. Hypoxia exposure to the nasal cavity significantly decreased both VCO(2) and VNO [VCO(2): 1.60 +/- 0.04 to 0.96 +/- 0.03 ml/min (P < 0.01), VNO: 530 +/- 15 to 336 +/- 9 nl/min (P < 0.01)]. VNO was reduced commensurately with gradual decline in O(2) tension, and the apparent K(m) value for O(2) was determined to be 23.0 microM. These results indicate that the nasal epithelial cells exchange O(2) and CO(2) with ambient air in the course of their metabolism and that nasal epithelial cells can synthesize NO by using ambient O(2) as a substrate. We conclude that air-borne O(2) diffuses into the epithelium where it may be utilized for either cell metabolism or NO synthesis.  相似文献   

10.
Human intestinal Caco-2 cells metabolize and detoxify NO via a dioxygen- and NADPH-dependent, cyanide- and CO-sensitive pathway that yields nitrate. Enzymes catalyzing NO dioxygenation fractionate with membranes and are enriched in microsomes. Microsomal NO metabolism shows apparent KM values for NO, O2, and NADPH of 0.3, 9, and 2 microM, respectively, values similar to those determined for intact or digitonin-permeabilized cells. Similar to cellular NO metabolism, microsomal NO metabolism is superoxide-independent and sensitive to heme-enzyme inhibitors including CO, cyanide, imidazoles, quercetin, and allicin-enriched garlic extract. Selective inhibitors of several cytochrome P450s and heme oxygenase fail to inhibit the activity, indicating limited roles for a subset of microsomal heme enzymes in NO metabolism. Diphenyleneiodonium and cytochrome c(III) inhibit NO metabolism, suggesting a role for the NADPH-cytochrome P450 oxidoreductase (CYPOR). Involvement of CYPOR is demonstrated by the specific inhibition of the NO metabolic activity by inhibitory anti-CYPOR IgG. In toto, the results suggest roles for a microsomal CYPOR-coupled and heme-dependent NO dioxygenase in NO metabolism, detoxification, and signal attenuation in mammalian cells.  相似文献   

11.
Nitric oxide (NO) is a widespread biological messenger that has many physiological and pathophysiological roles. Most of the physiological actions of NO are mediated through the activation of sGC (soluble guanylate cyclase) and the subsequent production of cGMP. NO also binds to the binuclear centre of COX (cytochrome c oxidase) and inhibits mitochondrial respiration in competition with oxygen and in a reversible manner. Although sGC is more sensitive to endogenous NO than COX at atmospheric oxygen tension, the more relevant question is which enzyme is more sensitive at physiological oxygen concentration. Using a system in which NO is generated inside the cells in a finely controlled manner, we determined cGMP accumulation by immunoassay and mitochondrial oxygen consumption by high-resolution respirometry at 30 microM oxygen. In the present paper, we report that the NO EC50 of sGC was approx. 2.9 nM, whereas that required to achieve IC50 of respiration was 141 nM (the basal oxygen consumption in the absence of NO was 14+/-0.8 pmol of O2/s per 10(6) cells). In accordance with this, the NO-cGMP signalling transduction pathway was activated at lower NO concentrations than the AMPKs (AMP-activated protein kinase) pathway. We conclude that sGC is approx. 50-fold more sensitive than cellular respiration to endogenous NO under our experimental conditions. The implications of these results for cell physiology are discussed.  相似文献   

12.
Nitric oxide (NO) signal transduction may involve at least two targets: the guanylyl cyclase-coupled NO receptor (NO(GC)R), which catalyzes cGMP formation, and cytochrome c oxidase, which is responsible for mitochondrial O(2) consumption and which is inhibited by NO in competition with O(2). Current evidence indicates that the two targets may be similarly sensitive to NO, but quantitative comparison has been difficult because of an inability to administer NO in known, constant concentrations. We addressed this deficiency and found that purified NO(GC)R was about 100-fold more sensitive to NO than reported previously, 50% of maximal activity requiring only 4 nm NO. Conversely, at physiological O(2) concentrations (20-30 microM), mitochondrial respiration was 2-10-fold less sensitive to NO than estimated beforehand. The two concentration-response curves showed minimal overlap. Accordingly, an NO concentration maximally active on the NO(GC)R (20 nm) inhibited respiration only when the O(2) concentration was pathologically low (50% inhibition at 5 microM O(2)). Studies on brain slices under conditions of maximal stimulation of endogenous NO synthesis suggested that the local NO concentration did not rise above 4 nm. It is concluded that under physiological conditions, at least in brain, NO is constrained to target the NO(GC)R without inhibiting mitochondrial respiration.  相似文献   

13.
We isolated a K17q8 mutant from K17 mutant cells of Bacillus stearothermophilus which contain SoxB-type cytochrome bo(3) as well as cytochrome bd but not SoxM-type cytochrome caa(3), which is the main terminal oxidase in B. stearothermophilus K1041. The respiration of K17q8 was highly sensitive to as little as 10 microM cyanide, indicating that the main terminal oxidase is cytochrome bo(3). The aerobic growth yield of K17q8 was lower than that of wild-type K1041, but higher than that of parental K17. The H(+)/O ratio of K17q8 was about 5, i.e. a little lower than the 6.1-6.5 of K1041, but higher than the 2.9-3.1 of K17 [Sone et al. (1999) J. Biosci. Bioeng. 87, 495-499]. Analyses of membrane fragments indicated that K17q8 contains about 0.2 nmol cytochrome bo(3) per mg membrane protein, and scarcely any subunits of cytochromes caa(3) and bd. From the membrane fraction of K17q8, cytochrome bo(3) was purified and shown to be composed of two subunits with apparent molecular masses of 56 and 19 kDa. The enzyme contained protoheme IX and heme O, as the main low-spin heme and high-spin heme. Analysis of the substrate specificity indicated that the high-affinity site is very specific to cytochrome c-551, a cytochrome c which is a membrane-bound lipoprotein of thermophilic Bacillus. The I(50) of purified cytochrome bo(3) was determined to be 4 microM, indicating that cytochrome bo(3) among the three terminal oxidases in B. stearothermophilus was most susceptible to cyanide. The respiration of K17q8 was mostly inhibited by the addition of cyanide at this concentration.  相似文献   

14.
Endothelium-derived nitric oxide (NO) plays an important role in the regulation of vascular tone. Lack of NO bioavailability can result in cardiovascular disease. NO bioavailability is determined by its rates of generation and catabolism; however, it is not known how the NO catabolism rate is regulated in the vascular wall under normoxic, hypoxic, and anaerobic conditions. To investigate NO catabolism under different oxygen concentrations, studies of NO and O2 consumption by the isolated rat aorta were performed using electrochemical sensors. Under normoxic conditions, the rate of NO consumption in solution was enhanced in the presence of the rat aorta. Under hypoxic conditions, NO consumption decreased in parallel with the O2 concentration. Like the inhibition of mitochondrial respiration by NO, the inhibitory effects of NO on aortic O2 consumption increased as O2 concentration decreased. Under anaerobic conditions, however, a paradoxical reacceleration of NO consumption occurred. This increased anaerobic NO consumption was inhibited by the cytochrome c oxidase inhibitor NaCN but not by the free iron chelator deferoxamine, the flavoprotein inhibitor diphenylene iodonium (10 microM), or superoxide dismutase (200 U/ml). The effect of O2 on the NO consumption could be reproduced by purified cytochrome c oxidase (CcO), implying that CcO is involved in aortic NO catabolism. This reduced NO catabolism at low O2 tensions supports the maintenance of effective NO levels in the vascular wall, reducing the resistance of blood vessels. The increased anaerobic NO catabolism may be important for removing excess NO accumulation in ischemic tissues.  相似文献   

15.
The motility of the purple sulfur bacterium Marichromatium gracile was investigated under different light regimes in a gradient capillary setup with opposing oxygen and sulfide gradients. The gradients were quantified with microsensors, while the behavior of swimming cells was studied by video microscopy in combination with a computerized cell tracking system. M. gracile exhibited photokinesis, photophobic responses, and phobic responses toward oxygen and sulfide. The observed migration patterns could be explained solely by the various phobic responses. In the dark, M. gracile formed an approximately 500-microm-thick band at the oxic-anoxic interface, with a sharp border toward the oxic zone always positioned at approximately 10 microM O(2). Flux calculations yielded a molar conversion ratio S(tot)/O(2) of 2.03:1 (S(tot) = [H(2)S] + [HS(-)] + [S(2-)]) for the sulfide oxidation within the band, indicating that in darkness the bacteria oxidized sulfide incompletely to sulfur stored in intracellular sulfur globules. In the light, M. gracile spread into the anoxic zone while still avoiding regions with >10 microM O(2). The cells also preferred low sulfide concentrations if the oxygen was replaced by nitrogen. A light-dark transition experiment demonstrated a dynamic interaction between the chemical gradients and the cell's metabolism. In darkness and anoxia, M. gracile lost its motility after ca. 1 h. In contrast, at oxygen concentrations of >100 microM with no sulfide present the cells remained viable and motile for ca. 3 days both in light and darkness. Oxygen was respired also in the light, but respiration rates were lower than in the dark. Observed aggregation patterns are interpreted as effective protection strategies against high oxygen concentrations and might represent first stages of biofilm formation.  相似文献   

16.
Our previous study indicated that nitric oxide (NO)-dependent coronary vasodilation was impaired in conscious dogs with diabetes. Our goal was to determine whether modulation of O(2) consumption by NO is depressed in canine cardiac muscle after diabetes. Diabetes was induced by injection of alloxan (40-60 mg/kg iv), dogs were killed after diabetes was induced (4-5 wk), and the cardiac muscle from the left ventricle was cut into 15- to 30-mg slices. O(2) uptake by the muscle slices was measured polarographically with a Clark-type O(2) electrode. S-nitroso-N-acetylpenicillamine decreased O(2) consumption in normal and diabetic tissues (10(-4) M, 61 +/- 7 vs. 61 +/- 8%, P > 0.05). Bradykinin (10(-4) M)- or carbachol (CCh, 10(-4) M)-induced inhibition of O(2) consumption was impaired in diabetic tissues (51 +/- 6 vs. 17 +/- 4% or 48 +/- 4 vs. 19 +/- 3%, respectively, both P < 0.05 compared with normal). The inhibition of O(2) consumption by kininogen or kallikrein was depressed in diabetic tissues as well. In coronary microvessels from diabetic dogs, bradykinin or ACh (10(-5) M) caused smaller increases in NO production than those from normal dogs. Our results indicate that the modulation of O(2) consumption by endogenous, but not exogenous, NO is depressed in cardiac muscle from diabetic dogs, most likely because of decreased release of NO from the vascular endothelium.  相似文献   

17.
Nitric oxide (( small middle dot)NO) plays a central role in vascular homeostasis via regulation of smooth muscle relaxation and platelet aggregation. Although mechanisms for ( small middle dot)NO formation are well known, removal pathways are less well characterized, particularly in cells that respond to ( small middle dot)NO through activation of soluble guanylate cyclase. Herein, we report that ( small middle dot)NO is catalytically consumed by prostaglandin H synthase-1 (PGHS-1) through acting as a reducing peroxidase substrate. With purified ovine PGHS-1, ( small middle dot)NO consumption requires peroxide (LOOH or H(2)O(2)), with a K(m)( (app)) for 15(S)hydroperoxyeicosatetraenoic acid (HPETE) of 3. 27 +/- 0.35 microm. During this, 2 mol ( small middle dot)NO are consumed per mol HPETE, and loss of HPETE hydroperoxy group occurs with retention of the conjugated diene spectrum. Hydroperoxide-stimulated ( small middle dot)NO consumption requires heme incorporation, is not inhibited by indomethacin, and is further stimulated by the reducing peroxidase substrate, phenol. PGHS-1-dependent ( small middle dot)NO consumption also occurs during arachidonate, thrombin, or activation of platelets (1-2 microm.min(-1) for typical plasma platelet concentrations) and prevents ( small middle dot)NO stimulation of platelet soluble guanylate cyclase. Platelet sensitivity to ( small middle dot)NO as an inhibitor of aggregation is greater using a platelet-activating stimulus () that does not cause ( small middle dot)NO consumption, indicating that this mechanism overcomes the anti-aggregatory effects of ( small middle dot)NO. Catalytic consumption of ( small middle dot)NO during eicosanoid synthesis thus represents both a novel proaggregatory function for PGHS-1 and a regulated mechanism for vascular ( small middle dot)NO removal.  相似文献   

18.
The Ca(2+)-dependent K+ channel of human red cells was inhibited with high affinity by several imidazole antimycotics which are potent inhibitors of cytochrome P-450. IC50 values were (in microM): clotrimazole, 0.05; tioconazole, 0.3; miconazole, 1.5; econazole, 1.8. Inhibition of the channel was also found with other drugs with known cytochrome P-450 inhibitory effect. However, no inhibition was obtained with carbon monoxide (CO). This suggests that, given the high selectivity of the above inhibitors for the heme moiety, a different but closely related to cytochrome P-450 kind of hemoprotein may be involved in the regulation of the red cell Ca(2+)-dependent K+ channel. Clotrimazole also inhibited two other charybdotoxin-sensitive Ca(2+)-dependent K+ channels, those of rat thymocytes (IC50 = 0.1-0.2 microM) and of Ehrlich ascites tumor cells (IC50 = 0.5 microM). Imidazole antimycotics inhibit also receptor-operated Ca2+ channels (Montero, M., Alvarez, J. and García-Sancho, J. (1991) Biochem. J. 277, 73-79). This suggests that both Ca2+ and Ca(2+)-dependent K+ channels might have a similar regulatory mechanism involving a cytochrome.  相似文献   

19.
Concentration-dependent effects of potassium dichromate on the cell cycle   总被引:1,自引:0,他引:1  
Hexavalent chromium is found to be a strong mutagen, and it also is a potential carcinogen in man. DNA flow cytometry, growth measurements, and determinations of mitotic index show that 1-2 microM K2Cr2O7 produces a prolongation of the G2 phase of the cell cycle in NHIK 3025 cells. By increasing the chromate concentrations (greater than 2 microM K2Cr2O7) the cells are also arrested in G2 phase. We have found, using synchronized cells and measuring cell cycle time, that the most chromate-sensitive part of the cell cycle is S phase. This phase is also somewhat prolonged, and the cells became arrested in early S phase at high toxic K2Cr2O7 concentrations (8 microM). Our results thus indicate that K2Cr2O7 has an effect within S phase--maybe on DNA/RNA synthesis--and also interferes with processes necessary for progression through the G2 phase.  相似文献   

20.
Nitric oxide (NO) has been found to inhibit the actions of the transmembrane metal reductase Fre1 in the yeast Saccharomyces cerevisiae. This membrane-spanning heme protein is homologous to the gp91(PHOX) protein of the NADPH oxidase enzyme complex and is responsible for reducing extracellular oxidized metals (i.e., ferric and cupric ions) before high-affinity uptake. Consistent with its role in metal metabolism, inhibition of Fre1 by NO also inhibited yeast growth in low-iron medium. Inhibition by NO was found to be O(2)-dependent and irreversible. Further examination of the chemistry responsible for activity loss shows that the generation of N(2)O(3) via NO-O(2) chemistry was responsible for the activity loss, possibly via nitrosation of the protein followed by loss of the heme prosthetic group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号