首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sperm entry into the oocyte of the starfish, Asterina pectinifera, was prevented when the membrane potential of the oocyte was held more positive than −10 to −5 mV, and multiple sperm entries were induced when the potential was held more negative. Based on this potential-dependent fertilization block mechanism, it was demonstrated that an activation potential (AVP) which is induced immediately after the attachment of the first sperm to the egg surface plays the role of a fast polyspermy block. The AVP-mediated polyspermy block mechanism develops as the oocyte matures and deteriorates as it ages. AVPs of mature oocytes exceeded −5 mV (the critical potential level for fertilization block) within 1 sec, and the potential stayed at +12 mV even after the initiation of fertilization membrane elevation. Consequently, the entry of a second sperm is prevented. In contrast, AVPs of overripe oocytes took about 15 sec to attain −5 mV, or they did not attain −5 mV at all. In overripe oocytes multiple sperm entries were associated with “step depolarization(s)” in the rising phase of the AVPs before membrane elevation took place. Immature oocytes generated AVPs associated with sperm entries, but without membrane elevation. AVPs in immature oocytes were characterized by the step depolarization(s) in the rising phase, and an AVP could be evoked again by a second insemination 20 min after the first insemination. These findings indicate that immature oocytes lack both fast and slow polyspermy block mechanisms.  相似文献   

2.
The electrophysiological properties of immature and mature oocytes of two crabs were analyzed. Growing immature oocytes of Carcinus maenas and fully grown immature oocytes of Maia squinado had essentially K+ dependent resting potentials, Em, of ?61 ? 1 mV, n=19, and ?67.3 ± 0.5 mV, n=68, respectively. Fully grown immature oocytes of Carcinus maenas showed an Em of ?40 ± 1.5 mV, n=19, that was k+ and Cl? dependent. In mature oocytes of both species, the plasma membrane became exclusively permeable to cl? and the Em attained–41 ± 1 mV, n=49 and ?34 ± 1.5 mV, n=27 for Carcinus maenas and Maia squinado, respectively. After in vitro insemination, a dramatic increase in egg membrane permeability to K+ was observed. This instantaneously caused a sustained hyperpolarization constituting, for these crabs, the fertilization potential. We observed that concurrently with this electrical response to fertilization, sperm reinitiated the oocyte meiotic maturation previously arrested at the first metaphase. The triggering mechanism of the fertilization potential as well as the possible occurrence of a physiological polyspermy are discussed.  相似文献   

3.
Y Iwao 《Developmental biology》1987,123(2):559-565
Immature oocytes of the toad, Bufo japonicus, inseminated between first- and second-meiotic metaphase, exhibited polyspermy. Monospermy occurred when the oocytes had reached second-meiotic metaphase. Electrical recording during insemination of the immature oocyte showed fast-rising and slow-rising spikes followed by a gradual shift to a positive membrane potential. The number of fast spikes in each oocyte corresponded well with the number of sperm observed in cytological sections. Mature oocytes elicited one fast spike followed by a rapid rise to a positive plateau. Ion-substitution experiments indicated that, like the plateau, the initial fast spike is mediated mainly by increased permeability of the oocyte plasma membrane to halides such as Cl- or I-. When inseminated with sperm of the newt, Cynops pyrrhogaster, mature Bufo oocytes exhibited polyspermy accompanied by a gradual hyperpolarization and a slowly developing positive plateau, without the fast spike that occurs in self-species fertilization. These results indicated that the spike component of the fertilization potential can be dissociated from the plateau component, and may be elicited by different mechanisms.  相似文献   

4.
Depolarization of the sea urchin egg's membrane is required for two processes during fertilization: the entry of the fertilizing sperm and the block to polyspermy which prevents the entry of supernumerary sperm. In an immature sea urchin oocyte, the depolarization is very small in response to the attachment of a sperm. The purpose of this study was to determine whether the depolarization evoked by sperm attaching to an oocyte can facilitate sperm entry or induce the block to polyspermy. Individual oocytes of the sea urchin with diameters which ranged from 86 to 102% that of the average diameter for mature eggs from the same female were examined. The oocytes have a membrane potential of -73 +/- 6 mV (SD, n = 80) and a very low input resistance compared to that of mature eggs. Single sperm, following attachment to an oocyte, elicit a brief, small depolarization with a maximum amplitude of 8 +/- 1.4 mV (SE, n = 15), frequently followed by the formation of tiny filament-like fertilization cones, but the sperm fail to enter. If oocytes are voltage-clamped at membrane potentials more negative than -20 mV, following attachment of the sperm small transient inward currents occur, similar filament-like cones form, and the sperm do not enter. When many sperm attach to an oocyte which is not voltage clamped, the depolarizations sum to create a large depolarization with an amplitude of 60 to 80 mV, which shifts the oocyte's membrane potential to a value between -10 and +5 mV; more positive values are not attained. At such membrane potentials, whether the potential is maintained by the summed depolarizations of many attached sperm or by voltage clamp, large fertilization cones form, the sperm enter, and the oocytes can become highly polyspermic. In oocytes voltage clamped at +20 mV, however, both sperm entry and fertilization cone formation are suppressed. Therefore, both types of voltage-dependence for sperm entry are present in oocytes, although the depolarization caused by a single sperm is not large enough to permit its entry, nor is the depolarization caused by many sperm sufficient to prevent the entry of supernumerary sperm.  相似文献   

5.
Mytilus galloprovincialis oocytes undergo monospermic fertilizations (1 sperm nucleus/oocyte) over a wide range of sperm-oocyte ratios beyond which the number of penetrating sperm increases either linearly or exponentially over 10 min. Artificial activation of oocytes by KCl or the ionophore A 23187, up to the polar body extrusion stage, allows successful fertilizations upon a subsequent insemination. No organized and complete detachment of supernumerary oocyte-bound sperm is detected after fertilization. Reducing the external Na+ concentration promotes a higher rate of fertilizations. These results suggest that no complete block to polyspermy is established in this species but that a partial block, Na+ dependent, might be sufficient to ensure monospermic fertilizations under natural conditions.  相似文献   

6.
Bovine immature oocytes do not have the ability to block polyspermic penetration. The present study was conducted to determine whether this is correlated to cortical granule (CG) distribution and the competence of oocytes to release CG upon sperm penetration, and whether the ability of bovine oocytes to release CG develops during in vitro maturation. Fluorescein isothiocyanate-conjugated Lens culinaris agglutinin was used for detecting CG in immature and mature oocytes before and after sperm penetration and electric stimulation. The labeled oocytes were examined with laser confocal and fluorescent microscopes. The results show that CG exist as clusters in all immature oocytes. The CG were not released from immature oocytes exposed to electric pulse or penetrated by spermatozoa, resulting in 94% of oocytes being polyspermic. When immature oocytes were cultured for 22h in vitro , 81% extruded the first polar body and reached metaphase II. In mature oocytes, 25% of oocytes showed CG clusters, 42% and 33% of oocytes showed partial and complete CG dispersion, respectively. When mature oocytes were inseminated in vitro , only 15% of oocytes were polyspermic. Cortical granule exocytosis occurred in 97% of oocytes after sperm penetration and 84% of oocytes released all of the CG 18 h after insemination. Electric pulse induced all of the mature oocytes to release CG but only 55% released all of their CG 18 h post stimulation. These results indicate that polyspermy in immature bovine oocytes is the result of the complete failure of the oocyte to release CG after sperm penetration. Bovine oocytes became competent to release CG by sperm penetration and electric stimulation after meiotic maturation. These results provide evidence that CG exocytosis plays an important role(s) in the establishment of the block to polyspermy in bovine oocytes.  相似文献   

7.
When immature oocytes of the starfish, Asterina pectinifera , were treated with calcium-free seawater for 1 hr and then inseminated in normal seawater, they formed several blisters, indicative of polyspermy, and raised fertilization membranes. These oocytes continued to have intact germinal vesicles. Electron microscopic study revealed that the egg surface remained virtually unchanged after the treatment with calcium-free seawater. Upon insemination, however, the cortical granules broke down and the fertilization membrane was formed. These immature oocytes with ferilization membranes underwent maturation (germinal vesicle breakdown) after treatment with 1-methyladenine.
The treatment with calcium-free seawater seems to bring about some physiological change on the surface of immature oocyte, which bestows some attributes of maturation but is insufficient to mature the oocytes completely.  相似文献   

8.
Oocytes of the sea urchin Sphaerechinus granularis and the startish Marthasterias glacialis have been submitted to U.V. irradiation before fertilization. This treatment significantly increased the incidence and severity of polyspermy in the sea urchin and was also found effective on starfish oocytes. These were found more resistant to damage than sea urchin eggs and U.V. irradiation did not affect either their response to the hormone l-methyladenine or the rate of elevation of the fertilization envelope, which assures the late and definitive block to polyspermy. Electrophysiological measurements performed on M. glacialis oocytes definitively demonstrate that U.V. irradiation completely inactivates voltage-dependent sodium channels, without altering the other main conductances, Cl?, K+ or Ca2+. After such a treatment, the relative permeability of the membrane to Na+ as compared to K+ shifted from 0.019±0.003 to 0.003±0.002 and only the calcium component of the action potentials could be observed. However, a fertilization potential, preceded by small sperm induced steps, is still present in these conditions, although its peak and plateau level are greatly reduced. These new findings are discussed, which confirm the electrical nature of the fast block to polyspermy but question about the specificity of those sperm-gated channels which are supposed to trigger the fertilization potential.  相似文献   

9.
Surface characteristics of the bovine oocyte and its investments before, during, and after maturation, and fertilization in vitro were evaluated by scanning electron microscopy (SEM). Oocyte diameters were also measured during SEM analysis of the oocyte. The cumulus cells manifested a compact structure with minimal intercellular spaces among them in the immature oocytes. These became fully expanded with increased intercellular spaces after maturation in vitro, but contracted again after fertilization. The zona pellucida (ZP) showed a fibrous, open mesh-like structure in the maturing and matured oocytes. The size and number of meshes on the ZP decreased dramatically after fertilization. The vitelline surface of immature oocytes was characterized by distribution of tongue-shaped protrusions (TSPs) varying in density. After 10 and 22 hr of maturation incubation, oocyte surface microvilli (MV) increased to become the predominant surface structure, and TSPs decreased substantially. The vitelline surface of fertilized oocytes (at 6 and 20 hr) was similar to that of the matured oocytes, but unfertilized oocytes had less dense MV than did fertilized oocytes (at 20 hr). The diameter of the oocytes decreased from 99 to 80 μm during maturation and increased to 106 μm after insemination (P < 0.05). Membrane maturation was characterized by surface changes from a TSP-predominant pattern to a MV-predominant pattern. Thus, the bovine oocyte maturation process was found to involve the expansion of cumulus cells and the maturation of the ZP, which changes dramatically upon fertilization. Also, volumetric changes occurred in ooplasm processed for SEM following oocyte maturation and insemination. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Phase Transition Temperature and Chilling Sensitivity of Bovine Oocytes   总被引:1,自引:0,他引:1  
A limiting factor for achieving cryopreservation of oocytes is direct chilling injury (DCI), which occurs during cooling. DCI, or cold shock, is defined as an irreversible damage expressed shortly after exposure to low, but not freezing, temperatures. The primary target of DCI is thought to be the plasma membrane. Recently, an association between DCI in sperm and the thermotropic phase transition of their membrane lipids was demonstrated. In the present study, we examined the phase transition of the membrane lipids of immature andin vitro-matured bovine oocytes during cooling, using Fourier transform infrared spectroscopy (FTIR). The phase transition of the membrane lipids of oocytes at the germinal vesicle (GV) stage occurred between 13 and 20°C, while a very broad phase transition, which centered around 10°C, was observed for mature oocytes (MII) stage. Thermotropic phase transitions were demonstrated to be related to the temperature at which DCI affected the integrity of the oocyte membranes. When immature oocytes were cooled to 13°C, fewer oocytes (40%) retained their membrane integrity than after exposure to 4°C (51%) or holding them at 38°C (78%), (as determined by the Fluorescein Diacetate-FDA test). This finding might suggest that holding immature oocytes at the phase transition temperature is more damaging to their membranes than exposure to lower temperatures. By contrast, no significant differences in membrane integrity were observed whenin vitro-matured oocytes were cooled to the same temperatures. Subsequently, GV oocytes were cooled to 4°C, and 26% underwent maturation and 19% underwent fertilizationin vitro. In vitro-matured oocytes that were cooled to 4°C displayed a slightly decreased rate of fertilization; the overall fertilization was 60% with 24% polyspermy, rather than the 76% fertilization rate with 12% polyspermy obtained with those not subjected to cooling. The high rate of polyspermy indicates that a site(s) other than the plasma membrane is affected during cooling of bovine oocytes. Nucleated bovine GV oocytes were electrofused within vitro-matured and enucleated oocytes, and then cooled to 4°C. Evaluation of the membrane integrity of the fused oocytes showed that these oocytes are chilling resistant, which strongly suggests that alteration of the membrane composition of an oocyte can change the cell's susceptibility to low temperatures. This finding led to an improvement in the survival of oocytes after cryopreservation.  相似文献   

11.
Sperm-oocyte membrane fusion has been observed during monospermic fertilization of a human oocyte in vitro. Women were stimulated with both clomiphene citrate and human menopausal gonadotropin and were given human chorionic gonadotropin before a LH-surge. Twelve oocytes, collected at laparoscopy from six women who became pregnant by IVF, were allowed to mature for 7–14 hours in vitro and inseminated with preincubated sperm, fixed between 1–3 hours after insemination, and examined by transmission electron microscopy. Membrane fusion had occurred in one ovum 2 hours after insemination, and the oocyte had resumed maturation and was at anaphase II of meiosis. Cortical granules had been exocytosed, and some of their contents were visible at the surface close to the oolemma all around the oocyte. The sperm that fused with this oocyte was acrosome-reacted and had been partly incorporated into the ooplasm, while the anterior two-thirds of its head was phagocytosed by a tongue of cortical ooplasm. Membrane fusion had occurred between the oolemma and the plasma membrane overlying the postacrosomal segment of the sperm head, posterior to the equatorial vestige. Sperm chromatin had not decondensed, and serial sections revealed a midpiece attached to the basal plate and a tail located deeper in the ooplasm, all devoid of plasma membrane. Supplementary sperm penetrating the inner zona, approaching the perivitelline space, had undergone the acrosome reaction but had a persistent vestige of the equatorial segment of the acrosome with intact plasma membrane. Evidence of sperm chromatin decondensation was seen in other oocytes, 3 hours after insemination, which were at telophase II of meiosis. Eight oocytes penetrated by sperm were monospermic, while four were unfertilized. The general pattern of sperm fusion and incorporation appears to conform to that seen in most other mammals. The study also reveals that sperm have to complete the acrosome reaction before fusing with the egg.  相似文献   

12.
The relationship between onset of the early cytoplasmic stages of oocyte activation (vitelline membrane separation and elevation) and nuclear meiotic maturation was investigated in starfish oocytes after their exposure to divalent ionophore (A-23187) or sperm. Meiotically mature oocytes, isolated in calcium-free seawater, underwent activation in response to sperm or ionophore as previously reported. Large, immature starfish oocytes, arrested in prophase I of meiosis (germinal vesicle stage), underwent vitelline membrane elevation when treated with divalent ionophore A-23187 or starfish sperm. Histological studies demonstrated that cortical granule breakdown in the oocyte cortex was associated with vitelline membrane elevation after these treatments. Activation of oocytes by sperm occurred only in response to starfish sperm. Sea urchin, sand dollar, surf clam, or marine worm sperm did not induce vitelline membrane elevation of either immature or mature starfish oocytes. Sperm- or ionophore-activated immature oocytes underwent nuclear maturation after addition of the meiosis-inducing hormone, l-methyladenine; however, parthenogenetic development did not occur and embryonic development was markedly inhibited. In contrast to previous studies, the present results indicate that cytoplasmic activation can be initiated before and without hormone induction of the nuclear maturation process. Differentiation of the oocyte cell surface or cortex reactivity therefore appears to occur during oogenesis rather than as a consequence of maturation. The data further support the view that divalent ions mediate certain of the early activation responses initiated by sperm at the time of fertilization and that synchronization of fertilization to the meiotic process in the oocyte is important for the occurrence of normal development.  相似文献   

13.
During maturation in the epididymis, mouse sperm nuclei become difficult to stain with Giemsa and its component basic dyes. Mature sperm from the cauda epididymis can be stained only after DTT treatment. Stainable sperm such as those from the testis accumulate 3H NEM when examined by autoradiography, while unstainable sperm do not, indicating a close correlation between the basic dye binding capacity and SH levels in the sperm nuclei. During insemination of zonafree ovarian oocytes with a germinal vesicle (GV), mature sperm nuclei become stainable and capable of binding with 3H NEM. At the same time, sperm have established pronase-resistant contact with the oocyte. Similarly, sperm nuclei become stainable during fertilization when the sperm attachment to the egg becomes pronase resistant. However, these changes occur before sperm chromatin decondensation begins. Therefore, it is suggested that S-S bonds in sperm nucleoproteins are reduced when the sperm establish a stable contact with the egg plasma membrane, thus reversing sperm maturational changes. The reduction of S-S bonds may be a prerequisite for sperm chromatin decondensation.  相似文献   

14.
Coy P  Ruiz S  Romar R  Campos I  Gadea J 《Theriogenology》1999,51(4):799-812
This study was designed 1) to determine the effectiveness of 2 in vitro maturation systems commonly employed to produce nuclear and cytoplasmically mature pig oocytes, 2) to assess the effects of boar, sperm concentration and maturation system on oocyte penetrability and male pronucleus formation and 3) to determine the ability of the in vitro matured oocytes to be fertilized in vivo by artificial insemination (AI) of sows. The differences examined between the 2 maturation systems included the culture medium (Waymouth vs TCM199), hormones, additives, culture conditions (static vs gentle agitation) presence or absence of porcine follicular fluid (PFF) and presence or absence of follicular shells. The results showed that nuclear maturation rate was similar in both systems (83.3 +/- 3.5 vs 86.4 +/- 2.5%), and intracellular content of glutathione was 5.21 +/- 0.73 vs 3.5 +/- 0.39 pmol/oocyte, although no correlation between these parameters was observed. The penetration rate and number of sperm cells per oocyte were dependent on the boar, maturation system and sperm concentration, but the rate of male pronuclear formation seemed to be influenced only by the boar and the maturation system but not by sperm concentration. In vivo fertilization of in vitro matured oocytes showed that both maturation systems could yield viable oocytes since 3 of 4 gilts and 2 of 4 gilts, respectively, became pregnant. Failure to become pregnant was not associated with inadequate oocyte maturation since control gilts, which received their own ovulated oocytes rather than in vitro matured oocytes at transfer, also did not become pregnant. We conclude that polyspermy may be an inherent problem in the IVF but not in the IVM systems.  相似文献   

15.
猪卵母细胞的体外受精及多精受精   总被引:4,自引:0,他引:4  
对用于猪体外受精(IVF)的研究方法和技术,如传统的液滴IVF、透明带下注射精子受精(SUZI)、卵母细胞质内单精注射受精(ICSI)及细管IVF等进行了简述。与其它动物相比,进行猪卵的体外受精研究,多精受精现象特别明显。大量的研究表明,猪卵的多精受精不但与其品种特性有关,而且与卵母细胞成熟的程度、透明带的异常、受精时获能精子的浓度、输卵管分泌物、受精液蛋白添加成分、NaHCO3浓度、咖啡因、pH值以及温度等因素密切相关。  相似文献   

16.
Several contemporary micromanipulation techniques, such as sperm microinjection, nuclear transfer, and gene transfer by pronuclear injection, require removal of cumulus cells from oocytes or zygotes at various stages. In humans, the cumulus cells are often removed after 15–18 hr of sperm-oocyte coincubation to assist the identification of the fertilization status. This study was designed to evaluate the function of cumulus cells during oocyte maturation, fertilization, and in vitro development in cattle. Cumulus cells were removed before and after maturation and after fertilization for 0,7,20, and 48 hr. The cumulus-free oocytes or embryos were cultured either alone or on cumulus cell monolayers prepared on the day of maturation culture. Percentages of oocyte maturation, fertilization, and development to cleavage, morula, and blastocyst stages and to expanding or hatched blastocysts were recorded for statistical analysis by categorical data modeling (CATMOD) procedures. Cumulus cells removed before maturation significantly reduced the rate of oocyte maturation (4–26% vs. 93–96%), fertilization (0–9% vs. 91–92%), and in vitro development at all stages evaluated. Cumulus cells removed immediately prior to in vitro fertilization (IVF) or 7 hr after IVF reduced the rates of fertilization (58–60% and 71%, respectively, vs. 91–92% for controls), cleavage development (40–47% and 53–54% vs. 74–78% for controls), and morula plus blastocyst development (15% and 24% vs. 45%, P < 0.05). Cumulus cell co-culture started at various stages had no effect on fertilization and cleavage development but significantly improved rates of embryo development to morula or blastocyst stages (P < 0.05). Cumulus cell removal at 20 hr after IVF resulted in similar development to controls (P > 0.05) at all stages tested in this study. The intact state of surrounding cumulus cells of oocytes or embryos appears to be beneficial before or shortly after insemination (at or before 7 hr of IVF) but not essential at 20 hr after IVF. © 1995 Wiley-Liss, Inc.  相似文献   

17.
The present study was conducted to examine the effects of three polyphenols (tannic acid, apigenin and quercetin) on hyaluronidase activity and in vitro fertilization (IVF) parameters. Among them, tannic acid showed by far the strongest potency for blocking hyaluronidase activity extracted from preincubated boar sperm, causing a dose-dependent inhibition over the range of 2-10 microg/ml. When cumulus-intact and cumulus-free oocytes were inseminated in IVF medium containing tannic acid, the penetration and the polyspermy rates were significantly decreased in the presence of 10 microg/ml tannic acid compared with those in the absence of tannic acid, and the addition of 5 microg/ml tannic acid significantly reduced the polyspermy rate (p < 0.05) compared with that of the control while maintaining the high penetration rate. However, apigenin and quercetin had no effect on the rate of polyspermy. Interestingly, the incidence of polyspermy was significantly reduced in oocytes inseminated with sperm pretreated with 5 microg/ml tannic acid (p < 0.05), although the pretreatment of oocytes had no effect against the polyspermy after insemination with untreated sperm. Treatment with tannic acid caused neither a protective proteolytic modification of the zona pellucida matrix before fertilization, nor a reduction of the proteolytic activity of acrosomal contents or the number of zona-bound spermatozoa. These data suggest that an appropriate concentration of tannic acid prevents polyspermy through the inhibition of sperm hyaluronidase activity during IVF of porcine oocytes.  相似文献   

18.
We evaluated the effects of an environmentally relevant mixture of more than 15 organochlorines on the development of pig oocytes and sperm during in vitro fertilization (IVF). Oocytes were cocultured with sperm in IVF medium containing increasing concentrations of an organochlorine mixture, similar to that found in women of highly exposed populations. Exposure to the organochlorine mixture diminished oocyte penetration rates and polyspermy in a linear manner. The mixture did not affect rates of cleavage nor development to multicell embryos. However, rates of development to the blastocyst stage were lower at the highest concentration at which oocyte penetration was observed. The same experiment was performed using oocytes that were preexposed during in vitro maturation. This greater exposure to the mixture also reduced penetration in a dose-response manner and affected polyspermy. Frozen-thawed pig sperm were also cultured in IVF medium containing the same organochlorine concentrations. Sperm motility parameters were immediately reduced in a dose-dependent manner by the organochlorines, followed by diminished viability 2 h later. From these results, it appears that reduced sperm quality would account for decreases in fertilization, polyspermy, and blastocyst formation. These results suggest that exposing porcine oocytes and sperm to an environmentally pertinent organochlorine mixture in vitro disrupts the oocyte block to polyspermy, sperm fertility, and further embryonic development, and supports recent concerns that such pollutants harm reproductive health in humans and other species.  相似文献   

19.
In 27% DeBoer's saline (DBS), which yields maximum fertility rates, Xenopus eggs fertilized in vitro are monospermic, regardless of sperm concentration. One block to polyspermy (the “slow” block), described previously, occurs at the fertilization envelope that is elevated in response to the cortical reaction. This paper describes properties of an earlier, “fast” block at the plasma membrane and evaluates the functional significance of the two blocks at physiological sperm concentrations in natural mating conditions. Unfertilized eggs have a resting membrane potential of ?19 mV in 27% DBS. Fertilization triggers a rapid depolarization to +8 mV (the fertilization potential, FP); the potential remains positive for ca. 15 min. Activation of eggs with the ionophore, A23187, produces a slower but similar depolarization (the activation potential, AP). As in other amphibian eggs, the FP appears to result from a net efflux of Cl?, since the peak of the FP (or the AP in ionophore-activated eggs) decreases as the concentration of chloride salts in the medium is increased. In 67% DBS no FP or AP is observed; eggs fertilized in 67% DBS become polyspermic and average 2 sperm entry sites per egg. In the 5–37 mM range, I? and Br?, but not F?, are more effective than Cl? in producing polyspermy. In 20 mM NaI the plasma membrane hyperpolarizes in response to sperm or ionophore; 100% levels of polyspermy and an average of 14 sperm entry sites per egg are observed. NaI does not inhibit or retard elevation of the fertilization envelope; the cortical reaction and fertilization envelope are normal in transmission electron micrographs. In 67% DBS, which also inhibits the fast block, the slow block was estimated to become functional 6–8 min after insemination. Eggs fertilized by natural mating in 20 mM NaI exhibit polyspermy levels of 50–90% and average 5 sperm entry sites per egg. Since eggs become polyspermic when fertilized by natural mating under conditions that inhibit the fast, but not the slow, block to polyspermy, we conclude that the fast block is essential to the prevention of polyspermy at the sperm concentrations normally encountered by the egg.  相似文献   

20.
In an attempt to demonstrate limitations in the capacitating potential of the Fallopian tube, ejaculated boar spermatozoa were introduced directly into the isthmus at varying intervals before ovulation. The incidence and degree of polyspermy subsequently observed were taken as indicators of the population of capacitated spermatozoa confronting the newly ovulated eggs: the more extensive the condition of polyspermy, the greater the number of capacitated spermatozoa presumed to have been available at the site of fertilization. Results are based on 673 eggs from 53 animals. When suspensions containing 2.21–3.87 × 108 sperm per ml were introduced 36–40 hours and 26–30 hours before ovulation, 85% and 61% respectively of the eggs were polyspermic, such eggs exhibiting mainly dispermy and trispermy. By contrast, when comparable sperm suspensions from the same boar were instilled 17–18 hours before ovulation, 70% of the eggs were polyspermic but the degree of polyspermy had increased dramatically: most eggs contained 40 or more sperm heads in the vitellus, invariably forming swollen chromatin aggregates rather than male pronuclei. Surgical insemination at times closer to ovulation significantly reduced the incidence and degree of polyspermy, reaching a low of 2% with insemination 1–2 hours before ovulation. These results therefore support the concept of a limited capacitation potential of the Fallopian tube. In a separate series of observations, mating animals shortly before surgical insemination with sperm suspensions from the same boar markedly reduced the incidence of polyspermy. This latter observation may be of clinical significance in procedures of laparoscopic or transcervical insemination into the tubes to alleviate human infertility. The manner whereby myosalpingeal physiology could be modified in response to coital stimulation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号