首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
L-lysine Transport in Chicken Jejunal Brush Border Membrane Vesicles   总被引:2,自引:0,他引:2  
The properties of l-lysine transport in chicken jejunum have been studied in brush border membrane vesicles isolated from 6-wk-old birds. l-lysine uptake was found to occur within an osmotically active space with significant binding to the membrane. The vesicles can accumulate l-lysine against a concentration gradient, by a membrane potential-sensitive mechanism. The kinetics of l-lysine transport were described by two saturable processes: first, a high affinity-transport system (K mA= 2.4 ± 0.7 μmol/L) which recognizes cationic and also neutral amino acids with similar affinity in the presence or absence of Na+ (l-methionine inhibition constant KiA, NaSCN = 21.0 ± 8.7 μmol/L and KSCN = 55.0 ± 8.4 μmol/L); second, a low-affinity transport mechanism (KmB= 164.0 ± 13.0 μmol/L) which also recognizes neutral amino acids. This latter system shows a higher affinity in the presence of Na+ (KiB for l-methionine, NaSCN = 1.7 ± 0.3 and KSCN = 3.4 ± 0.9 mmol/L). l-lysine influx was significantly reduced with N-ethylmaleimide (0.5 mmol/L) treatment. Accelerative exchange of extravesicular labeled l-lysine was demonstrated in vesicles preloaded with 1 mmol/L l-lysine, l-arginine or l-methionine. Results support the view that l-lysine is transported in the chicken jejunum by two transport systems, A and B, with properties similar to those described for systems b 0,+ and y+, respectively. Received: 14 August 1995/Revised: 2 April 1996  相似文献   

2.
The initial rate ofd-glucosamine uptake by the non-halotolerant yeastSaccharomyces cerevisiae was approximately halved as the apparent half saturation constant (Km) and the apparent maximum velocity (Vmax) changed from 6.6mm to 16.4mm and from 22 μmol · g−1 · min−1 to 16 μmol · g−1 · min−1, respectively, when the salinity in the medium was increased from zerom to 0.68m NaCl. Corresponding changes in a high affinity transport system in the halotolerant yeastDebaryomyces hansenii were from 1.1mm to 4.6mm and from 3.1 μmol · g−1 · min−1 to 4.5 μmol · g−1 · min−1, implying a practically unchanged transport capacity. In 2.7m NaCl, Km and Vmax in this system were 24.5mm and 1.1 μmol · g−1 · min−1, respectively, representing a marked decrease in transport capability. Nevertheless, the degree of affinity in this extreme salinity must still be regarded as noteworthy. In addition to the high affinity transport system inD. hansenii, a low affinity system, presumably without relevance ind-glucosamine transport, was observed.  相似文献   

3.
A kinetic study of the -glucosidase-catalysed reaction of a commercial cellulase preparation from Trichoderma viride is described. The K m and V max values of the -glucosidase system were: (a) 0.5 mm and 6.6 mol/min, respectively, using p-nitrophenyl -d-glucopyranoside (pNPG) as substrate; and (b) 2.5 mm and 8.1 mol/min, respectively, using cellobiose as subtrate. The glucose effect on initial reaction velocity agrees with a mixed-inhibition pattern. The inhibition constant (K i) values were, 0.53 and 0.39 mm with nNPG and cellobiose as substrates, respectively. The temperature and pH optima were determined. Correspondence to: A. Romeu  相似文献   

4.
Sugar substrates which depress the intracellular level of inorganic phosphate in baker's yeast (d-glucose,d-fructose,d-mannose, sucrose, as well as maltose andd-galactose after appropriate induction) also make transmembrane flux of phosphate anions possible. Acetate and ethanol, although readily oxidized, as well as nonmetabolized sugars, do not produce the effect. Phosphate uptake in whole cells (but not in protoplasts) is accelerated by preincubation with substrate either aerobically or anaerobically but the actual presence of substrate in the incubation medium is required for transport to take place. Starved cells take up phosphate from the medium with aK m of 3mm, the half-activation concentration by glucose being 18mm, the amount taken up being constant under given conditions (40 μmol/g dry wt. here). Phosphate-rich cells lose phosphate to the medium in the presence of a suitable substrate. The uptake process is characterized by an activation energy of 13400 cal/mol at 10−6 m phosphate and of 9400 cal/mol at 10−3 m phosphate. The process shows two optima at pH 5.0 and 7.0. A short-lived intermediate of fermentative sugar metabolism is postulated as essential for the translocation of phosphate across the yeast membrane.  相似文献   

5.
Uptake of the nonmetabolizable sugars 6-deoxy-d-glucose, l-rhamnose and l-xylose, which are taken up by a common carrier, stimulated significantly cell respiration in Rhodotorula glutinis. The extra oxygen consumption for uptake (0.5–0.7 equivalents O2/mol transported sugar) was proportional to the uptake rate and was independent of the K tvalue of the transport system. Sugars that become metabolized after induction, d-arabinose and methyl--d-glucoside, caused a higher stimulation, 1.4 and 3.6 equivalents O2/mol respectively, which was reduced to 0.6 equivalents O2/mol when de novo protein synthesis was blocked by cycloheximide. The stimulation of respiration thus includes a fraction related purely to the energy demand for uptake and another one related to the induced de novo protein synthesis. The net uptake-induced respiration boost was similar with all sugars under study irrespective of their transport systems. The estimated energy demand was equivalent to about 2 ATP/sugar molecule. For comparison, the amino acid analogue -aminoisobutyric acid (AIB) was also investigated; the overall energy demand for its uptake corresponded to the equivalent of about 4 ATP/molecule.Abbreviation AIB -aminoisobutyric acid  相似文献   

6.
-Galactosidase from B. coagulans strain L4 is produced constitutively, has a mol. wt. of 4.3×105 and an optimal temperature of 55°C. The optimal pH at 30°C is 6.0 whereas at 55°C it is 6.5. The energy of activation of enzyme activity is 41.9 kJ/mol (10 kcal/mol). No cations are required. The Km with ONPG as substrate is 4.2–5.6mm and with lactose is 50mm. The Ki for inhibition by galactose is 11.7–13.4mm and for dextrose is 50mm. Galactose inhibited competitively while dextrose inhibited noncompetitively. The purified and unprotected enzyme is 70% destroyed in 30 min at 55°C whereas in the presence of 2 mg/ml of BSA 42% of the activity is destroyed in 30 min at 55°C. An overall purification of 75.3-fold was achieved.  相似文献   

7.
Evidence is presented that the high levels of internal l-glutamic and l-aspartic acid in frog Rana esculenta red blood cells are due to the existence of a specific carrier for acidic amino acids of high affinity K m = 3 m and low capacity (Vmax) 0.4 mol l-Glu · Kg–1 dry cell mass · 10 min–1. It is Na+ dependent and the incorporation of l-glutamic acid can be inhibited by l and d-aspartate and l-cysteic acid, while d-glutamic does not inhibit. Moreover, this glutamic uptake shows a bell-shaped dependence on the external pH. All these properties show that this carrier belongs to the system X AG family. Besides the incorporation through this system, l-glutamic acid is also taken up through the ASC system, although, under physiological conditions, this transport is far less important, since it has relatively low affinity K m 39 m but high capacity (V max) 1.8 mol l-Glu · Kg–1 dry cell mass · 10 min–1.  相似文献   

8.
The distribution of the F420-reactive and F420-nonreactive hydrogenases from the methylotrophic Methanosarcina strain Gö1 indicated a membrane association of the F420-nonreactive enzyme. The membrane-bound F420-nonreactive hydrogenase was purified 42-fold to electrophoretic homogeneity with a yield of 26.7%. The enzyme had a specific activity of 359 mol H2 oxidized · min-1 · mg protein-1. The purification procedure involved dispersion of the membrane fraction with the detergent Chaps followed by anion exchange, hydrophobic and hydroxylapatite chromatography. The aerobically prepared enzyme had to be reactivated anaerobically. Maximal activity was observed at 80°C. The molecular mass as determined by native gel electrophoresis and gel filtration was 77000 and 79000, respectively. SDS gel electrophoresis revealed two polypeptides with molecular masses of 60000 and 40000 indicating a 1:1 stoichiometry. The purified enzyme contained 13.3 mol S2-, 15.1 mol Fe and 0.8 mol Ni/mol enzyme. Flavins were not detected. The amino acid sequence of the N-termini of the subunits showed a higher degree of homology to cubacterial uptake-hydrogenases than to F420-dependent hydrogenases from other methanogenic bacteria. The physiological function of the F420-nonreactive hydrogenase from Methanosarcina strain Gö1 is discussed.Abbreviations transmembrane electrochemical gradient of H- - CoM-SH 2-mercaptoethanesulfonate - F420 (N-l-lactyl--l-glutamyl)-l-glutamic acid phospodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin-5-phosphate - F420H2 reduced F420 - HTP-SH 7-mercaptoheptanoylthreonine phosphate - Mb. Methanobacterium - PMSF phenylmethyl-sulfonylfluoride - Cl3AcOH trichloroacetic acid  相似文献   

9.
Kinetic parameters and physiological states of Corynebacterium glutamicum at the growing and l-lysine-overproducing phase were characterised in continuous culture on threonine-limited complex and minimal media. High l-lysine productivity occurred at dilution rates ranging from 0.1 h–1 to 0.3 h–1 on threonine-limited complex medium, and at dilution rates ranging from 0.1 h–1 to 0.15 h–1 in minimal medium. l-Lysine yields of 0.25 g/g (0.31 g/g as l-lysine hydrochloride) in complex medium, and of 0.17 g/g (0.21 g/g as l-lysine hydrochloride) in minimal medium, corresponding respectively to intrinsic yields of 0.533 g/g and 0.572 g/g were obtained. These intrinsic yield factors are closed to the theoretical ones (0.608 g/g, 0.75 mol/mol). Intrinsic biomass yields were calculated as 0.658 g/g in complex medium and 0.283 g/g in minimal medium. CO2 production has been clearly related to l-lysine production. According to our results on specific uptake rates and specific productivities in complex medium, metabolic rearrangement should occur during the transition from the growing phase to the l-lysine-overproducing phase. This phenomenon was further investigated.  相似文献   

10.
Anaerobic growth of a newly isolated Pseudomonas putida strain WB from an arsenic-contaminated soil in West Bengal, India on glucose, l-lactate, and acetate required the presence of arsenate, which was reduced to arsenite. During aerobic growth in the presence of arsenite arsenate was formed. Anaerobic growth of P. putida WB on glucose was made possible presumably by the non-energy-conserving arsenate reductase ArsC with energy derived only from substrate level phosphorylation. Two moles of acetate were generated intermediarily and the reducing equivalents of glycolysis and pyruvate decarboxylation served for arsenate reduction or were released as H2. Anaerobic growth on acetate and lactate was apparently made possible by arsenate reductase ArrA coupled to respiratory electron chain energy conservation. In the presence of arsenate, both substrates were totally oxidized to CO2 and H2 with part of the H2 serving for respiratory arsenate reduction to deliver energy for growth. The growth yield for anaerobic glucose degradation to acetate was Y Glucose = 20 g/mol, leading to an energy coefficient of Y ATP = 10 g/mol adenosine-5'-triphosphate (ATP), if the Emden–Meyerhof–Parnas pathway with generation of 2 mol ATP/mol glucose was used. During growth on lactate and acetate no substrate chain phosphorylation was possible. The energy gain by reduction of arsenate was Y Arsenate = 6.9 g/mol, which would be little less than one ATP/mol of arsenate.  相似文献   

11.
Summary The benzoyl-CoA ligase from an anaerobic syntrophic culture was purified to homogeneity. It had a molecular mass of around 420 kDa and consisted of seven or eight subunits of 58 kDa. The temperature optimum was 37–40° C, the optimum pH around 8.0 and optimal activity required 50–100 mM TRIS-HCI buffer, pH 8.0 and 3–7 mM MgCl2; MgCl2 in excess of 10 mM was inhibitory. The activation energy for benzoate was 11.3 kcal/mol. Although growth occured only with benzoate as a carbon source, the benzoyl-coenzyme A (CoA) ligase formed benzoyl-CoA esters with benzoate, 2-, 3- and 4-fluorobenzoate, picolinate, nicotinate and isonicotinate. Acetate was activated to acetyl-CoA by an acetyl-CoA synthetase. The K m values for benzoate, 2-, 3- and 4-fluorobenzoate were 0.04, 0.28, 1.48 and 0.32 mM, the V max values 1.05, 1.0, 0.7 and 0.98 units (U)/mg, respectively. For reduced CoA (CoA-SH) a K m of 0.17 mM and a V max of 1.05 U/mg and for ATP a K m of 0.16 mM and a V max of 1.08 U/mg was determined. Benzoate activation was inhibited by more than 6 mM ATP, presumably by pyrophosphate generation from ATP. The inhibition constant (K i) for pyrophosphate was 5.7 mM. No homology of the N-terminal amino acid sequence with that of a 2-aminobenzoyl-CoA ligase of a denitrifying Pseudomonas sp. was found. Correspondence to: J. Winter  相似文献   

12.
Cyanide inhibited d- and l-lactate and NADH oxidase activities of membrane particles from Propionibacterium shermanii but only at relatively high concentrations. Inhibition occurred at two different sites in the electron transport pathway. One site, with a half-maximal inhibition concentration (I 0.5) of 2 to 3 mM KCN, is located at the terminal oxidase involved in cytochrome b oxidation; the evidence is consistent with cytochrome d being the major oxidase involved. At high concentrations, cyanide inhibited reduction of cytochrome b by d-lactate (I 0.5 value 20–25 mM cyanide). A proportion of the oxygen-uptake remained uninhibited even by 100 mM cyanide; this proportion was about 80% for succinate, 30% for l-lactate, 15% for d-lactate and 10% for NADH. The oxygen uptake per mol of substrate oxidised increased with increasing cyanide concentration and was accompanied by the formation of hydrogen peroxide as a product of a cyanide-insensitive oxidase system.Abbreviations PMS Phenazine methosulphate  相似文献   

13.
In addition to the general amino acid transport system (GAP) ofS. cerevisiae l-tryptophan is transported by another system with approximately 25% capacity of GAP, with aK T of 0.41±0.08 mmol/L and with a similar specificity as GAP (lower inhibition by Met, Pro, Ser, Thr and 2-aminoisobutyric acid; greater inhibition by Glu and His). The pH optimum of this system is at 5.0–5.5, activation energy above the transition point (20°C) was 20 kJ/mol, below the transition point 55 kJ/mol. The transport by this system was virtually unidirectional, efflux amounting to at most 10% into a tryptophan-free medium. The transport itself was blocked by 2,4-dinitrophenol, antimycin A and uranyl nitrate. The system was synthesized de novo during preincubation with glucose=fructose>trehalose >ethanol within 30 min, and was degraded with a half-time of 15 min in the absence of further synthesis. The accumulation ratios ofl-tryptophan ingap1 mutants were concentration-dependent (200∶1 at 1 μmoll-Trp/L, 4∶1 at 2.5 mmoll-Trp/L) and decreased with increasing suspension density from 200∶1 to 5∶1 (for 10 μmoll-Trp/L). The involvement of hydrogen ions in the uptake was clearly demonstrated by the effect of D2O even if it could not be established by either shifts of pHout or membrane depolarization.  相似文献   

14.
The extraction, purification and structural characterization of two lipid A precursors (Ia and Ib) differing only in one hexadecanoic acid are described. Both precursors were synthesized at elevated temperatures by a new mutant of Salmonella typhimurium (mutant Ts5) which is conditionally defective in synthesis of the 3-deoxy-d-manno-octulosonic acid region of lipopolysaccharides.Both precursors were purified by repeated phenol/chloroform/petroleum ether (PCP) extractions followed by thin layer chromatography. Teh precursor preparation was free of lipopolysaccharides and phospholipids and contained less than 0.1% protein. Structural analysis which included chemical degradation procedures as well as positive ion laser desorption (LDMS) mass spectroscopy of dephosphorylated lipid A precursors showed together that precursor Ia represents a diphosphorylated glucosamine disaccharide containing two ester, two amide-linked residues of 3-hydroxytetradecanoic acid and lacks the ester-linked dodecanoic, tetradecanoic and hexadecanoic acid as well as 3-deoxy-d-manno-octulosonic acid. Precursor Ib has the same basic structure as precursor Ia, but contains in addition one mol of hexadecanoic acid per mol disaccharide which is linked to the 3-hydroxy group of the amide-bound 3-hydroxy-tetradecanoic acid of the reducing, terminal glucosamine residue.The structure of precursor Ib supports the conclusion that hexadecanoic acid incorporation occurs at an early stage in lipid A biosynthesis prior to the attachment of 3-deoxy-d-manno-octulosonic acid and/or other polar substituents.Abbreviations LDMS laser desorption mass spectrometry - KDO 3-Deoxy-d-manno-octulosonic acid - Ts5 Salmonella typhimurium mutant Ts5 - PCP phenol/chloroform/petroleum ether - H2F2 hydrogen fluoride This work is dedicated to Prof. Dr. Drews, Freiburg, on the occasion of his 60th birthday  相似文献   

15.
Summary The application of an inducible regulation system using the trytophanase operon promoter (TPase promoter; Ptna) was examined for its high expression of the tryptophan synthase (TS) gene in Escherichia coli. The main problem in the application of Ptna for industrial purposes is catabolite repression by glucose, since glucose is the most abundant carbon source. However, this problem could be avoided by changing glucose to an organic acid, such as succinate, fumarate, malate and acetate, in the course of cultivation after glucose initially added was completely consumed. Under these conditions, l-tryptophan was also used to induce tryptophan synthase. Thus, the specific activity of TS in E. coli strain no. 168 harbouring pBR322F-PtnaTS was increased 500-fold compared to that of the cultured host strain. About 1 mol l-tryptophan/l reaction mixture was formed from indole and l-serine at 37° C for 3.5 h. Offprint requests to: H. Yukawa  相似文献   

16.
Summary Free-living or immobilized Chlamydomonas reinhardtii cells photoproduce ammonium from nitrite in a medium containing 1 mM of l-methionine-d,l-sulphoximine (MSX). Ammonium is accumulated in the medium to 8 mM final concentration, which inhibits nitrite uptake by the MSX-treated cells and consequently the excretion of ammonium is blocked. However, if ammonium was removed from the medium and nitrite and MSX periodically restored, the photoproduction process could be maintained over 96 h, with a final ammonium concentration of about 18 mM for free-living cells and 28 mM for immobilized ones. The MSX-treated cells showed a photoproduction productivity of 1300 mol NH 4 + · mg chlorophyll (Chl)-1, with an average production rate of 14 mol NH 4 + · mg Chl-1 per hour, for calcium alginate-entrapped cells, while the corresponding data for free-living ones was 650 mol NH 4 + · mg Chl-1 and 6.7 mol NH 4 + · mg Chl-1 per hour, respectively. Immobilized cells showed a significant increase in the nitrite uptake rate, probably due to a change in membrane permeability as a consequence of cell-matrix interactions.  相似文献   

17.
Law RO 《Neurochemical research》2005,30(12):1465-1470
Cell volumes (equilibrium non-inulin spaces) have been measured in slices of rat cerebral cortex incubated in the presence of uraemic guanidino compounds. Of 5 guanidino compounds tested, all but one caused significant cell swelling. This was most pronounced for guanidinosuccinic acid (GSA, 40 μmol/l)(+22%) and guanidine hydrochloride (G, 3 μmol/l)(+13%). Swelling was reduced by taurine in a dose-dependent manner, being completely abolished at 20 mmol/l. Swelling was also abolished by the antioxidants ascorbic acid (0.4 mmol/l) and butylated hydroxytoluene (0.5 mmol/l), the free radical scavenger N-acetyl-l-cysteine (10 mmol/l) and the lipid peroxidase inhibitor desmethyl tirilazad (100 μmol/l). The remission of swelling by 20 mmol/l taurine was reduced by 50% by the taurine transport inhibitor guanidinoethylsulphonate (GES, 1 mmol/l). This figure was not significantly altered when the concentration of GES was increased to 10 mmol/l. It was also reduced by 45% by the GABAa receptor antagonist bicuculline (100 μmol/l). It was completely abolished when both GES and bicuculline were present. It is suggested that guanidino compounds result in cells undergoing oxidative-nitrosative stress, and that taurine protects against the resultant cell swelling by 2 mechanisms One (intracellular) requires taurine transport and depends on its role as an antioxidant, with lipid peroxidation being probably a significant factor. The other (extracellular) is associated with activation of GABAa receptors. Special issue dedicated to Simo S. Oja  相似文献   

18.
Summary Chlamydomonas reinhardtii cells immobilized in Ba-alginate beads provide a stable and effective system for photoproducing ammonium from nitrite in a culture medium containing l-methionine-d,l-sulphoximine. The process was studied in either air-lift, fluidized or packed-bed reactors, the last one providing the most suitable system with a volumetric activity of 2700 mol NH inf+ sup4 ·1–1 per hour.  相似文献   

19.
Dihydroorotase was purified to homogeneity fromPseudomonas putida. The relative molecular mass of the native enzyme was 82 kDa and the enzyme consisted of two identical subunits with a relative molecular mass of 41 kDa. The enzyme only hydrolyzed dihydro-l-orotate and its methyl ester, and the reactions were reversible. The apparentK m andV max values for dihydro-l-orotate hydrolysis (at pH 7.4) were 0.081 mM and 18 μmol min−1 mg−1, respectively; and those forN-carbamoyl-dl-aspartate (at pH 6.0) were 2.2 mM and 68 μmol min−1 mg−1, respectively. The enzyme was inhibited by metal ion chelators and activated by Zn2+. However, excessive Zn2+ was inhibitory. The enzyme was inhibited by sulfhydryl reagents, and competitively inhibited byN-carbamoylamino acids such asN-carbamoylglycine, with aK i value of 2.7 mM. The enzyme was also inhibited noncompetitively by pyrimidine-metabolism intermediates such as dihydrouracil and orotate, with aK i value of 3.4 and 0.75 mM, respectively, suggesting that the enzyme activity is regulated by pyrimidine-metabolism intermediates and that dihydroorotase plays a role in the control of pyrimidine biosynthesis.  相似文献   

20.
The ruthenium arene anticancer complex [(6-bip)Ru(en)Cl][PF6] (1) (bip is biphenyl, en is ethylenediamine) reacted slowly with the amino acid L-histidine (L-His) in aqueous solution at 310 K. Two L-His adducts of 1 were separated by high-performance liquid chromatography and identified by electrospray ionisation mass spectrometry and NMR: an imidazole N-bound complex [(6-bip)Ru(en)(NL-His)]2+, and an N-bound complex [(6-bip)Ru(en)(NL-His)]2+. At 310 K, after 24 h only about 22% of complex 1 (2 mM) reacted with L-His, and of the unreacted 1, 59% had hydrolysed. In the presence of 100 mM NaCl, approximately 90% of 1 remained unreacted. In aqueous solution or triethylammonium acetate (TEAA) buffer (pH 7.6), 15N-labelled 1 reacted with cytochrome c to give two monoruthenated protein adducts. The reaction reached equilibrium within 2 h by which time approximately 50% of cytochrome c was ruthenated. On the basis of [1H, 15N] NMR data, one adduct may have Ru bound to the N-terminus, and the other to a carboxylate group on the protein. In TEAA buffer and at 310 K, more than 90% of the 14-mer oligonucleotide d(TATGTACCATGTAT) reacted with 2 mol Eq of 1 to give rise to monoruthenated and diruthenated oligonucleotide adducts. The presence of cytochrome c (1 mol Eq) or L-His (4 mol Eq) had little effect on the course of the reaction with the oligonucleotide. In cells, DNA (or RNA) may be a favoured reaction site for this Ru anticancer complex.Electronic supplementary material is available for this article at .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号