首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we propose a new joint modeling approach for the analysis of longitudinal data with informative observation times and a dependent terminal event. We specify a semiparametric mixed effects model for the longitudinal process, a proportional rate frailty model for the observation process, and a proportional hazards frailty model for the terminal event. The association among the three related processes is modeled via two latent variables. Estimating equation approaches are developed for parameter estimation, and the asymptotic properties of the proposed estimators are established. The finite sample performance of the proposed estimators is examined through simulation studies, and an application to a medical cost study of chronic heart failure patients is illustrated.  相似文献   

2.
Summary .  Recurrent event data analyses are usually conducted under the assumption that the censoring time is independent of the recurrent event process. In many applications the censoring time can be informative about the underlying recurrent event process, especially in situations where a correlated failure event could potentially terminate the observation of recurrent events. In this article, we consider a semiparametric model of recurrent event data that allows correlations between censoring times and recurrent event process via frailty. This flexible framework incorporates both time-dependent and time-independent covariates in the formulation, while leaving the distributions of frailty and censoring times unspecified. We propose a novel semiparametric inference procedure that depends on neither the frailty nor the censoring time distribution. Large sample properties of the regression parameter estimates and the estimated baseline cumulative intensity functions are studied. Numerical studies demonstrate that the proposed methodology performs well for realistic sample sizes. An analysis of hospitalization data for patients in an AIDS cohort study is presented to illustrate the proposed method.  相似文献   

3.
Summary In this article, we propose a family of semiparametric transformation models with time‐varying coefficients for recurrent event data in the presence of a terminal event such as death. The new model offers great flexibility in formulating the effects of covariates on the mean functions of the recurrent events among survivors at a given time. For the inference on the proposed models, a class of estimating equations is developed and asymptotic properties of the resulting estimators are established. In addition, a lack‐of‐fit test is provided for assessing the adequacy of the model, and some tests are presented for investigating whether or not covariate effects vary with time. The finite‐sample behavior of the proposed methods is examined through Monte Carlo simulation studies, and an application to a bladder cancer study is also illustrated.  相似文献   

4.
Statistics in Biosciences - Joint models for longitudinal biomarkers and time-to-event data are widely used in longitudinal studies. Many joint modeling approaches have been proposed to handle...  相似文献   

5.
Clinical trials are often designed to assess the effect of therapeutic interventions on the incidence of recurrent events in the presence of a dependent terminal event such as death. Statistical methods based on multistate analysis have considerable appeal in this setting since they can incorporate changes in risk with each event occurrence, a dependence between the recurrent event and the terminal event, and event-dependent censoring. To date, however, there has been limited development of statistical methods for the design of trials involving recurrent and terminal events. Based on the asymptotic distribution of regression coefficients from a multiplicative intensity Markov regression model, we derive sample size formulas to address power requirements for both the recurrent and terminal event processes. We consider the design of trials for which separate marginal hypothesis tests are of interest for the recurrent and terminal event processes and deal with both superiority and non-inferiority tests. Simulation studies confirm that the designs satisfy the nominal power requirements in both settings, and an application to a trial evaluating the effect of a bisphosphonate on skeletal complications is given for illustration.  相似文献   

6.
In a study conducted at the New York University Fertility Center, one of the scientific objectives is to investigate the relationship between the final pregnancy outcomes of participants receiving an in vitro fertilization (IVF) treatment and their ??-human chorionic gonadotrophin (??-hCG) profiles. A?common joint modeling approach to this objective is to use subject-specific normal random effects in a linear mixed model for longitudinal ??-hCG data as predictors in a model (e.g., logistic model) for the final pregnancy outcome. Empirical data exploration indicates that the observation times for longitudinal ??-hCG data may be informative and the distribution of random effects for longitudinal ??-hCG data may not be normally distributed. We propose to introduce a third model in the joint model for the informative ??-hCG observation times, and relax the normality distributional assumption of random effects using the semi-nonparametric (SNP) approach of Gallant and Nychka (Econometrica 55:363?C390, 1987). An EM algorithm is developed for parameter estimation. Extensive simulation designed to evaluate the proposed method indicates that ignoring either informative observation times or distributional assumption of the random effects would lead to invalid and/or inefficient inference. Applying our new approach to the data reveals some interesting findings the traditional approach failed to discover.  相似文献   

7.
8.
In this article, we propose a class of semiparametric transformation rate models for recurrent event data subject to right censoring and potentially stopped by a terminating event (e.g., death). These transformation models include both additive rates model and proportional rates model as special cases. Respecting the property that no recurrent events can occur after the terminating event, we model the conditional recurrent event rate given survival. Weighted estimating equations are constructed to estimate the regression coefficients and baseline rate function. In particular, the baseline rate function is approximated by wavelet function. Asymptotic properties of the proposed estimators are derived and a data-dependent criterion is proposed for selecting the most suitable transformation. Simulation studies show that the proposed estimators perform well for practical sample sizes. The proposed methods are used in two real-data examples: a randomized trial of rhDNase and a community trial of vitamin A.  相似文献   

9.
Na Cai  Wenbin Lu  Hao Helen Zhang 《Biometrics》2012,68(4):1093-1102
Summary In analysis of longitudinal data, it is not uncommon that observation times of repeated measurements are subject‐specific and correlated with underlying longitudinal outcomes. Taking account of the dependence between observation times and longitudinal outcomes is critical under these situations to assure the validity of statistical inference. In this article, we propose a flexible joint model for longitudinal data analysis in the presence of informative observation times. In particular, the new procedure considers the shared random‐effect model and assumes a time‐varying coefficient for the latent variable, allowing a flexible way of modeling longitudinal outcomes while adjusting their association with observation times. Estimating equations are developed for parameter estimation. We show that the resulting estimators are consistent and asymptotically normal, with variance–covariance matrix that has a closed form and can be consistently estimated by the usual plug‐in method. One additional advantage of the procedure is that it provides a unified framework to test whether the effect of the latent variable is zero, constant, or time‐varying. Simulation studies show that the proposed approach is appropriate for practical use. An application to a bladder cancer data is also given to illustrate the methodology.  相似文献   

10.
11.
Count data often exhibit more zeros than predicted by common count distributions like the Poisson or negative binomial. In recent years, there has been considerable interest in methods for analyzing zero-inflated count data in longitudinal or other correlated data settings. A common approach has been to extend zero-inflated Poisson models to include random effects that account for correlation among observations. However, these models have been shown to have a few drawbacks, including interpretability of regression coefficients and numerical instability of fitting algorithms even when the data arise from the assumed model. To address these issues, we propose a model that parameterizes the marginal associations between the count outcome and the covariates as easily interpretable log relative rates, while including random effects to account for correlation among observations. One of the main advantages of this marginal model is that it allows a basis upon which we can directly compare the performance of standard methods that ignore zero inflation with that of a method that explicitly takes zero inflation into account. We present simulations of these various model formulations in terms of bias and variance estimation. Finally, we apply the proposed approach to analyze toxicological data of the effect of emissions on cardiac arrhythmias.  相似文献   

12.
Summary : Often clinical studies periodically record information on disease progression as well as results from laboratory studies that are believed to reflect the progressing stages of the disease. A primary aim of such a study is to determine the relationship between the lab measurements and a disease progression. If there were no missing or censored data, these analyses would be straightforward. However, often patients miss visits, and return after their disease has progressed. In this case, not only is their progression time interval censored, but their lab test series is also incomplete. In this article, we propose a simple test for the association between a longitudinal marker and an event time from incomplete data. We derive the test using a very intuitive technique of calculating the expected complete data score conditional on the observed incomplete data (conditional expected score test, CEST). The problem was motivated by data from an observational study of patients with diabetes.  相似文献   

13.
Summary .  The majority of the statistical literature for the joint modeling of longitudinal and time-to-event data has focused on the development of models that aim at capturing specific aspects of the motivating case studies. However, little attention has been given to the development of diagnostic and model-assessment tools. The main difficulty in using standard model diagnostics in joint models is the nonrandom dropout in the longitudinal outcome caused by the occurrence of events. In particular, the reference distribution of statistics, such as the residuals, in missing data settings is not directly available and complex calculations are required to derive it. In this article, we propose a multiple-imputation-based approach for creating multiple versions of the completed data set under the assumed joint model. Residuals and diagnostic plots for the complete data model can then be calculated based on these imputed data sets. Our proposals are exemplified using two real data sets.  相似文献   

14.
Bayesian Inference in Semiparametric Mixed Models for Longitudinal Data   总被引:1,自引:0,他引:1  
Summary .  We consider Bayesian inference in semiparametric mixed models (SPMMs) for longitudinal data. SPMMs are a class of models that use a nonparametric function to model a time effect, a parametric function to model other covariate effects, and parametric or nonparametric random effects to account for the within-subject correlation. We model the nonparametric function using a Bayesian formulation of a cubic smoothing spline, and the random effect distribution using a normal distribution and alternatively a nonparametric Dirichlet process (DP) prior. When the random effect distribution is assumed to be normal, we propose a uniform shrinkage prior (USP) for the variance components and the smoothing parameter. When the random effect distribution is modeled nonparametrically, we use a DP prior with a normal base measure and propose a USP for the hyperparameters of the DP base measure. We argue that the commonly assumed DP prior implies a nonzero mean of the random effect distribution, even when a base measure with mean zero is specified. This implies weak identifiability for the fixed effects, and can therefore lead to biased estimators and poor inference for the regression coefficients and the spline estimator of the nonparametric function. We propose an adjustment using a postprocessing technique. We show that under mild conditions the posterior is proper under the proposed USP, a flat prior for the fixed effect parameters, and an improper prior for the residual variance. We illustrate the proposed approach using a longitudinal hormone dataset, and carry out extensive simulation studies to compare its finite sample performance with existing methods.  相似文献   

15.
Liang Li  Bo Hu  Tom Greene 《Biometrics》2009,65(3):737-745
Summary .  In many longitudinal clinical studies, the level and progression rate of repeatedly measured biomarkers on each subject quantify the severity of the disease and that subject's susceptibility to progression of the disease. It is of scientific and clinical interest to relate such quantities to a later time-to-event clinical endpoint such as patient survival. This is usually done with a shared parameter model. In such models, the longitudinal biomarker data and the survival outcome of each subject are assumed to be conditionally independent given subject-level severity or susceptibility (also called frailty in statistical terms). In this article, we study the case where the conditional distribution of longitudinal data is modeled by a linear mixed-effect model, and the conditional distribution of the survival data is given by a Cox proportional hazard model. We allow unknown regression coefficients and time-dependent covariates in both models. The proposed estimators are maximizers of an exact correction to the joint log likelihood with the frailties eliminated as nuisance parameters, an idea that originated from correction of covariate measurement error in measurement error models. The corrected joint log likelihood is shown to be asymptotically concave and leads to consistent and asymptotically normal estimators. Unlike most published methods for joint modeling, the proposed estimation procedure does not rely on distributional assumptions of the frailties. The proposed method was studied in simulations and applied to a data set from the Hemodialysis Study.  相似文献   

16.
Existing methods for joint modeling of longitudinal measurements and survival data can be highly influenced by outliers in the longitudinal outcome. We propose a joint model for analysis of longitudinal measurements and competing risks failure time data which is robust in the presence of outlying longitudinal observations during follow‐up. Our model consists of a linear mixed effects sub‐model for the longitudinal outcome and a proportional cause‐specific hazards frailty sub‐model for the competing risks data, linked together by latent random effects. Instead of the usual normality assumption for measurement errors in the linear mixed effects sub‐model, we adopt a t ‐distribution which has a longer tail and thus is more robust to outliers. We derive an EM algorithm for the maximum likelihood estimates of the parameters and estimate their standard errors using a profile likelihood method. The proposed method is evaluated by simulation studies and is applied to a scleroderma lung study (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In many clinical studies that involve follow-up, it is common to observe one or more sequences of longitudinal measurements, as well as one or more time to event outcomes. A competing risks situation arises when the probability of occurrence of one event is altered/hindered by another time to event. Recently, there has been much attention paid to the joint analysis of a single longitudinal response and a single time to event outcome, when the missing data mechanism in the longitudinal process is non-ignorable. We, in this paper, propose an extension where multiple longitudinal responses are jointly modeled with competing risks (multiple time to events). Our shared parameter joint model consists of a system of multiphase non-linear mixed effects sub-models for the multiple longitudinal responses, and a system of cause-specific non-proportional hazards frailty sub-models for competing risks, with associations among multiple longitudinal responses and competing risks modeled using latent parameters. The joint model is applied to a data set of patients who are on mechanical circulatory support and are awaiting heart transplant, using readily available software. While on the mechanical circulatory support, patient liver and renal functions may worsen and these in turn may influence one of the two possible competing outcomes: (i) death before transplant; (ii) transplant. In one application, we propose a system of multiphase cause-specific non-proportional hazard sub-model where frailty can be time varying. Performance under different scenarios was assessed using simulation studies. By using the proposed joint modeling of the multiphase sub-models, one can identify: (i) non-linear trends in multiple longitudinal outcomes; (ii) time-varying hazards and cumulative incidence functions of the competing risks; (iii) identify risk factors for the both types of outcomes, where the effect may or may not change with time; and (iv) assess the association between multiple longitudinal and competing risks outcomes, where the association may or may not change with time.  相似文献   

18.
Summary .  Joint modeling of a primary response and a longitudinal process via shared random effects is widely used in many areas of application. Likelihood-based inference on joint models requires model specification of the random effects. Inappropriate model specification of random effects can compromise inference. We present methods to diagnose random effect model misspecification of the type that leads to biased inference on joint models. The methods are illustrated via application to simulated data, and by application to data from a study of bone mineral density in perimenopausal women and data from an HIV clinical trial.  相似文献   

19.

Objectives

The University of Wisconsin Population Health Institute has published the County Health Rankings since 2010. These rankings use population-based data to highlight health outcomes and the multiple determinants of these outcomes and to encourage in-depth health assessment for all United States counties. A significant methodological limitation, however, is the uncertainty of rank estimates, particularly for small counties. To address this challenge, we explore the use of longitudinal and pooled outcome data in hierarchical Bayesian models to generate county ranks with greater precision.

Methods

In our models we used pooled outcome data for three measure groups: (1) Poor physical and poor mental health days; (2) percent of births with low birth weight and fair or poor health prevalence; and (3) age-specific mortality rates for nine age groups. We used the fixed and random effects components of these models to generate posterior samples of rates for each measure. We also used time-series data in longitudinal random effects models for age-specific mortality. Based on the posterior samples from these models, we estimate ranks and rank quartiles for each measure, as well as the probability of a county ranking in its assigned quartile. Rank quartile probabilities for univariate, joint outcome, and/or longitudinal models were compared to assess improvements in rank precision.

Results

The joint outcome model for poor physical and poor mental health days resulted in improved rank precision, as did the longitudinal model for age-specific mortality rates. Rank precision for low birth weight births and fair/poor health prevalence based on the univariate and joint outcome models were equivalent.

Conclusion

Incorporating longitudinal or pooled outcome data may improve rank certainty, depending on characteristics of the measures selected. For measures with different determinants, joint modeling neither improved nor degraded rank precision. This approach suggests a simple way to use existing information to improve the precision of small-area measures of population health.  相似文献   

20.
Summary .  We consider semiparametric transition measurement error models for longitudinal data, where one of the covariates is measured with error in transition models, and no distributional assumption is made for the underlying unobserved covariate. An estimating equation approach based on the pseudo conditional score method is proposed. We show the resulting estimators of the regression coefficients are consistent and asymptotically normal. We also discuss the issue of efficiency loss. Simulation studies are conducted to examine the finite-sample performance of our estimators. The longitudinal AIDS Costs and Services Utilization Survey data are analyzed for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号