首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
About 650 zooplankton samples were collected from Lake Inarijärvi in 1977–1979 from the littoral and pelagial zones of the lake. One hundred and twenty-three zooplankton taxa were found and most of them can be considered euplanktonic.The most important species were Holopedium gibberum, Daphnia cristata, Cyclops spp. and Eudiaptomus spp. Mean pelagial zooplankton biomass was 0.29 g m–3 in the 0–5 m depth zone, 0.17 g m–3 in 5–10 m and 0.11 g m–3 in 10–20 m.The zooplankton biomass at a sandy shore was about 0.09 g m–3, at a stony shore 0.05 g m–3 and at a vegetated shore 0.76 g m–3. About 70% of the whole zooplankton production consisted of crustaceans.The sum of herbivore and carnivore zooplankton production in the pelagial area during the summer was 210–330 kg ha–1 × 3 months.  相似文献   

2.
The effect of tree row species on the distribution of soil inorganic N and the biomass growth and N uptake of trees and crops was investigated beneath a Grevillea robustaA. Cunn. ex R. Br. (grevillea) tree row and Senna spectabilisDC. (senna) hedgerow grown with Zea mays L. (maize) and a sole maize crop, during one cropping season. The hypothesis was that a tree with a large nutrient uptake would have a greater competitive effect upon coexisting plants than a tree that takes up less and internally cycles nutrients. The field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya. Soil nitrate and ammonium were measured to 300 cm depth and 525 cm distance from the tree rows, before and after maize cropping. Ammonium concentrations were small and did not change significantly during the cropping season. There was > 8 mg nitrate kg–1 in the upper 60 cm and at 90–180 cm depth at the start of the season, except within 300 cm of the senna hedgerow where concentrations were smaller. During the season, nitrate in the grevillea-maize system only decreased in the upper 60 cm, whereas nitrate decreased at almost every depth and distance from the senna hedgerow. Inorganic N (nitrate plus ammonium) decreased by 94 kg ha–1 in the senna-maize system and 33 kg ha–1 in the grevillea-maize system.The aboveground N content of the trees increased by 23 kg ha–1 for grevillea and 39 kg ha–1 for senna. Nitrogen uptake by maize was 85 kg ha–1 when grown with grevillea and 65 kg ha–1 with senna. Assuming a mineralisation input of 50 kg N ha–1season–1, the decrease in inorganic soil N approximately equalled plant N uptake in the grevillea-maize system, but exceeded that in the senna-maize system. Pruning and litter fall removed about 14 kg N ha–1 a–1 from grevillea, and > 75 kg N ha–1 a–1 from senna. The removal of pruned material from an agroforestry system may lead to nutrient mining and a decline in productivity.  相似文献   

3.
T. Penczak 《Hydrobiologia》1985,120(2):159-165
Amounts of C, P, and N consumed by all fish populations were estimated at 9 sites in two small lowland rivers. They mainly depended on fish density and were: 151.8 (27.9–453.3) kgC ha–1a–1, 3.1(0.5–8.8) kgP ha–1 a–1, and 30.3 (5.3–89.9) kg N ha–1 a–1. To build one kg of each of these elements into their body the fish consumed 7.9 ± 1.7 (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeiEayaara% aaaa!3912!\[{\text{\bar x}}\] ± S.D.) kg of C, 3.1 ± 0.8 kg of P, and 6.6 ± 1.3 kg of N. Thus, phosphorus was assimilated twice more efficiently than carbon and nitrogen. Pools of the three elements, calculated as mean biomass, are: 12.7 (1.2–42.1) kg C ha–1, 0.7(0.1–2.2) kgP ha–1, and 3.0 (0.3–9.7) kgN ha–1 The elements were assimilated especially effectively by young stages of fish.  相似文献   

4.
The production rate ofEichhornia crassipes was stimulated by water of the river Ganga and by prevailing environmental conditions. It was highest in October (4.76 g.m–2.d–1) and was positively correlated with ammonia nitrogen and total phosphorus in the water but negatively correlated with total alkalinity and transparency. The average annual production of 14.13 t.ha–1.a–1 is equivalent to the average production of 0.067 t.ha–1.a–1 phosphorus and 0.40 t.ha–1.a–1 nitrogen. The concentrations of total nitrogen and total phosphorus of the plant varied seasonally. They decreased with increasing production rate in summer and monsoon.  相似文献   

5.
Effect of soil application of eight combinations of NPK fertilizers on the severity of black spot disease (BSD), caused by Alternaria brassicae (Sacc.) Berk., and yield of short duration oilseed rape (Brassica campestris L) were investigated under both pot and field conditions in 1987–88, 1988–89 and 1990–91. The severity of BSD was significantly greater (36–48%) on plants grown in ground treated with NP (N 90 kg ha–1+P 40 kg ha–1) applied as urea and single superphosphate respectively than on plants from the unfertilized control (NoPoKo) (o). However, the severity of BSD was significantly smaller (25–33%) when K (40 kg ha–1) was applied as muriate of potash than in plants from control and NP treatments. The effect of NK (N 90 kg ha–1+K 40 kg ha–1) in decreasing the severity of BSD was increasingly more pronounced than the effects of PK (P 40 kg ha–1+K 40 kg ha–1), NP and K (40 kg ha–1) applications. The decrease in the severity of BSD due to K was due to increased production in plants of phenolics which inhibited conidial germination and decreased sporulation of A. brassicae.The decrease in the severity of BSD due to NK application gave consistently increased seed yield 68% more than those of control and other treatments. The K-fertilized plants also showed increased resistance to lodging, increased 1000-seed weight and decreased seed infection. Seeds obtained from K-fertilized plants showed good seed germinability and vigorous seeding growth.  相似文献   

6.
Predator-induced bottom-up effects in oligotrophic systems   总被引:1,自引:1,他引:0  
Five treatments (replication n=2) were applied to mesocosms in an oligotrophic lake (TP=6–10 µg 1-1) to assess the effects of fish on planktonic communities. The treatments were: (1) high fish (30 kg ha–1 Lepomis auritus, Linnaeus), (2) low fish (10 kg ha–1), (3) high removal of zooplankton, (4) low removal of zooplankton and (5) control. Total phosphorus, chlorophyll a, zooplankton biomass, and species richness decreased from high fish > low fish > control > low removal > high removal treatments. The fish treatments were dominated by crustacean zooplankton, while rotifers outnumbered the other zooplankters in the removal treatments. Calculations of zooplankton grazing rates suggested that clearance rates seldom exceeded 2% of the enclosure volume d–1 and were unlikely to have had much influence on phytoplankton biomass. Calculations from a phosphorus bioenergetics model revealed that when fish were present, their excretion rates were higher than the rates ascribed to zooplankton. Diet analysis showed that the fish derived most of their energy from the benthos and periphyton, and that fish excretion and egestion made significant contributions to the very oligotrophic pelagic phosphorus pool. In the absence of fish, zooplankton excretion was highest in the control treatments and lowest in the zooplankton removal treatments. Our results suggest that in oligotrophic systems, planktivorous fish can be significant sources of phosphorus and that fish and zooplankton induced nutrient cycling have significant impacts on planktonic community structure.  相似文献   

7.
L. Cardona  P. Royo  X. Torras 《Hydrobiologia》2001,462(1-3):233-240
Some mugilid fish are known to enhance small phytoplankton in freshwater macrophyte-free environments due to zooplankton depletion. This suggests that they may have negative effects on natural macrophyte beds of freshwater and oligohaline lagoons due to phytoplantkon enhancement. To test this hypothesis, we compared the ecosystems of control enclosures that contained no fish with those of enclosures stocked with Liza saliens at two different densities. The occurrence of L. saliens at a density of 321±92.42 kg ha–1 reduced cladoceran density, depleted epiphytic chironomid larvae, enhanced mayfly nymphs and cyclopoid copepods and reduced the organic matter content of sediment, all in comparison with control enclosures. At a density of 673±42.04 kg ha–1, L. saliens reduced total zooplankton density, depleted epiphytic and sediment dwelling chironomid larvae and enhanced mayfly nymphs. The organic matter contents of sediment was not affected. These results showed that L. saliens was very effective in reducing zooplankton density even when macrophyte biomass was high. However, these effects do not affect phytoplankton density, probably because zooplankton was dominated by species with low filter-feeding rates and macrophytes depleted nutrients.  相似文献   

8.
Relationships between chlorophyll a content of the water, the shoreline-length: water area ratio and the annual total fish yield as catch per unit effort (CUE: kg ha–1 100 h–1 as annual mean values) have been calculated by multivariable regression. The determination coefficient (r 2 = 0.913) showed a significant dependence of fish yield on morphometry of different lake areas. Accordingly, fish carrying capacity of the open water areas, calculated from chlorophyll a content and S/A, ranged from 12 to 34%, but that of the littoral zone between 66 and 88%. These findings have also been supported by echo-sounding records of the horizontal distribution of fish.Bream (Abramis brama L.) contributes the majority (70–80%) of fish stock and yield. Its food mainly consists of zooplankton and benthic invertebrates in ratios that are widely variable with season and depend on the age of fish. Average daily food consumption of individuals (age group 3 + and over) varies between 2 and 5 g. Bream consumes two- to three-times more food in the SW basin than in the NE one. This means that the present stocks inhabiting areas from NE to SW consume annually 13249–20085 t yr–1 of food. According to estimated calorific values, the annual energy consumption of local populations along the longitudinal axis of the lake varies between 93 and 141 kJ m–2 yr–1. The efficiency of energy transfer from primary producers to fish is low and varies from 0.04 to 0.1%.  相似文献   

9.
Summary The symbiotic association of the water fernAzolla with the blue-green algaAnabaena azollae can fix 30–60 kg N ha–1 per rice cropping season. The value of this fixed N for rice production, however, is only realized once the N is released from theAzolla biomass and taken up by the rice plants. The availability of N applied asAzolla or as urea was measured in field experiments by two15N methods. In the first,Azolla caroliniana (Willd.) was labelled with15N in nutrient solution and incorporated into the soil at a rate of 144 kg N ha–1. The recovery ofAzolla-N in the above ground parts of rice [Oryza sativa (L) cv. Nucleoryza] was found to be 32% vs. 26% for urea applied at a rate of 100 kg N/ha; there was no significant difference in recovery. In the second, 100 kg N/ha of15N-urea was applied separately or in combination with either 250 or 330 kg N ha–1 of unlabelledAzolla. At the higher rate, the recovery ofAzolla-N was significantly greater than that of urea. There was a significant interaction when both N sources were applied together, which resulted in a greater recovery of N from each source in comparison to that source applied separately. Increasing the combined urea andAzolla application rate from 350 kg N ha–1 to 430 kg N ha–1 increased the N yield but had no effect on the dry matter yield of rice plants. The additional N taken up at the higher level of N application accumulated to a greater extent in the straw compared to the panicles. Since no assumptions need to be made about the contribution of soil N in the method using15N-labelledAzolla, this method is preferable to the15N dilution technique for assessing the availability ofAzolla-N to rice. Pot trials usingAzolla stored at –20°C or following oven-drying showed that both treatments decreased the recovery of N by one third in comparison to freshAzolla.  相似文献   

10.
Ledgard  S.F.  Sprosen  M.S.  Penno  J.W.  Rajendram  G.S. 《Plant and Soil》2001,229(2):177-187
Effects of rate of nitrogen (N) fertilizer and stocking rate on production and N2 fixation by white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L.) were determined over 5 years in farmlets near Hamilton, New Zealand. Three farmlets carried 3.3 dairy cows ha–1 and received urea at 0, 200 or 400 kg N ha–1 yr–1 in 8–10 split applications. A fourth farmlet received 400 kg N ha–1 yr–1 and had 4.4 cows ha–1.There was large variation in annual clover production and total N2 fixation, which in the 0 N treatment ranged from 9 to 20% clover content in pasture and from 79 to 212 kg N fixed ha–1 yr–1. Despite this variation, total pasture production in the 0 N treatment remained at 75–85% of that in the 400 N treatments in all years, due in part to the moderating effect of carry-over of fixed N between years.Fertilizer N application decreased the average proportion of clover N derived from N2 fixation (PN; estimated by 15N dilution) from 77% in the 0 N treatment to 43–48% in the 400 N treatments. The corresponding average total N2 fixation decreased from 154 kg N ha–1 yr–1 to 39–53 kg N ha–1 yr–1. This includes N2 fixation in clover tissue below grazing height estimated at 70% of N2 fixation in above grazing height tissue, based on associated measurements, and confirmed by field N balance calculations. Effects of N fertilizer on clover growth and N2 fixation were greatest in spring and summer. In autumn, the 200 N treatment grew more clover than the 0 N treatment and N2 fixation was the same. This was attributed to more severe grazing during summer in the 0 N treatment, resulting in higher surface soil temperatures and a deleterious effect on clover stolons.In the 400 N treatments, a 33% increase in cow stocking rate tended to decrease PN from 48 to 43% due to more N cycling in excreta, but resulted in up to 2-fold more clover dry matter and N2 fixation because lower pasture mass reduced grass competition, particularly during spring.  相似文献   

11.
The amount of nitrogen fixed byLeucaena leucocephala (Lam.) de Wit was assessed on an Alfisol at the International Institute of Tropical Agriculture located in southwestern Nigeria. Estimated by the difference method, nitrogen fixation of leucaena inoculated with Rhizobium strain IRc 1045 was 133 kg ha–1 in six months. Inoculation with Rhizobium strain IRc 1050 gave a lower nitrogen fixation of 76 kg ha–1. Fertilization with 40 and 80 kg N ha–1 inhibited nitrogen fixation by 43–76% and 49–71%, respectively. Estimates with the15N dilution method gave nitrogen fixation of 134 kg ha–1 in six months when leucaena was inoculated with Rhizobium strain IRc 1045 and 98 kg ha–1 for leucaena inoculated with Rhizobium strain IRc 1050. This nitrogen fixation represented 34–39% of the plant nitrogen. Inoculated leucaena derived 5–6% of its nitrogen from applied fertilizer and 56–54% from soil.  相似文献   

12.
N deposition, N transformation and N leaching in acid forest soils   总被引:9,自引:3,他引:6  
Nitrogen deposition, mineralisation, uptake and leaching were measured on a monthly basis in the field during 2 years in six forested stands on acidic soils under mountainous climate. Studies were conducted in three Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] plantations (D20: 20 year; D40: 40 yr; D60: 60 yr) on abandoned croplands in the Beaujolais Mounts; and two spruce (Picea abies Karst.) plantations (S45: 45 yr; S90: 90 yr) and an old beech (Fagus sylvatica L.) stand (B150: 150 yr) on ancient forest soils in a small catchment in the Vosges Mountains. N deposition in throughfall varied between 7–8 kg ha–1 year–1 (D20, B150, S45) and 15–21 kg ha–1 yr–1 (S90, D40, D60). N in annual litterfall varied between 20–29 kg ha–1 (D40, D60, S90), and 36–43 kg ha–1 (D20, S45, B150). N leaching below root depth varied among stands within a much larger range, between 1–9 kg ha–1 yr–1 (B150, S45, D60) and 28–66 kg ha–1 yr–1 (D40, S90, D20), with no simple relationship with N deposition, or N deposition minus N storage in stand biomass. N mineralisation was between 57–121 kg ha–1 yr–1 (S45, D40, S90) and between 176–209 kg ha–1 yr–1 in (B150, D60 and D20). The amounts of nitrogen annually mineralised and nitrified were positively related. Neither general soil parameters, such as pH, soil type, base saturation and C:N ratio, nor deposition in throughfall or litterfall were simply related to the intensity of mineralisation and/or nitrification. When root uptake was not allowed, nitrate leaching increased by 11 kg ha–1 yr–1 at S45, 36 kg ha–1 yr–1 at S90 and between 69 and 91 kg ha–1 yr–1 at D20, D40, B150 and D60, in relation to the nitrification rates of each plot. From this data set and recent data from the literature, we suggest that: high nitrification and nitrate leaching in Douglas-fir soils was likely related to the former agricultural land use. High nitrification rate but very low nitrate leaching in the old beech soil was related to intense recycling of mineralised N by beech roots. Medium nitrification and nitrate leaching in the old spruce stand was related to the average level of N deposition and to the deposition and declining health of the stand. Very low nitrification and N leaching in the young spruce stand were considered representative of fast growing spruce plantations receiving low N deposition on acidic soils of ancient coniferous forests. Consequently, we suggest that past land use and fine root cycling (which is dependent on to tree species and health) should be taken into account to explain the variability in the relation between N deposition and leaching in forests.  相似文献   

13.
We compared symbiotic N2 fixation by winter forage legumes (clovers, medics and vetches) using the 15N natural abundance technique in three experiments. Vetches (Vicia spp.) were the most productive legumes, and woollypod vetch fixed (shoot+root) up to 265 kg N ha–1 (mean 227 kg N ha–1) during a 4–5 months period over winter and early spring. Balansa and Berseem clovers, and Gama medic were highly productive in the first experiment, but fixed significantly less N than woollypod vetch in the second experiment. A 6-year study (1997–2003) compared cotton (Gossypium hirsutum L.) systems with and without vetch, or with faba beans (Vicia faba L.) to assess the effects of these crops on cotton production. Woollypod vetch was grown either between annual cotton crops, or between wheat (Triticum aestivumL.) and cotton crops. Vetch added 230 kg N ha–1 (174 kg fixed N ha–1) to the soil when incorporated as a green manure. Faba bean shoot residues and nodulated roots contributed 108 kg fixed N ha–1 to the soil, following the removal of 80 kg N ha–1 in the harvested seed (meaned over three crops). Lablab (Lablab purpureus L. – summer-growing and irrigated) added 277 kg N ha–1 (244 kg fixed N ha–1) before incorporation as a green manure in the first year of the experiment. The economic optimum N fertiliser rate for each cropping system was determined every second year when all systems were sown to cotton. Cotton following cotton required 105 kg fertiliser N ha–1, but only 40 kg N ha–1 when vetch was grown between each cotton crop. Cotton following wheat required 83 kg fertiliser N ha–1 but no N fertiliser was needed when vetch was grown after wheat (the highest yielding system). Cotton following faba beans also required no N fertiliser. The vetch-based systems became more N fertile over the course of the experiment and produced greater lint yields than the comparative non-legume systems, and required less N fertiliser. While no cash flow was derived from growing vetch, economic benefits accrued from enhanced cotton yields, reduced N fertiliser requirements and improved soil fertility. These findings help explain the rotational benefits of vetches observed in other regions of the world.  相似文献   

14.
Synopsis Annual production by the brook charr (Salvelinus fontinalis) population in Valley Creek, Minnesota, over the five-year period 1968–1972, was closely correlated to production by its main invertebrate food, Gammarus pseudolimnaeus, which had been reduced by siltation. Annual production was 163–191 kg ha–1 (wet weight) in 1968–1969, respectively, and then dropped to a mininum of 79 kg ha–1 in 1971, the year most seriously affected by decreased invertebrate production and siltation; year-class strength, standing stock, and total year-class (cohort) production followed approximately the same pattern. Total year-class production was highest for the 1968–1969 year classes at 211–178 kg ha–1, respectively, and lowest for the 1971 year class at 76 kg ha–1. Annual P/B ratios ranged from 1.0 to 1.9; cohort P/B ratios, for the 1968–1972 year classes, ranged from 5.6 to 7.2.Paper No. 11,384, Scientific Journal Series, Minnesota Agricultural Experiment Station, St. Paul, Minnesota 55108, U.S.A.  相似文献   

15.
We examined the biomass-dependent effects of common carp (Cyprinus carpio) on water quality in 10 ponds at the Eagle Mountain Fish Hatchery, Fort Worth, Texas, USA. Ponds contained 0–465 kg ha−1 of common carp. We measured limnological variables at weekly intervals for four weeks in early summer, after which ponds were drained and the biomass of fish and macrophytes was determined. Common carp biomass was significantly positively correlated with chlorophyll a, total phosphorus, total nitrogen, and Keratella spp. density and negatively correlated to bushy pondweed (Najas guadalupensis) biomass. In addition, we combined our data with data from comparable studies to develop more robust regression models that predict the biomass-dependent effects of common carp on water quality variables across a wide range of systems.  相似文献   

16.
Nutrient cycling and biomass characteristics of a tropical palm forest dominated byOrbignya cohune were found to be different from thsoe of hardwood dominated forests. The cohune palm forest had a high proportion of biomass in leaves (5%), a reduced sapling layer, a large amount of standing forest litter and an exceptionally low decomposition rate factor (0.1 year–1). Mineral concentrations in palm leaves were generally lower than in hardwood species with the exception of Na, which was exceptionally high inOrbignya cohune. Biomass was estimated at 226 tons ha–1 containing 1173 kg ha–1 N; 126 kg ha–1 P; 437 kg ha–1 K; 1869 kg ha–1 Mg; 125 kg ha–1 Ca, and 2177 kg ha–1 Na. Soils of cohune association did not differ significantly from those of neighbouring hardwood dominated associations with the exception of Na which occurred in higher concentration because of bioaccumulation in the dominant. The results suggest that the growth habits and physiology of a dominant can strongly influence some of the ecological parameters used to describe aforest association.  相似文献   

17.
Butterbach-Bahl  K.  Gasche  R.  Willibald  G.  Papen  H. 《Plant and Soil》2002,240(1):117-123
During 4 years continuous measurements of N-trace gas exchange were carried out at the forest floor-atmosphere interface at the Höglwald Forest that is highly affected by atmospheric N-deposition. The measurements included spruce control, spruce limed and beech sites. Based on these field measurements and on intensive laboratory measurements of N2-emissions from the soils of the beech and spruce control sites, a total balance of N-gas emissions was calculated. NO2-deposition was in a range of –1.6 –2.9 kg N ha–1 yr–1 and no huge differences between the different sites could be demonstrated. In contrast to NO2-deposition, NO- and N2O-emissions showed a huge variability among the different sites. NO emissions were highest at the spruce control site (6.4–9.1 kg N ha–1 yr–1), lowest at the beech site (2.3–3.5 kg N ha–1 yr–1) and intermediate at the limed spruce site (3.4–5.4 kg N ha–1 yr–1). With regard to N2O-emissions, the following ranking between the sites was found: beech (1.6–6.6 kg N ha–1 yr–1) >> spruce limed (0.7–4.0 kg N ha–1 yr–1) > spruce control (0.4–3.1 kg N ha–1 yr–1). Average N-trace gas emissions (NO, NO2, N2O) for the years 1994–1997 were 6.8 kg N ha–1 yr–1 at the spruce control site, 3.6 kg N ha–1 yr–1 at the limed spruce site and 4.5 kg N ha–1 yr–1 at the beech site. Considering N2-losses, which were significantly higher at the beech (12.4 kg N ha–1 yr–1) than at the spruce control site (7.2 kg N ha–1 yr–1), the magnitude of total gaseous N losses, i.e. N2-N + NO-N + NO2-N + N2O-N, could be calculated for the first time for a forest ecosystem. Total gaseous N-losses were 14.0 kg N ha–1 yr–1 at the spruce control site and 15.5 kg N ha–1 yr–1 at the beech site, respectively. In view of the huge interannual variability of N-trace gas fluxes and the pronounced site differences in N-gas emissions it is concluded that more research is needed in order to fully understand patterns of microbial N-cycling and N-gas production/emission in forest ecosystems and mechanisms of reactions of forest ecosystems to the ecological stress factor of atmospheric N-input.  相似文献   

18.
Summary The plant species composition of the chaff piles of three species of harvester ant (Messor spp.) and the contribution of the chaff to the organic pool were studied from August 1985 to July 1987. There were distinct differences in the plant species composition of the chaff of the three species. We attribute this to the different diets of the three species, which reflect the relative sizes of their individuals and their foraging strategies. The amount of chaff accumulated varies greatly between the three species (Messor rugossus: 127–196 g · ha–1 · y–1;Messor ebeninus: 2823–4437 g · ha–1 · y–1;Messor arenarius: 2165–2535 g · ha–1 · y–1), although the number of nests per hectare is virtually the same. We found that the amount of chaff is related to the rate of activity and the size of the individuals of each of the three ant species. The total chaff accumulated during the study period was 19.2 kg · ha–1, which is an important contribution to the organic matter in the soil in the Negev desert ecosystem.  相似文献   

19.
Pasture swards containing perennial ryegrass (Lolium perenne L.) alone or with one of five different white clover (Trifolium repens L.) cultivars were examined for production and transfer of fixed nitrogen (N) to grass under dairy cow grazing. Grass-only swards produced 21% less than mixed clover-grass swards during the second year after sowing. Production from grass-only plots under a mowing and clipping removal regime was 44% less than from grass-only plots under grazing. Much of this difference could be attributed to N transfer. In swards without clover, the ryegrass component also decreased in favour of other grasses.The average amount of fixed N in herbage from all clover cultivars was 269 kg N ha–1 yr–1. Above-ground transfer of fixed N to grasses (via cow excreta) was estimated at 60 kg N ha–1 yr–1. Below-ground transfer of fixed N to grasses was estimated at 70 kg N ha–1 yr–1 by 15N dilution and was similar for all clover cultivars. Thus, about 50% of grass N was met by transfer of fixed N from white clover during the measurement year. Short-term measurements using a 15N foliar-labelling method indicated that below-ground N transfer was largest during dry summer conditions.  相似文献   

20.
Daily food intake of adult burbot, Lota lota, fed on vendace, Coregonus albula, were estimated experimentally at four different water temperatures (2.4, 5.1, 10.8 and 23.4°C). Mean daily food intake (MDI; g d–1) and relative daily food intake (RDI; g g–1 d–1) increased with temperature from 2.4 to 10.8°C and decreased at 23.4°C. Temperatures of maximum daily food intake values were 13.6°C for MDI and 14.4°C for RDI. No correlation between food intake values and burbot weight was observed. RDI values were used to estimate annual food consumption of burbot population. Annual food consumption estimates were 9.7kg ha–1 and 24.3kg ha–1 when burbot biomass was 2.0 or 5.0kg ha–1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号