首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the properties of variant pea seed protease inhibitors, homologous to the anti-carcinogenic Bowman-Birk inhibitor (BBI) from soybean but differing most significantly in amino acid sequences at the two independent sites of protease inhibition. The pea protease inhibitors were expressed, using Aspergillus niger, with yields of up to 23 mg secreted recombinant protein per litre of media. The recombinant proteins showed protease inhibitory activity and were deduced to be disulphide-bonded correctly; limited post-translational processing had occurred at the amino-terminal ends of all proteins. Differences in trypsin and chymotrypsin specific inhibitory activities, and in inhibition constants, were observed in studies of the two recombinant variants and BBI.  相似文献   

2.
The mustard trypsin inhibitor, MTI-2, is a potent inhibitor of trypsin with no activity towards chymotrypsin. MTI-2 is toxic for lepidopteran insects, but has low activity against aphids. In an attempt to improve the activity of the inhibitor towards aphids, a library of inhibitor variants was constructed and cloned into the pRlac3 phagemid vector. The library of 9.3 x 107 independent colonies was created by randomisation of a stretch of five consecutive codons in the reactive site. Repeated selection rounds against bovine trypsin and chymotrypsin allowed the identification of novel, MTI-2 derived, antitrypsin and antichymotrypsin inhibitors. Chy8, the selected variant with highest affinity for bovine chymotrypsin (Ki = 32 nm versus >1000 nm for the wild-type) represents the strongest known recombinant chymotrypsin inhibitor of the MTI-2 family. It is highly toxic to nymphs of the aphid Acyrthosiphon pisum, and moderately toxic to nymphs of Aphis gossypii and Myzus persicae. The LC50 of 73 microg ml-1 towards A. pisum is the lowest value known among chymotrypsin inhibitors. The aphicidal activity of Chy8 was improved eightfold compared to the wild-type inhibitor. This demonstrates, for the first time, that bovine chymotrypsin provides a useful template to select engineered proteins highly toxic against these aphids. The selected gene will allow the development of transgenic crops that are protected against sucking insect pests.  相似文献   

3.
Four decades of studies on the isolation, characterization, properties, structure, function and possible uses of the Bowman-Birk trypsin- and chymotrypsin-inhibitor from soybeans are reviewed. Starting from Bowman's Acetone Insoluble factor, designated Ai, AA and SBTIAA, the Bowman-Birk inhibitor (BBI) was found to be a protein molecule consisting of a chain of 71 amino acids cross linked by 7 disulfide bonds, with a tendency to self-associate. BBI possesses two independent sites of inhibition, one at Lys 16-Ser 17 against trypsin and the other at Leu 43-Ser 44 against chymotrypsin. It forms a 1:1 complex with either trypsin or chymotrypsin and a ternary complex with both enzymes. Ingestion of BBI by rats, chicks or quails affects the size and protein biosynthesis of the pancreas. Establishment of the full covalent structure of BBI revealed a high homology in the sequences around the two inhibitory sites, suggesting evolutionary gene duplication from a single-headed ancestral inhibitor. Scission of BBI by CNBr followed by pepsin results in two active fragments, one that inhibits trypsin and the other, chymotrypsin. Replacements and substitutions in the reactive sites result in changes in inhibitory activity and in specificity of inhibition. Conformation studies, labeling of BBI with a photoreactive reagent, chemical synthesis of cyclic peptides that include inhibitory sites, in vitro synthesis of BBI, and species specificity regarding the inhibited enzymes are described. The significance of BBI as a prototype of a family of inhibitors present in all legume seeds is discussed.  相似文献   

4.
Photoreactive derivatives of the Bowman-Birk trypsin-chymotrypsin inhibitor (BBI) from soybeans and of CI, the trypsin-chymotrypsin inhibitor from chick peas, were prepared by selective modification of the epsilon-amino groups of lysine residues with 2-nitro-4(5)-azidophenylsulfenyl chlorides (2,4(5)-NAPS-C1). The ultraviolet absorption spectra of the photolabeled inhibitors indicated that three out of the five lysines of BBI and one of the seven lysines of CI were modified. The inhibitory activity of the modified inhibitors towards trypsin and chymotrypsin was not reduced even after photolysis. The specific lysine residues that constitute the trypsin-inhibitory sites of BBI and CI did not react with the photoreactive reagents. Further modification of the photoreactive derivatives of BBI and CI with maleic anhydride, directed towards the trypsin-reactive sites, resulted in almost complete loss of the trypsin-inhibiting activity without reducing the ability to inhibit chymotrypsin. A pronounced potentiation effect (approximately 2x) of the chymotrypsin inhibiting activity was noted for 2,5-NAPS-CI and it was retained even after maleylation followed by photolysis, raising the possibility of exposure of an additional chymotrypsin inhibitory site in CI.  相似文献   

5.
Proteinase inhibitor (PI) accumulation has been described as a plant defense response against insects and pathogens. The induction of PIs is known to be regulated by endogenous chemical factors including phytohormones. We studied the induction of barley chymotrypsin and trypsin inhibitory activities by aphid infestation, mechanical wounding, abscisic acid (ABA) and jasmonic acid (JA). Wounding experiments led to a minimal accumulation of PI activity (16% over controls) compared to that found in barley seedlings infested by aphids, where chymotrypsin inhibitor activity showed a two-fold increment. No systemic induction could be detected in healthy leaves of an infested or mechanically injured plant. Exogenous ABA applied on barley leaves increased the chymotrypsin inhibitory activity, while JA only increased trypsin inhibitory activity locally and systemically when applied exogenously. Our data suggest that two different mechanisms may be regulating the induction of these two types of inhibitors.  相似文献   

6.
The pea aphid, Acyrthosiphon pisum, shows significant reproductive isolation and host plant specialization between populations on alfalfa and clover in New York. We examine whether specialization is seen in pea aphids in California, and whether fitness on alternative host plants is associated with the presence of bacterial symbionts. We measured the fitness of alfalfa- and clover-derived aphids on both types of plants and found no evidence for specialization when all aphid lineages were considered simultaneously. We then screened all aphids for the presence of four facultative bacterial symbionts: PAR, PASS, PABS and PAUS. Aphids with PAUS were host-plant specialized, having twice as many offspring as other aphids on clover, and dying on alfalfa. Other aphids showed no evidence of specialization. Additionally, aphids with PABS had 50% more offspring than aphids with PASS when on alfalfa. Thus, specialist and generalist aphid lineages coexist, and specialization is symbiont associated. Further work will resolve whether PAUS is directly responsible for this variation in fitness or whether PAUS is incidentally associated with host-plant specialized aphid lineages.  相似文献   

7.
The cotton boll weevil Anthonomus grandis (Boheman) is one of the major pests of cotton (Gossypium hirsutum L.) in tropical and sub-tropical areas of the New World. This feeds on cotton floral fruits and buds causing severe crop losses. Digestion in the boll weevil is facilitated by high levels of serine proteinases, which are responsible for the almost all proteolytic activity. Aiming to reduce the proteolytic activity, the inhibitory effects of black-eyed pea trypsin/chymotrypsin inhibitor (BTCI), towards trypsin and chymotrypsin from bovine pancreas and from midguts of A. grandis larvae and adult insects were analyzed. BTCI, purified from Vigna unguiculata (L.) seeds, was highly active against different trypsin-like proteinases studied and moderately active against the digestive chymotrypsin of adult insects. Nevertheless, no inhibitory activity was observed against chymotrypsin from A. grandis larval guts. To test the BTCI efficiency in vivo, neonate larvae were reared on artificial diet containing BTCI at 10, 50 and 100 microM. A reduction of larval weight of up to approximately 54% at the highest BTCI concentration was observed. At this concentration, the insect mortality was 65%. This work constitutes the first observation of a Bowman-Birk type inhibitor active in vitro and in vivo toward the cotton boll weevil A. grandis. The results of bioassays strongly suggest that BTCI may have potential as a transgene protein for use in engineered crop plants modified for heightened resistance to the cotton boll weevil.  相似文献   

8.
Bromelain isoinhibitors from pineapple stem (BIs) are unique double-chain inhibitors and inhibit the cysteine proteinase bromelain competitively. The three-dimensional structure was shown to be composed of two distinct domains, each of which is formed by a three-stranded anti-parallel beta-sheet. Unexpectedly, BIs were found to share similar folding and disulfide-bond connectivities not with the cystatin superfamily, but with Bowman-Birk trypsin/chymotrypsin inhibitor (BBI). The structural similarity between them suggests that BIs and BBI have evolved from a common ancestor and differentiated in function during the course of molecular evolution.  相似文献   

9.
10.
A small peptide library of monocyclic SFTI-1 trypsin inhibitor from sunflower seeds modified in positions P(1) and P(4)' was synthesized using a portioning-mixing method. The peptide library was deconvoluted by the iterative approach in solution. Two trypsin ([Met(9)]-SFTI-1 and [Arg(5), Abu(9)]-SFTI-1), one chymotrypsin ([Phe(5)]-SFTI-1) and one human elastase ([Leu(5), Trp(9)]-SFTI-1) inhibitors were selected and resynthesized. The values of their association equilibrium constants (K(a)) with target enzymes indicate that they are potent inhibitors. In addition, the last two analoges belong to the most active inhibitors of this size. The results obtained show that the conserved Pro(9) residue in the Bowman-Birk inhibitor (BBI)s is not essential for inhibitory activity.  相似文献   

11.
廖海  周嘉裕  杜林方 《四川动物》2005,24(4):655-659
Bowman-Birk蛋白酶抑制剂(BBI)是一种植物丝氨酸蛋白酶抑制剂,能同时抑制胰蛋白酶和胰凝乳蛋白酶。体外及动物实验都证实:BBI纯品或BBI浓缩物均有较强的抗癌活性。本文综述了近年来有关BBI的一些抗癌研究进展,包括BBI的结构、临床前研究及可能的分子机制等。  相似文献   

12.
Protease inhibitors (PIs) have been shown to cause lethal and sublethal effects on aphids depending on the kind of PI and aphid species. Therefore, these proteins might affect aphid parasitoids directly by inhibiting their digestive proteolysis or indirectly via their development in a less suitable host. In our study, the risk of exposure and the potential effects of soybean Bowman-Birk inhibitor (SbBBI) and oryzacystatin I (OCI) on the aphid endoparasitoid Aphidius ervi were investigated using artificial diet to deliver PIs. Immunoassays showed that both SbBBI and OCI were detected in the honeydew of aphids reared on artificial diet containing these recombinant proteins at 100 microg/mL. However, only SbBBI was detected in parasitoid larvae, while this PI could not be detected in adult parasitoids emerged from PI-intoxicated aphids. Enzymatic inhibition assays showed that digestive proteolytic activity of larvae and adults of A. ervi predominantly relies on serine proteases and especially on chymotrypsin-like activity. Bioassays using SbBBI and OCI on artificial diet were performed. A. ervi that developed on intoxicated aphids had impaired fitness. Thus development and parasitism success of parasitoids exposed to OCI were severely affected. On the contrary, SbBBI only altered significantly female size and sex ratio. Direct exposure to PIs through adult food intake did not affect female's longevity, while SbBBI and OCI (100 microg/mL) induced 69% and 30% inhibition of digestive protease activity, respectively. These studies made it possible to estimate the risk of exposure to plant PIs and the sensitivity of the aphid parasitoid A. ervi to these entomotoxins, by combining immunological, biochemical and biological approaches. First it pointed out that only immature stages are affected by PIs. Secondly, it documented two different modes of effect, according to the nature of the PIs and both host and parasitoid susceptibility. OCI prevented the development of A. ervi mainly due to the host susceptibility, whereas SbBBI only induced sublethal effects on the parasitoid, possibly due to both direct action on the parasitoid susceptible proteases, and host-mediated action through size reduction.  相似文献   

13.
Four 11-residue peptides based on the Bowman-Birk inhibitor (BBI) structure were synthesized. These were tested for their ability to inhibit human beta-tryptase. Peptides with a basic residue at P1 inhibited tryptase even though the intact BBI protein is inactive. This result is interpreted in terms of the unique structural arrangement of active sites in tryptase which prevent access by large protein inhibitors.  相似文献   

14.
Transgenic plants expressing protease inhibitors (PIs) have emerged in recent years as an alternative strategy for pest control. Beneficial insects such as parasitoids may therefore be exposed to these entomotoxins either via the host or by direct exposure to the plant itself. With the objective of assessing the effects of PIs towards aphid parasitoids, bioassays using soybean Bowman-Birk inhibitor (SbBBI) or oryzacystatin I (OCI) on artificial diet were performed on Macrosiphum euphorbiae-Aphelinus abdominalis system. OCI significantly reduced nymphal survival of the potato aphid M. euphorbiae and prevented aphids from reproducing. This negative effect was much more pronounced than with other aphid species. On the contrary, SbBBI did not affect nymphal viability but significantly altered adult demographic parameters. Enzymatic inhibition assays showed that digestive proteolytic activity of larvae and adults of Aphelinus abdominalis predominantly relies on serine proteases and especially on chymotrypsin-like activity. Immunoassays suggested that OCI bound to aphid proteins and accumulated in aphid tissues, whereas SbBBI remained unbound in the gut. Bioassays using M. euphorbiae reared on artificial diets supplemented with both OCI and SbBBI showed a fitness impairment of Aphelinus abdominalis that developed on intoxicated aphids. However, only SbBBI was detected in parasitoid larvae, while no PI could be detected in adult parasitoids that emerged from PI-intoxicated aphids. The potential impact of PI-expressing plants on aphid parasitoids and their combined efficiency for aphid control are discussed.  相似文献   

15.
1. Sympatric populations of insects adapted to different host plants are good model systems not only to study how they adapt to the chemistry of their food plant, but also to investigate whether morphological modifications evolved enabling them to live successfully on a certain plant species. 2. The pea aphid, Acyrthosiphon pisum (Harris) encompasses at least 11 genetically distinct sympatric host races, each showing a preference for a certain legume species. The leaflet surfaces of these legumes differ considerably in their wax coverage. 3. It was investigated whether the attachment structures of three pea aphid genotypes from different host races are adapted to the different surface properties of their host plants and whether they show differences in their attachment ability on the respective host and non‐host plants. 4. The surface morphology of plants and aphid tarsi was examined using SEM (scanning electron microscopy). The ability of the aphids to walk on specific surfaces was tested using traction force measurements. 5. The presence of wax blooms on the leaflets lowers the aphids' attachment ability considerably and diminishes their subsequent attachment on ‘neutral’ surfaces like glass. The pea aphid host races differ in their ability to walk on certain surfaces. However, the genotype from the adapted aphid host race was not necessarily the one with the best walking performance on their host plant. All aphids, regardless of the original host plant, were most efficient on the neutral control surface glass. The general host plant Vicia faba was the plant with the most favourable surface for all aphid host races.  相似文献   

16.
Gut extracts from cereal aphids (Sitobion avenae) showed significant levels of proteolytic activity, which was inhibited by reagents specific for cysteine proteases and chymotrypsin-like proteases. Gut tissue contained cDNAs encoding cathepsin B-like cysteine proteinases, similar to those identified in the closely related pea aphid (Acyrthosiphon pisum). Analysis of honeydew (liquid excreta) from cereal aphids fed on diet containing ovalbumin showed that digestion of ingested proteins occurred in vivo. Protein could partially substitute for free amino acids in diet, although it could not support complete development. Recombinant wheat proteinase inhibitors (PIs) fed in diet were antimetabolic to cereal aphids, even when normal levels of free amino acids were present. PIs inhibited proteolysis by aphid gut extracts in vitro, and digestion of protein fed to aphids in vivo. Wheat subtilisin/chymotrypsin inhibitor, which was found to inhibit serine and cysteine proteinases, was more effective in both inhibitory and antimetabolic activity than wheat cystatin, which inhibited cysteine proteases only. Digestion of ingested protein is unlikely to contribute significantly to nutritional requirements when aphids are feeding on phloem, and the antimetabolic activity of dietary proteinase inhibitors is suggested to result from effects on proteinases involved in degradation of endogenous proteins.  相似文献   

17.
The paper describes the purification, structural characterization and inhibitory properties of a trypsin inhibitor from Lupinus albus L., a leguminous plant believed to be devoid of any protease inhibitor. The protein has been isolated by a newly set-up procedure and characterized by direct amino acid sequencing, MALDI-TOF mass spectroscopy and circular dichroism. Inhibitory properties toward bovine trypsin and chymotrypsin, as well as its thermal and pH stabilities, have been also assessed. The inhibitor is 63 amino acid long (Mr 6858; pI 8.22) and it is capable to inhibit two trypsin molecules simultaneously, with a Kd of 4.2+/-0.4 nM, but not chymotrypsin. BLAST search against UniProtKB/TrEMBL database indicates that the inhibitor belongs to the Bowman-Birk inhibitor (BBI) family. The interest in these serine-protease inhibitors arises from the ability to prevent or suppress carcinogen-induced transformation, as shown in various in vitro and in vivo model systems.  相似文献   

18.
Bowman-Birk inhibitors (BBI) isolated from plant seeds are small proteins active against trypsin and/or chymotrypsin. These inhibitors have been extensively studied in terms of their structure, interactions, function and evolution. Examination of the known three-dimensional structures of BBIs revealed similarities and subtle differences. The hydrophobic core, deduced from surface accessibility and hydrophobicity plots, corresponding to the two tandem structural domains of the double headed BBI are related by an almost exact two-fold, in contrast to the reactive site loops which depart appreciably from the two-fold symmetry. Also, the orientations of inhibitory loops in soybean and peanut inhibitors were different with respect to the rigid core. Based on the structure of Adzuki bean BBI-trypsin complex, models of trypsin and chymotryspin bound to the monomeric soybean BBI (SBI) were constructed. There were minor short contacts between the two enzymes bound to the inhibitor suggesting near independence of binding. Binding studies revealed that the inhibition of one enzyme in the presence of the other is associated with a minor negative cooperativity. In order to assess the functional significance of the reported oligomeric forms of BBI, binding of proteases to the crystallographic and non-crystallographic dimers as found in the crystal structure of peanut inhibitor were examined. It was found that all the active sites in these oligomers cannot simultaneously participate in inhibition.  相似文献   

19.
A colorimetric method for serine protease inhibition was modified using N-Acetyl-DL-Phenylalanine beta-Naphthylester (APNE) as the substrate and o-Dianisidine tetrazotized (oD) as the dye. The reaction generated a single peak absorbing at 530 nm for both trypsin and chymotrypsin. Standard curves with increasing enzyme concentrations showed strong linearity. A standard curve for the serine protease inhibitor, Bowman-Birk Inhibitor (BBI), has been made using this modified method. The IC50 for 3 U of trypsin was found to be 33 ng and the IC50 obtained for 3 mU of chymotrypsin was 53 ng. A recombinant BBI (rBBI) gene was constructed, cloned and expressed in the yeast Pichia pastoris. Evaluating samples of rBBI for protease inhibitory activity by the gel activity method failed to quantify the inhibitor amounts, due to high sensitivity for trypsin inhibition and low sensitivity for chymotrypsin inhibition. After development, the results could not be quantified, even to the extent that 1 microl of rBBI could not be detected with chymotrypsin inhibition. Therefore, a modified method for trypsin and chymotrypsin inhibition was used to evaluate the level of rBBI-expression for these same samples. The level of rBBI expression was calculated to be 50-56 ng/microl of media. These amounts fit into the range of values previously obtained by Western blot analysis. This modified method allows us to combine the sensitivity of the gel activity method with the quantification attributes of a Western blot. Thus, the modified method represents a significant improvement in speed, sensitivity and reproducibility over the gel activity method.  相似文献   

20.
Bowman-Birk inhibitors (BBIs) are cysteine-rich and highly cross-linked small proteins that function as specific pseudosubstrates for digestive proteinases. They typically display a "double-headed" structure containing an independent proteinase-binding loop that can bind and inhibit trypsin, chymotrypsin and elastase. In the present study, we used computational biology to study the structural characteristics and dynamics of the inhibition mechanism of the small BBI loop expressing a 35-amino acid polypeptide (ChyTB2 inhibitor) which has coding region for the mutated chymotrypsin-inhibitory site of the soybean BBI. We found that in the BBI-trypsin inhibition complex, the most important interactions are salt bridges and hydrogen bonds, whereas in the BBI-chymotrypsin inhibition complex, the most important interactions are hydrophobic. At the same time, ChyTB2 mutant structure maintained the individual functional domain structure and excellent binding/inhibiting capacities for trypsin and chymotrypsin at the same time. These results were confirmed by enzyme-linked immunosorbend assay experiments. The results showed that modeling combined with molecular dynamics is an efficient method to describe, predict and then obtain new proteinase inhibitors. For such study, however, it is necessary to start from the sequence and structure of the mutant interacting relatively strongly with both trypsin and chymotrypsin for designing the small BBI-type inhibitor against proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号