首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Cyclosporin A (CsA) has important anti-microbial activity against parasites of the genus Leishmania, suggesting CsA-binding cyclophilins (CyPs) as potential drug targets. However, no information is available on the genetic diversity of this important protein family, and the mechanisms underlying the cytotoxic effects of CsA on intracellular amastigotes are only poorly understood. Here, we performed a first genome-wide analysis of Leishmania CyPs and investigated the effects of CsA on host-free L. donovani amastigotes in order to elucidate the relevance of these parasite proteins for drug development.

Methodology/Principal Findings

Multiple sequence alignment and cluster analysis identified 17 Leishmania CyPs with significant sequence differences to human CyPs, but with highly conserved functional residues implicated in PPIase function and CsA binding. CsA treatment of promastigotes resulted in a dose-dependent inhibition of cell growth with an IC50 between 15 and 20 µM as demonstrated by proliferation assay and cell cycle analysis. Scanning electron microscopy revealed striking morphological changes in CsA treated promastigotes reminiscent to developing amastigotes, suggesting a role for parasite CyPs in Leishmania differentiation. In contrast to promastigotes, CsA was highly toxic to amastigotes with an IC50 between 5 and 10 µM, revealing for the first time a direct lethal effect of CsA on the pathogenic mammalian stage linked to parasite thermotolerance, independent from host CyPs. Structural modeling, enrichment of CsA-binding proteins from parasite extracts by FPLC, and PPIase activity assays revealed direct interaction of the inhibitor with LmaCyP40, a bifunctional cyclophilin with potential co-chaperone function.

Conclusions/Significance

The evolutionary expansion of the Leishmania CyP protein family and the toxicity of CsA on host-free amastigotes suggest important roles of PPIases in parasite biology and implicate Leishmania CyPs in key processes relevant for parasite proliferation and viability. The requirement of Leishmania CyP functions for intracellular parasite survival and their substantial divergence form host CyPs defines these proteins as prime drug targets.  相似文献   

2.
Viruses are obligate intracellular parasites and therefore their replication completely depends on host cell factors. In case of the hepatitis C virus (HCV), a positive-strand RNA virus that in the majority of infections establishes persistence, cyclophilins are considered to play an important role in RNA replication. Subsequent to the observation that cyclosporines, known to sequester cyclophilins by direct binding, profoundly block HCV replication in cultured human hepatoma cells, conflicting results were obtained as to the particular cyclophilin (Cyp) required for viral RNA replication and the underlying possible mode of action. By using a set of cell lines with stable knock-down of CypA or CypB, we demonstrate in the present work that replication of subgenomic HCV replicons of different genotypes is reduced by CypA depletion up to 1,000-fold whereas knock-down of CypB had no effect. Inhibition of replication was rescued by over-expression of wild type CypA, but not by a mutant lacking isomerase activity. Replication of JFH1-derived full length genomes was even more sensitive to CypA depletion as compared to subgenomic replicons and virus production was completely blocked. These results argue that CypA may target an additional viral factor outside of the minimal replicase contributing to RNA amplification and assembly, presumably nonstructural protein 2. By selecting for resistance against the cyclosporine analogue DEBIO-025 that targets CypA in a dose-dependent manner, we identified two mutations (V2440A and V2440L) close to the cleavage site between nonstructural protein 5A and the RNA-dependent RNA polymerase in nonstructural protein 5B that slow down cleavage kinetics at this site and reduce CypA dependence of viral replication. Further amino acid substitutions at the same cleavage site accelerating processing increase CypA dependence. Our results thus identify an unexpected correlation between HCV polyprotein processing and CypA dependence of HCV replication.  相似文献   

3.
Functional analysis of Leishmania major cyclophilin   总被引:1,自引:0,他引:1  
A potent immunosuppressive drug cyclosporin A (CsA) is known to inhibit human cell infection by the pathogenic protozoan parasite Leishmania major both in vitro and in vivo. The proposed mechanism of action involves CsA binding to Leishmania major-expressed cyclophilin and subsequent down-regulation of signaling events necessary for establishing productive infection. Recently, we identified a ubiquitously expressed membrane protein, CD147, as a signaling receptor for extracellular cyclophilins in mammalian cells. Here we demonstrate that, while being enzymatically active, the Leishmania cyclophilin, unlike its human homologue, does not interact with CD147 on the cell surface of target cells. CD147 facilitates neither Leishmania binding nor infection. Primary structure and biochemical analyses revealed that the parasite's cyclophilin is defective in heparan binding, an event required for signaling interaction between CD147 and human cyclophilin. When the heparan-binding motif was reconstituted in Leishmania cyclophilin, it regained the CD147-dependent signaling activity. These results underscore a critical role of cyclophilin-heparan interactions in CD147-mediated signaling events and argue against the role of Leishmania cyclophilin in parasite binding to target cells.  相似文献   

4.
Braaten D  Luban J 《The EMBO journal》2001,20(6):1300-1309
The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein binds most members of the cyclophilin family of peptidyl-prolyl isomerases. Of 15 known human cyclophilins, cyclophilin A (CypA) has been the focus of investigation because it was detected in HIV-1 virions. To determine whether CypA promotes HIV-1 replication, we deleted the gene encoding CypA (PPIA) in human CD4(+) T cells by homologous recombination. HIV-1 replication in PPIA(-/-) cells was decreased and not inhibited further by cyclosporin or gag mutations that disrupt Gag's interaction with cyclophilins, indicating that no other cyclophilin family members promote HIV-1 replication. The defective replication phenotype was specific for wild-type HIV-1 since HIV-2/SIV isolates, as well as HIV-1 bearing a gag mutation that confers cyclosporin resistance, replicated the same in PPIA(+/+) and PPIA(-/-) cells. Stable re-expression of CypA in PPIA(-/-) cells restored HIV-1 replication to an extent that correlated with steady-state levels of CypA. Finally, virions from PPIA(-/-) cells possessed no obvious biochemical abnormalities but were less infectious than virions from wild-type cells. These data formally demonstrate that CypA regulates the infectivity of HIV-1 virions.  相似文献   

5.
Replication of plus-stranded RNA viruses is greatly affected by numerous host-encoded proteins that act as restriction factors. Cyclophilins, which are a large family of cellular prolyl isomerases, have been found to inhibit Tomato bushy stunt tombusvirus (TBSV) replication in a Saccharomyces cerevisiae model based on genome-wide screens and global proteomics approaches. In this report, we further characterize single-domain cyclophilins, including the mammalian cyclophilin A and plant Roc1 and Roc2, which are orthologs of the yeast Cpr1p cyclophilin, a known inhibitor of TBSV replication in yeast. We found that recombinant CypA, Roc1, and Roc2 strongly inhibited TBSV replication in a cell-free replication assay. Additional in vitro studies revealed that CypA, Roc1, and Roc2 cyclophilins bound to the viral replication proteins, and CypA and Roc1 also bound to the viral RNA. These interactions led to inhibition of viral RNA recruitment, the assembly of the viral replicase complex, and viral RNA synthesis. A catalytically inactive mutant of CypA was also able to inhibit TBSV replication in vitro due to binding to the replication proteins and the viral RNA. Overexpression of CypA and its mutant in yeast or plant leaves led to inhibition of tombusvirus replication, confirming that CypA is a restriction factor for TBSV. Overall, the current work has revealed a regulatory role for the cytosolic single-domain Cpr1-like cyclophilins in RNA virus replication.  相似文献   

6.
Peptidyl prolyl cis/trans isomerase cyclophilin A (CypA) serves as a cellular receptor for the important immunosuppressant drug, cyclosporin A. In addition, CypA and its enzyme family have been found to play critical roles in a variety of biological processes, including protein trafficking, HIV and HCV infection/replication, and Ca(2+)-mediated intracellular signaling. For these reasons, cyclophilins have emerged as potential drug targets for several diseases. Therefore, it is extremely important to screen for novel small molecule cyclophilin inhibitors. Unfortunately, the biochemical assays reported so far are not adaptable to a high-throughput screening format. Here, we report a fluorescence polarization-based assay for human CypA that can be adapted to high-throughput screening for drug discovery. The technique is based on competition and uses a fluorescein-labeled cyclosporin A analog and purified human CypA to quantitatively measure the binding capacity of unlabeled inhibitors. Detection by fluorescence polarization allows real-time measurement of binding ratios without separation steps. The results obtained demonstrated significant correlation among assay procedures, suggesting that the application of fluorescence polarization in combination with CypA is highly advantageous for the accurate assessment of inhibitor binding.  相似文献   

7.
Cyclophilins are peptidyl-prolyl cis-trans isomerases involved in catalyzing conformational changes and accelerating the rate of protein folding and refolding in several cellular systems. In the present study, we analyzed the expression pattern and intracellular distribution of the cellular isomerase cyclophilin A (CypA) during vaccinia virus (VV) infection. An impressive increase in CypA stability was observed, leading to a practically unchanged accumulation of CypA during infection, although its synthesis was completely inhibited at late times. By confocal microscopy, we observed that CypA went through an intense reorganization in the cell cytoplasm and colocalized with the virosomes late in infection. CypA relocation to viral factories required the synthesis of viral postreplicative proteins, and treatment of infected cells with cyclosporine (CsA) prevented CypA relocation, clearly excluding the virosomes from CypA staining. Immunoelectron microscopy of VV-infected cells showed that CypA was incorporated into VV particles during morphogenesis. Biochemical and electron microscopic assays with purified virions confirmed that CypA was encapsidated within the virus particle and localized specifically in the core. This work suggests that CypA may develop an important role in VV replication.  相似文献   

8.
Protozoan parasites of Leishmania spp. invade macrophages as promastigotes and differentiate into replicative amastigotes within parasitophorous vacuoles. Infection of inbred strains of mice with Leishmania major is a well-studied model of the mammalian immune response to Leishmania species, but the ultrastructure and biochemical properties of the parasitophorous vacuole occupied by this parasite have been best characterized for other species of Leishmania. We examined the parasitophorous vacuole occupied by L. major in lymph nodes of infected mice and in bone marrow-derived macrophages infected in vitro. At all time points after infection, single L. major amastigotes were wrapped tightly by host membrane, suggesting that amastigotes segregate into separate vacuoles during replication. This small, individual vacuole contrasts sharply with the large, communal vacuoles occupied by Leishmania amazonensis. An extensive survey of the literature revealed that the single vacuoles occupied by L. major are characteristic of those formed by Old World species of Leishmania, while New World species of Leishmania form large vacuoles occupied by many amastigotes.  相似文献   

9.
Leishmania donovani is an obligate intracellular parasite of mammalian macrophages. The immunosuppressant cyclosporin A (CsA), which inhibits the production of interleukin (IL)-1, IL-2, and interferon-gamma, increased infections 3-fold without affecting expression of the Lsh gene. The objective of this study was to determine how activation of macrophages by lymphokines affects the multiplication and propagation of the parasite within liver macrophages. Susceptible C57BL/6J and resistant C57L/J mice were treated with 200 mg/kg CsA and then infected intravenously with 10(7) amastigotes. Two weeks later macrophages were collected from the liver by perfusion, plated on coverslips, and incubated for 4, 24, and 48 hr. The percentage of infected macrophages and the number of amastigotes/100 cells were determined after staining the cells with Giemsa's stain. The number of infected macrophages and amastigotes per macrophage was significantly greater in animals of both strains that had been treated with CsA. This study demonstrated clearly that lymphokines or other soluble mediators produced by T cells act, in part, to control infection by L. donovani by minimizing both multiplication within macrophages and their dispersion.  相似文献   

10.
11.
Human immunodeficiency virus type 1 (HIV-1) requires the incorporation of cyclophilin A (CypA) for replication. CypA is packaged by binding to the capsid (CA) region of Gag. This interaction is disrupted by cyclosporine (CsA). Preventing CypA incorporation, either by mutations in the binding region of CA or by the presence of CsA, abrogates virus infectivity. Given that CypA possesses an isomerase activity, it has been proposed that CypA acts as an uncoating factor by destabilizing the shell of CA that surrounds the viral genome. However, because the same domain of CypA is responsible for both its isomerase activity and its capacity to be packaged, it has been challenging to determine if isomerase activity is required for HIV-1 replication. To address this issue, we fused CypA to viral protein R (Vpr), creating a Vpr-CypA chimera. Because Vpr is packaged via the p6 region of Gag, this approach bypasses the interaction with CA and allows CypA incorporation even in the presence of CsA. Using this system, we found that Vpr-CypA rescues the infectivity of viruses lacking CypA, either produced in the presence of CsA or mutated in the CypA packaging signal of CA. Furthermore, a Vpr-CypA mutant which has no isomerase activity and no capacity to bind to CA also rescues HIV-1 replication. Thus, this study demonstrates that the isomerase activity of CypA is not required for HIV-1 replication and suggests that the interaction of the catalytic site of CypA with CA serves no other function than to incorporate CypA into viruses.  相似文献   

12.
Studies conducted in cell lines indicate that cyclophilin A (CypA) is a component of HIV type 1 (HIV-1) virions, and that when CypA incorporation into virions is inhibited by treatment of infected cells with the immunosuppressive agent cyclosporin A (CsA), HIV-1 infection also is inhibited. Because HIV-1 particles assemble along a different pathway and incorporate different host proteins in macrophages than in other cell types, we investigated CypA and CsA activities in HIV-1-infected primary human macrophages, compared with primary human lymphocytes. We tested virus protein production, virion composition and infectivity, and progress through the virus life cycle under perturbation by drug treatment or mutagenesis in infected cells from multiple donors. Our findings from both primary cell types are different from that previously reported in transformed cells and show that the amount of CypA incorporated into virions is variable and that CsA inhibits HIV-1 infection at both early and late phases of virus replication, the stage affected is determined by the sequence of HIV-1 Gag. Because the cell type infected determines the identity of host proteins active in HIV-1 replication and can influence the activity of some viral inhibitors, infection of transformed cells may not recapitulate infection of the native targets of HIV-1.  相似文献   

13.
This study, undertaken to compare the susceptibility of THP-1 cells and murine peritoneal macrophages to Leishmania peruviana amastigotes, obtained THP-1 infection with 10 parasites/cell compared to 2 parasites/murine macrophage. The parasite burden was maximal at 72 h post-infection (h.p.i.) for THP-1 cells, while it was still increasing at 120 h.p.i. for murine macrophages. Since in both cases the infection with L. peruviana affected cell viability, we recommend evaluating any leishmanicidal activity at 72 h.p.i. Amphotericin B reduced Leishmania infection by 50% at concentrations of 0.1 μM in THP-1 and murine macrophages at 72 h.p.i.Our results demonstrate that amastigotes of L. peruviana can infect THP-1 cells and murine macrophages and indicate the suitability of this model to screen compounds for leishmanicidal activity.  相似文献   

14.
The peptidyl-prolyl isomerase cyclophilin A (CypA) increases the kinetics by which human immunodeficiency virus type 1 (HIV-1) spreads in tissue culture. This was conclusively demonstrated by gene targeting in human CD4(+) T cells, but the role of CypA in HIV-1 replication remains unknown. Though CypA binds to mature HIV-1 capsid protein (CA), it is also incorporated into nascent HIV-1 virions via interaction with the CA domain of the Gag polyprotein. These findings raised the possibility that CypA might act at multiple steps of the retroviral life cycle. Disruption of the CA-CypA interaction, either by the competitive inhibitor cyclosporine (CsA) or by mutation of CA residue G89 or P90, suggested that producer cell CypA was required for full virion infectivity. However, recent studies indicate that CypA within the target cell regulates HIV-1 infectivity by modulating Ref1- or Lv1-mediated restriction. To examine the relative contribution to HIV-1 replication of producer cell CypA and target cell CypA, we exploited multiple tools that disrupt the HIV-1 CA-CypA interaction. These tools included the drugs CsA, MeIle(4)-CsA, and Sanglifehrin; CA mutants exhibiting decreased affinity for CypA or altered CypA dependence; HeLa cells with CypA knockdown by RNA interference; and Jurkat T cells homozygous for a deletion of the gene encoding CypA. Our results clearly demonstrate that target cell CypA, and not producer cell CypA, is important for HIV-1 CA-mediated function. Inhibition of HIV-1 infectivity resulting from virion production in the presence of CsA occurs independently of the CA-CypA interaction or even of CypA.  相似文献   

15.
AIM To investigate the modulatory effect of B-1 cells on murine peritoneal macrophages infected with Leishmania major(L. major) in vitro.METHODS Peritoneal macrophages obtained from BALB/c andBALB/c XID mice were infected with L. major and cultured in the presence or absence of B-1 cells obtained from wild-type BALB/c mice. Intracellular amastigotes were counted, and interleukin-10(IL-10) production was quantified in the cellular supernatants using an enzymelinked immunosorbent assay. The levels of the lipid mediator prostaglandin E2(PGE2) were determined using a PGE2 enzyme immunoassay kit(Cayman Chemical, Ann Arbor, MI), and the number of lipid bodies was quantified in the cytoplasm of infected macrophages in the presence and absence of B-1 cells. Culturing the cells with selective PGE2-neutralizing drugs inhibited PGE2 production and confirmed the role of this lipid mediator in IL-10 production. In contrast, we demonstrated that B-1 cells derived from IL-10 KO mice did not favor the intracellular growth of L. major.RESULTS We report that B-1 cells promote the growth of L. major amastigotes inside peritoneal murine macrophages. We demonstrated that the modulatory effect was independent of physical contact between the cells, suggesting that soluble factor(s) were released into the cultures. We demonstrated in our co-culture system that B-1 cells trigger IL-10 production by L. major-infected macrophages. Furthermore, the increased secretion of IL-10 was attributed to the presence of the lipid mediator PGE2 in supernatants of L. major-infected macrophages. The presence of B-1 cells also favors the production of lipid bodies by infected macrophages. In contrast, we failed to obtain the same effect on parasite replication inside L. major-infected macrophages when the B-1 cells were isolated from IL-10 knockout mice. CONCLUSION Our results show that elevated levels of PGE2 and IL-10 produced by B-1 cells increase L. major growth, as indicated by the number of parasites in cell cultures.  相似文献   

16.
CD147 is a type I transmembrane protein previously identified as a signal transducing receptor for extracellular cyclophilins. CD147-expressing cells exhibit a characteristic activation of extracellular-signal regulated kinase 1 and 2 (ERK1/2) in response to stimulation with cyclophilin A (CypA). CD147 was also shown to enhance HIV-1 infection in a CypA-dependent fashion, but the role of signaling in this activity of CD147 has not been investigated. In this report, we demonstrate that neither mutations incapacitating signaling response of CD147 to CypA stimulation, nor inhibitor of ERK activation, reduced susceptibility of cells to HIV-1 infection. Surprisingly, truncation of the cytoplasmic tail of CD147 did not abolish signaling response to CypA, but reduced infection by HIV-1 to the level observed in control cells. These results indicate that CD147 enhances HIV-1 replication in a signaling-independent fashion through specific events mediated by the cytoplasmic domain of the protein.  相似文献   

17.
To determine the role of IL-10 in cutaneous leishmaniasis, we examined lesion development following Leishmania major infection of genetically susceptible BALB/c mice lacking IL-10. Whereas normal BALB/c mice developed progressive nonhealing lesions with numerous parasites within them, IL-10(-/-) BALB/c mice controlled disease progression, and had relatively small lesions with 1000-fold fewer parasites within them by the fifth week of infection. We also examined a mechanism whereby Leishmania induced the production of IL-10 from macrophages. We show that surface IgG on Leishmania amastigotes allows them to ligate Fc gamma receptors on inflammatory macrophages to preferentially induce the production of high amounts of IL-10. The IL-10 produced by infected macrophages prevented macrophage activation and diminished their production of IL-12 and TNF-alpha. In vitro survival assays confirmed the importance of IL-10 in preventing parasite killing by activated macrophages. Pretreatment of monolayers with either rIL-10 or supernatants from amastigote-infected macrophages resulted in a dramatic enhancement in parasite intracellular survival. These studies indicate that amastigotes of Leishmania use an unusual and unexpected virulence factor, host IgG. This IgG allows amastigotes to exploit the antiinflammatory effects of Fc gamma R ligation to induce the production of IL-10, which renders macrophages refractory to the activating effects of IFN-gamma.  相似文献   

18.
In contrast to L. major, the factors required for clearance of Leishmania amazonensis parasites from infected macrophages have been difficult to define. Multiple studies have made progress towards identifying the phenotypic differences in various cell types secondary to L. amazonensis infection as compared to L. major infection, but few have shown the cell types or factors required for parasite clearance. Based on studies which identified that mice previously infected with L. major and healed can mount a protective immune response against L. amazonensis, this study identifies cell types and factors from draining lymph node cells of L. major-infected mice that are necessary and sufficient to control infection in L. amazonensis-infected bone-marrow derived macrophages. Using a transwell system we show that soluble factors from CD4+T cells and B cells were required to kill intracellular parasites. One of these factors, L. major-specific immunoglobulin, may serve to trigger macrophage activation and promote parasite killing via superoxide production. Identification of these factors will provide more precise knowledge of host-cell signaling required to promote an effective immune response against L. amazonensis.  相似文献   

19.
Macrophages are host cells for the pathogenic parasite Leishmania major. Neutrophils die and are ingested by macrophages in the tissues. We investigated the role of macrophage interactions with inflammatory neutrophils in control of L. major infection. Coculture of dead exudate neutrophils exacerbated parasite growth in infected macrophages from susceptible BALB, but killed intracellular L. major in resistant B6 mice. Coinjection of dead neutrophils amplified L. major replication in vivo in BALB, but prevented parasite growth in B6 mice. Neutrophil depletion reduced parasite load in infected BALB, but exacerbated infection in B6 mice. Exacerbated growth of L. major required PGE(2) and TGF-beta production by macrophages, while parasite killing depended on neutrophil elastase and TNF-alpha production. These results indicate that macrophage interactions with dead neutrophils play a previously unrecognized role in host responses to L. major infection.  相似文献   

20.
Macrophages are pivotal cells in interactions of man and leishmania. Leishmanial disease results from intracellular infection of macrophages: parasitized cells are seen in smears or biopsy specimens of lesions; macrophages cultured in vitro support replication of parasites. Paradoxically, parasite destruction is also mediated by macrophages, which become highly cytotoxic after exposure to immune lymphocytes or their lymphokine (LK) products. The precise molecular mechanisms by which lymphocytes or LK induce macrophage activation for leishmanicidal activity, however, are not yet known. We analyzed interactions of leishmania amastigotes with human monocytes cultured in vitro as a nonadherent cell pellet. Leishmania donovani and L. major replicated in freshly isolated monocytes. Monocytes treated with greater than 200 IU/ml of the LK, human Interferon-gamma (IFN-gamma), destroyed tumor cells and L. donovani, but not L. major. Phorbol myristate acetate, endotoxic bacterial lipopolysaccharide, and recombinant human IFN-alpha and IFN-beta did not induce cytotoxicity. The time course for induction of cytotoxicity contrasted sharply with that of previously described monocyte antileishmanial activity: IFN-gamma induced cytotoxicity even when added after infection with L. donovani; induction of cytotoxicity did not require that IFN-gamma be present throughout the period of culture after infection: a 30-min preinfection pulse of IFN-gamma was sufficient to induce 70% of maximal activity; and freshly isolated monocytes and cells cultured for up to 4 days in vitro prior to infection and IFN-gamma treatment were equally responsive to IFN-gamma. These studies provide convincing evidence for intracellular cytotoxicity for L. donovani by freshly isolated human monocytes. This system provides an important base for further analysis of induction and expression of cytotoxic mechanisms against leishmania and other intracellular organisms that cause human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号