首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial spores are renowned for their longevity, ubiquity, and resistance to environmental insults, but virtually nothing is known regarding whether these metabolically dormant structures impact their surrounding chemical environments. In the present study, a number of spore-forming bacteria that produce dormant spores which enzymatically oxidize soluble Mn(II) to insoluble Mn(IV) oxides were isolated from coastal marine sediments. The highly charged and reactive surfaces of biogenic metal oxides dramatically influence the oxidation and sorption of both trace metals and organics in the environment. Prior to this study, the only known Mn(II)-oxidizing sporeformer was the marine Bacillus sp. strain SG-1, an extensively studied bacterium in which Mn(II) oxidation is believed to be catalyzed by a multicopper oxidase, MnxG. Phylogenetic analysis based on 16S rRNA and mnxG sequences obtained from 15 different Mn(II)-oxidizing sporeformers (including SG-1) revealed extensive diversity within the genus Bacillus, with organisms falling into several distinct clusters and lineages. In addition, active Mn(II)-oxidizing proteins of various sizes, as observed in sodium dodecyl sulfate-polyacrylamide electrophoresis gels, were recovered from the outer layers of purified dormant spores of the isolates. These are the first active Mn(II)-oxidizing enzymes identified in spores or gram-positive bacteria. Although extremely resistant to denaturation, the activities of these enzymes were inhibited by azide and o-phenanthroline, consistent with the involvement of multicopper oxidases. Overall, these studies suggest that the commonly held view that bacterial spores are merely inactive structures in the environment should be revised.  相似文献   

2.
Bacterial spores are renowned for their longevity, ubiquity, and resistance to environmental insults, but virtually nothing is known regarding whether these metabolically dormant structures impact their surrounding chemical environments. In the present study, a number of spore-forming bacteria that produce dormant spores which enzymatically oxidize soluble Mn(II) to insoluble Mn(IV) oxides were isolated from coastal marine sediments. The highly charged and reactive surfaces of biogenic metal oxides dramatically influence the oxidation and sorption of both trace metals and organics in the environment. Prior to this study, the only known Mn(II)-oxidizing sporeformer was the marine Bacillus sp. strain SG-1, an extensively studied bacterium in which Mn(II) oxidation is believed to be catalyzed by a multicopper oxidase, MnxG. Phylogenetic analysis based on 16S rRNA and mnxG sequences obtained from 15 different Mn(II)-oxidizing sporeformers (including SG-1) revealed extensive diversity within the genus Bacillus, with organisms falling into several distinct clusters and lineages. In addition, active Mn(II)-oxidizing proteins of various sizes, as observed in sodium dodecyl sulfate-polyacrylamide electrophoresis gels, were recovered from the outer layers of purified dormant spores of the isolates. These are the first active Mn(II)-oxidizing enzymes identified in spores or gram-positive bacteria. Although extremely resistant to denaturation, the activities of these enzymes were inhibited by azide and o-phenanthroline, consistent with the involvement of multicopper oxidases. Overall, these studies suggest that the commonly held view that bacterial spores are merely inactive structures in the environment should be revised.  相似文献   

3.
Manganese binding and oxidation by spores of a marine bacillus.   总被引:15,自引:3,他引:12       下载免费PDF全文
Mature, dormant spores of a marine bacillus, SG-1, bound and oxidized (precipitated) manganese on their surfaces. The binding and oxidation occurred under dormant conditions, with mature spores suspended in natural seawater. These heat-stable spores were formed in the absence of added manganese in the growth medium. The rate and amount of manganese bound by SG-1 spores was a function of spore concentration. Temperatures greater than 45 degrees C, pH values below 6.5, or the addition of EDTA or the metabolic inhibitors sodium azide, potassium cyanide, and mercuric chloride inhibited manganese binding and oxidation. However, SG-1 spores bound and oxidized manganese after treatment with glutaraldehyde, formaldehyde, ethylene oxide gas, or UV light, all of which killed the spores. Manganese oxidation never occurred in the absence of manganese binding to spores. The data suggest that Mn2+ was complexed by a spore component, perhaps an exosporium or a spore coat protein: once bound, the manganese was rapidly oxidized.  相似文献   

4.
Microorganisms catalyze the formation of naturally occurring Mn oxides, but little is known about the biochemical mechanisms of this important biogeochemical process. We used tandem mass spectrometry to directly analyze the Mn(II)-oxidizing enzyme from marine Bacillus spores, identified as an Mn oxide band with an in-gel activity assay. Nine distinct peptides recovered from the Mn oxide band of two Bacillus species were unique to the multicopper oxidase MnxG, and one peptide was from the small hydrophobic protein MnxF. No other proteins were detected in the Mn oxide band, indicating that MnxG (or a MnxF/G complex) directly catalyzes biogenic Mn oxide formation. The Mn(II) oxidase was partially purified and found to be resistant to many proteases and active even at high concentrations of sodium dodecyl sulfate. Comparative analysis of the genes involved in Mn(II) oxidation from three diverse Bacillus species revealed a complement of conserved Cu-binding regions not present in well-characterized multicopper oxidases. Our results provide the first direct identification of a bacterial enzyme that catalyzes Mn(II) oxidation and suggest that MnxG catalyzes two sequential one-electron oxidations from Mn(II) to Mn(III) and from Mn(III) to Mn(IV), a novel type of reaction for a multicopper oxidase.  相似文献   

5.
Global cycling of environmental manganese requires catalysis by bacteria and fungi for MnO2 formation, since abiotic Mn(II) oxidation is slow under ambient conditions. Genetic evidence from several bacteria indicates that multicopper oxidases (MCOs) are required for MnO2 formation. However, MCOs catalyze one-electron oxidations, whereas the conversion of Mn(II) to MnO2 is a two-electron process. Trapping experiments with pyrophosphate (PP), a Mn(III) chelator, have demonstrated that Mn(III) is an intermediate in Mn(II) oxidation when mediated by exosporium from the Mn-oxidizing bacterium Bacillus SG-1. The reaction of Mn(II) depends on O2 and is inhibited by azide, consistent with MCO catalysis. We show that the subsequent conversion of Mn(III) to MnO2 also depends on O2 and is inhibited by azide. Thus, both oxidation steps appear to be MCO-mediated, likely by the same enzyme, which is indicated by genetic evidence to be the MnxG gene product. We propose a model of how the manganese oxidase active site may be organized to couple successive electron transfers to the formation of polynuclear Mn(IV) complexes as precursors to MnO2 formation.  相似文献   

6.
Spores of marine Bacillus sp. strain SG-1 are capable of oxidizing Mn(II) and Co(II), which results in the precipitation of Mn(III, IV) and Co(III) oxides and hydroxides on the spore surface. The spores also bind other heavy metals; however, little is known about the mechanism and capacity of this metal binding. In this study the characteristics of the spore surface and Cu(II) adsorption to this surface were investigated. The specific surface area of wet SG-1 spores was 74.7 m2 per g of dry weight as measured by the methylene blue adsorption method. This surface area is 11-fold greater than the surface area of dried spores, as determined with an N2 adsorption surface area analyzer or as calculated from the spore dimensions, suggesting that the spore surface is porous. The surface exchange capacity as measured by the proton exchange method was found to be 30.6 μmol m−2, which is equal to a surface site density of 18.3 sites nm−2. The SG-1 spore surface charge characteristics were obtained from acid-base titration data. The surface charge density varied with pH, and the zero point of charge was pH 4.5. The titration curves suggest that the spore surface is dominated by negatively charged sites that are largely carboxylate groups but also phosphate groups. Copper adsorption by SG-1 spores was rapid and complete within minutes. The spores exhibited a high affinity for Cu(II). The amounts of copper adsorbed increased from negligible at pH 3 to maximum levels at pH >6. Their great surface area, site density, and affinity give SG-1 spores a high capability for binding metals on their surfaces, as demonstrated by our experiments with Cu(II).  相似文献   

7.
The geochemical cycling of cobalt (Co) has often been considered to be controlled by the scavenging and oxidation of Co(II) on the surface of manganese [Mn(III,IV)] oxides or manganates. Because Mn(II) oxidation in the environment is often catalyzed by bacteria, we have investigated the ability of Mn(II)-oxidizing bacteria to bind and oxidize Co(II) in the absence of Mn(II) to determine whether some Mn(II)-oxidizing bacteria also oxidize Co(II) independently of Mn oxidation. We used the marine Bacillus sp. strain SG-1, which produces mature spores that oxidize Mn(II), apparently due to a protein in their spore coats (R.A. Rosson and K. H. Nealson, J. Bacteriol. 151:1027-1034, 1982; J. P. M. de Vrind et al., Appl. Environ. Microbiol. 52:1096-1100, 1986). A method to measure Co(II) oxidation using radioactive 57Co as a tracer and treatments with nonradioactive (cold) Co(II) and ascorbate to discriminate bound Co from oxidized Co was developed. SG-1 spores were found to oxidize Co(II) over a wide range of pH, temperature, and Co(II) concentration. Leucoberbelin blue, a reagent that reacts with Mn(III,IV) oxides forming a blue color, was found to also react with Co(III) oxides and was used to verify the presence of oxidized Co in the absence of added Mn(II). Co(II) oxidation occurred optimally around pH 8 and between 55 and 65°C. SG-1 spores oxidized Co(II) at all Co(II) concentrations tested from the trace levels found in seawater to 100 mM. Co(II) oxidation was found to follow Michaelis-Menten kinetics. An Eadie-Hofstee plot of the data suggests that SG-1 spores have two oxidation systems, a high-affinity-low-rate system (Km, 3.3 × 10-8 M; Vmax, 1.7 × 10-15 M · spore-1 · h-1) and a low-affinity-high-rate system (Km, 5.2 × 10-6 M; Vmax, 8.9 × 10-15 M · spore-1 · h-1). SG-1 spores did not oxidize Co(II) in the absence of oxygen, also indicating that oxidation was not due to abiological Co(II) oxidation on the surface of preformed Mn(III,IV) oxides. These results suggest that some microorganisms may directly oxidize Co(II) and such biological activities may exert some control on the behavior of Co in nature. SG-1 spores may also have useful applications in metal removal, recovery, and immobilization processes.  相似文献   

8.
The marine Bacillus sp. strain SG-1 forms spores that oxidize manganese(II) as a result of the activities of uncharacterized components of its spore coat. Nucleotide sequence analysis of chromosomal loci previously identified through insertion mutagenesis as being involved in manganese oxidation identified seven possible genes (designated mnxA to mnxG) in what appears to be an operon. A potential recognition site for the sporulation, mother-cell-specific, RNA polymerase sigma factor, sigmaK, was located just upstream of the cluster, and correspondingly, measurement of beta-galactosidase activity from a Tn917-lacZ insertion in mnxD showed expression at mid-sporulation to late sporulation (approximately stage IV to V of sporulation). Spores of nonoxidizing mutants appeared unaffected with respect to their temperature and chemical resistance properties and germination characteristics. However, transmission electron microscopy revealed alterations in the outermost spore coat. This suggests that products of these genes may be involved in the deposition of the spore coat structure and/or are spore coat proteins themselves. Regions of the deduced protein product of mnxG showed amino acid sequence similarity to the family of multicopper oxidases, a diverse group of proteins that use multiple copper ions to oxidize a variety of substrates. Similar regions included those that are involved in binding of copper, and the addition of copper at a low concentration was found to enhance manganese oxidation by the spores. This suggests that the product of this gene may function like a copper oxidase and that it may be directly responsible for the oxidation of manganese by the spores.  相似文献   

9.
The outermost layer of the Bacillus anthracis spore is the exosporium, which is composed of a paracrystalline basal layer and an external hair-like nap. The filaments of the nap are formed by a collagen-like glycoprotein called BclA, while the basal layer contains several different proteins. One of the putative basal layer proteins is ExsY. In this study, we constructed a DeltaexsY mutant of B. anthracis, which is devoid of ExsY, and examined the assembly of the exosporium on spores produced by this strain. Our results show that exosporium assembly on DeltaexsY spores is aberrant, with assembly arrested after the formation of a cap-like fragment that covers one end of the forespore-always the end near the middle of the mother cell. The cap contains a normal hair-like nap but an irregular basal layer. The cap is retained on spores prepared on solid medium, even after spore purification, but it is lost from spores prepared in liquid medium. Microscopic inspection of DeltaexsY spores prepared on solid medium revealed a fragile sac-like sublayer of the exosporium basal layer, to which caps were attached. Examination of purified DeltaexsY spores devoid of exosporium showed that they lacked detectable levels of BclA and the basal layer proteins BxpB, BxpC, CotY, and inosine-uridine-preferring nucleoside hydrolase; however, these spores retained half the amount of alanine racemase presumed to be associated with the exosporium of wild-type spores. The DeltaexsY mutation did not affect spore production and germination efficiencies or spore resistance but did influence the course of spore outgrowth.  相似文献   

10.
Certain endospore‐forming soil dwelling bacteria are important human, animal or insect pathogens. These organisms produce spores containing an outer layer, the exosporium. The exosporium is the site of interactions between the spore and the soil environment and between the spore and the infected host during the initial stages of infection. The composition and assembly process of the exosporium are poorly understood. This is partly due to the extreme stability of the exosporium that has proven to be refractive to existing methods to deconstruct the intact structure into its component parts. Although more than 20 proteins have been identified as exosporium‐associated, their abundance, relationship to other proteins and the processes by which they are assembled to create the exosporium are largely unknown. In this issue of Molecular Microbiology, Terry, Jiang, and colleagues in Per Bullough's laboratory show that the ExsY protein is a major structural protein of the exosporium basal layer of B. cereus family spores and that it can self‐assemble into complex structures that possess many of the structural features characteristic of the exosporium basal layer. The authors refined a model for exosporium assembly. Their findings may have implications for exosporium formation in other spore forming bacteria, including Clostridium species.  相似文献   

11.
Anthrax is a highly fatal disease caused by the gram-positive, endospore-forming, rod-shaped bacterium Bacillus anthracis. Spores, rather than vegetative bacterial cells, are the source of anthrax infections. Spores of B. anthracis are enclosed by a prominent loose-fitting structure called the exosporium. The exosporium is composed of a basal layer and an external hair-like nap. Filaments of the hair-like nap are made up largely of a single collagen-like glycoprotein called BclA. A second glycoprotein, BclB, has been identified in the exosporium layer. The specific location of this glycoprotein within the exosporium layer and its role in the biology of the spore are unknown. We created a mutant strain of B. anthracis DeltaSterne that carries a deletion of the bclB gene. The mutant was found to possess structural defects in the exosporium layer of the spore (visualized by electron microscopy, immunofluorescence, and flow cytometry) resulting in an exosporium that is more fragile than that of a wild-type spore and is easily lost. Immunofluorescence studies also indicated that the mutant strain produced spores with increased levels of the BclA glycoprotein accessible to the antibodies on the surface. The resistance properties of the mutant spores were unchanged from those of the wild-type spores. A bclB mutation did not affect spore germination or kinetics of spore survival within macrophages. BclB plays a key role in the formation and maintenance of the exosporium structure in B. anthracis.  相似文献   

12.
Cobalt(II) oxidation in aquatic environments has been shown to be linked to Mn(II) oxidation, a process primarily mediated by bacteria. This work examines the oxidation of Co(II) by the spore-forming marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1, which enzymatically catalyzes the formation of reactive nanoparticulate Mn(IV) oxides. Preparations of these spores were incubated with radiotracers and various amounts of Co(II) and Mn(II), and the rates of Mn(II) and Co(II) oxidation were measured. Inhibition of Mn(II) oxidation by Co(II) and inhibition of Co(II) oxidation by Mn(II) were both found to be competitive. However, from both radiotracer experiments and X-ray spectroscopic measurements, no Co(II) oxidation occurred in the complete absence of Mn(II), suggesting that the Co(II) oxidation observed in these cultures is indirect and that a previous report of enzymatic Co(II) oxidation may have been due to very low levels of contaminating Mn. Our results indicate that the mechanism by which SG-1 oxidizes Co(II) is through the production of the reactive nanoparticulate Mn oxide.  相似文献   

13.
Bacillus atrophaeus spores were previously reported to have significant magnetic susceptibility in a magnetic field due to the presence of Mn. However, relatively little is known about the total amount and distribution of the oxidation state of Mn associated with this specific strain's spores. Using the instrument, cell tracking velocimetry (CTV) both magnetically induced velocity and settling velocity was quantitatively measured. Visual observations, and calculated diameter using previously reported densities, indicate that the spores are present in the form of clusters of approximately 3–6 µm. Treatment of these clusters with EDTA or pH of 2.0 or below resulted in not only the disruption of the spore clusters, but also a significant decrease in magnetic susceptibility, in some cases by almost two orders of magnitude. Since the magnetic susceptibility of Mn varies significantly between the three typically reported valance states of Mn, Mn(II), Mn(III), and Mn(IV); X‐Ray Photoelectron Spectroscopy, XPS, was used to determined the valance states of Mn in the spores. This XPS analysis, which penetrates up to 10 nm into the spore, returned the following fractions: 0.41, 0.38, and 0.21 for the valance states: Mn(II), Mn(III), and Mn(IV), respectively. The total mass of Mn associated with each spore cluster was determined by ICP‐MS. A second, completely independent estimate of Mn mass associated with each spore cluster was made, by mathematically solving for the amount of Mn per spore cluster using the experimentally measured magnetophoretic mobility and the magnetic susceptibility of each of the three valence states from the XPS analysis. IPC‐MS returned a value of 3.28 × 10−11 g of Mn per spore cluster while the calculated estimation from mobility and XPS analysis retuned a value of 1.16 × 10−11 g, which given the complexity of the two techniques, is a reasonable agreement. Finally, a discussion of potential applications of the magnetic properties of these spores is presented. Bioeng. 2011; 108:1119–1129. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
The outermost layer of the Bacillus anthracis spore consists of an exosporium comprised of an outer hair‐like nap layer and an internal basal layer. A major component of the hair‐like nap is the glycosylated collagen‐like protein BclA. A second collagen‐like protein, BclB, is also present in the exosporium. BclB possesses an N‐terminal sequence that targets it to the exosporium and is similar in sequence to a cognate targeting region in BclA. BclB lacks, however, sequence similarity to the region of BclA thought to mediate attachment to the basal layer via covalent interactions with the basal layer protein BxpB. Here we demonstrate that BxpB is critical for correct localization of BclB during spore formation and that the N‐terminal domains of the BclA and BclB proteins compete for BxpB‐controlled assembly sites. We found that BclB is located principally in a region of the exosporium that excludes a short arc on one side of the exosporium (the so‐called bottle‐cap region). We also found that in bclB mutant spores, the distribution of exosporium proteins CotY and BxpB is altered, suggesting that BclB has roles in exosporium assembly. In bclB mutant spores, the distance between the exosporium and the coat, the interspace, is reduced.  相似文献   

15.
Cobalt(II) oxidation in aquatic environments has been shown to be linked to Mn(II) oxidation, a process primarily mediated by bacteria. This work examines the oxidation of Co(II) by the spore-forming marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1, which enzymatically catalyzes the formation of reactive nanoparticulate Mn(IV) oxides. Preparations of these spores were incubated with radiotracers and various amounts of Co(II) and Mn(II), and the rates of Mn(II) and Co(II) oxidation were measured. Inhibition of Mn(II) oxidation by Co(II) and inhibition of Co(II) oxidation by Mn(II) were both found to be competitive. However, from both radiotracer experiments and X-ray spectroscopic measurements, no Co(II) oxidation occurred in the complete absence of Mn(II), suggesting that the Co(II) oxidation observed in these cultures is indirect and that a previous report of enzymatic Co(II) oxidation may have been due to very low levels of contaminating Mn. Our results indicate that the mechanism by which SG-1 oxidizes Co(II) is through the production of the reactive nanoparticulate Mn oxide.  相似文献   

16.
Bacillus anthracis, the aetiological agent of anthrax, is a Gram-positive spore-forming bacterium. The exosporium is the outermost integument surrounding the mature spore. Here, we describe the purification and the characterization of an immunodominant protein of the spore surface. This protein was abundant, glycosylated and part of the exosporium. The amino-terminal sequence was determined and the corresponding gene was identified. It encodes a protein of 382 amino acid residues, the central part of which contains a region of GXX motifs presenting similarity to mammalian collagen proteins. Thus, this collagen-like surface protein was named BclA (for Bacillus collagen-like protein of anthracis). BclA was absent from vegetative cells; it was detected only in spores and sporulating cells. A potential promoter, dependent on the sigma factor sigma(K), which is required for a variety of events late in sporulation, was found upstream from the bclA gene. A bclA deletion mutant was constructed and analysed. Electron microscopy studies showed that BclA is a structural component of the filaments covering the outer layer of the exosporium.  相似文献   

17.
The exosporium is the outermost layer of spores of Bacillus cereus and its close relatives Bacillus anthracis and Bacillus thuringiensis. For these pathogens, it represents the surface layer that makes initial contact with the host. To date, only the BclA glycoprotein has been described as a component of the exosporium; this paper defines 10 more tightly associated proteins from the exosporium of B. cereus ATCC 10876, identified by N-terminal sequencing of proteins from purified, washed exosporium. Likely coding sequences were identified from the incomplete genome sequence of B. anthracis or B. cereus ATCC 14579, and the precise corresponding sequence from B. cereus ATCC 10876 was defined by PCR and sequencing. Eight genes encode likely structural components (exsB, exsC, exsD, exsE, exsF, exsG, exsJ, and cotE). Several proteins of the exosporium are related to morphogenetic and outer spore coat proteins of B. subtilis, but most do not have homologues in B. subtilis. ExsE is processed from a larger precursor, and the CotE homologue appears to have been C-terminally truncated. ExsJ contains a domain of GXX collagen-like repeats, like the BclA exosporium protein of B. anthracis. Although most of the exosporium genes are scattered on the genome, bclA and exsF are clustered in a region flanking the rhamnose biosynthesis operon; rhamnose is part of the sugar moiety of spore glycoproteins. Two enzymes, alanine racemase and nucleoside hydrolase, are tightly adsorbed to the exosporium layer; they could metabolize small molecule germinants and may reduce the sensitivity of spores to these, limiting premature germination.  相似文献   

18.
The outermost layer of spores of the Bacillus cereus family is a loose structure known as the exosporium. Spores of a library of Tn917-LTV1 transposon insertion mutants of B. cereus ATCC 10876 were partitioned into hexadecane; a less hydrophobic mutant that was isolated contained an insertion in the exsA promoter region. ExsA is the equivalent of SafA (YrbA) of Bacillus subtilis, which is also implicated in spore coat assembly; the gene organizations around both are identical, and both proteins contain a very conserved N-terminal cortex-binding domain of ca. 50 residues, although the rest of the sequence is much less conserved. In particular, unlike SafA, the ExsA protein contains multiple tandem oligopeptide repeats and is therefore likely to have an extended structure. The exsA gene is expressed in the mother cell during sporulation. Spores of an exsA mutant are extremely permeable to lysozyme and are blocked in late stages of germination, which require coat-associated functions. Two mutants expressing differently truncated versions of ExsA were constructed, and they showed the same gross defects in the attachment of exosporium and spore coat layers. The protein profile of the residual exosporium harvested from spores of the three mutants--two expressing truncated proteins and the mutant with the original transposon insertion in the promoter region--showed some differences from the wild type and from each other, but the major exosporium glycoproteins were retained. The exsA gene is extremely important for the normal assembly and anchoring of both the spore coat and exosporium layers in spores of B. cereus.  相似文献   

19.
20.
The exosporium is the outermost layer of the Bacillus anthracis spore. The predominant protein on the exosporium surface is BclA, a collagen-like glycoprotein. BclA is incorporated on the spore surface late in the B. anthracis sporulation pathway. A second collagen-like protein, BclB, has been shown to be surface-exposed on B. anthracis spores. We have identified sequences near the N-terminus of the BclA and BclB glycoproteins responsible for the incorporation of these proteins into the exosporium layer of the spore and used these targeting domains to incorporate reporter fluorescent proteins onto the spore surface. The BclA and BclB proteins are expressed in the mother cell cytoplasm and become spore-associated in a two-step process involving first association of the protein with the spore surface followed by attachment of the protein in a process that involves a proteolytic cleavage event. Protein domains associated with each of these events have been identified. This novel targeting system can be exploited to incorporate foreign proteins into the exosporium of inactivated, spores resulting in the surface display of recombinant immunogens for use as a potential vaccine delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号