首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrate reductase of spinach (Spinacia oleracea L.) leaves which had been inactivated in vitro by treatment with NADH and cyanide, was reactivated by incubation with oxidant systems and measured as FMNH2-dependent activity. Reactivation was produced with trivalent manganese compounds represented either by manganipyrophosphate or produced by oxidation of Mn2+ ions in the presence of illuminated chloroplasts and compared with reactivation obtained with ferricyanide. Reactivation in the chloroplast system was equivalent to that with ferricyanide when orthophosphate was used but was variable and weak in the presence of pyrophosphate, although manganipyrophosphate was formed, freely. Reactivation by manganipyrophosphate in dark reaction conditions was less effective than with ferricyanide but was not inhibited by the addition of pyrophosphate. Reactivation with illuminated unheated chloroplasts was dependent on added manganese and oxidation of manganese in the presence of pyrophosphate was abolished by boiling the chloroplasts. In the presence of orthophosphate however, boiled, illuminated chloroplasts reactivated the enzyme in the absence of added manganese. Reactivation occurred spontaneously in air, more slowly than with the other oxidants, but to a similar extent to that produced by manganipyrophosphate. The results provide a possible model for physiological reactivation mechanisms.  相似文献   

2.
In leaves of Elodea densa the membrane potential measured in light equals the equilibrium potential of H+ on the morphological upper plasma membrane. The apoplastic pH on the upper side of the leaf is as high as 10.5-11.0, which indicates that alkaline pH induces an increased H+ permeability of the plasmalemma. To study this hypothesis in more detail we investigated the changes in membrane potential and conductance in response to alterations in the external pH from 7 (= control) to 9 or 11 under both light and dark conditions. Departing from the control pH 7 condition, in light and in dark the application of pH 9 resulted in a depolarization of the membrane potential to the Nernst potential of H+. In the light but not in the dark, this depolarization was followed by a repolarization to about -160 mV. The change to pH 9 induced, in light as well as in dark, an increase in membrane conductance. The application of pH 11, which caused a momentary hyper- or depolarization depending on the value at the time pH 11 was applied, brought the membrane potential to around -160 mV. The membrane conductance also increased, in comparison to its value at pH 7, as a result of the application of pH 11, irrespective of the light conditions.  相似文献   

3.
Rapid long-distance signaling in plants can occur via several mechanisms, including symplastic electric coupling and pressure waves. We show here in variegated Coleus leaves a rapid propagation of electrical signals that appears to be caused by changes in intra-leaf CO2 concentrations. Green leaf cells, when illuminated, undergo a rapid depolarization of their membrane potential (Vm) and an increase in their apoplastic pH (pHa) by a process that requires photosynthesis. This is followed by a slower hyperpolarization of Vm and apoplastic acidification, which do not require photosynthesis. White (chlorophyll-lacking) leaf cells, when in isolated white leaf segments, show only the slow response, but when in mixed (i.e. green and white) segments, the rapid Vm depolarization and increase in pHa propagate over more than 10 mm from the green to the white cells. Similarly, these responses propagate 12-20 mm from illuminated to unilluminated green cells. The fact that the propagation of these responses is eliminated when the leaf air spaces are infiltrated with solution indicates that the signal moves in the apoplast rather than the symplast. A depolarization of the mesophyll cells is induced in the dark by a decrease in apoplastic CO2 but not by an increase in pHa. These results support the hypothesis that the propagating signal for the depolarization of the white mesophyll cells is a photosynthetically induced decrease in the CO2 level of the air spaces throughout the leaf.  相似文献   

4.
Cyclic phosphorylation with phenazine methosulfate and noncyclic phosphorylation and reduction with ferricyanide were detected in isolated chloroplasts from greening bean leaves after 3 to 4 hours of illumination. Activity commenced when rapid synthesis of chlorophyll was initiated. Rates of photophosphorylation were comparable to mature levels by 15 to 18 hours of development. Photoreduction of ferricyanide attained a peak value by 12 hours of illumination and subsequently fell to normal levels by 15 to 18 hours. With ferricyanide, the P/e2 ratios were initially less than 0.1 but were close to 1.0 after 18 hours of illumination. The data suggested that photosystems I and II appeared concomitantly in the chloroplast but were not fully operative until later in development. Proplastids and immature chloroplasts exhibited high capacities to reduce ferricyanide in the dark. The rates of dark reduction rapidly diminished to low levels by 15 hours of illumination when normal rates of photochemical activity were observed. After a 2-to 3-day lag, a rapid increase in leaf fresh weight was noted at the time total chlorophyll content reached steady state values on a fresh weight basis. With fresh weight as an index of growth, primary leaves completed their development after 6 to 7 days of illumination.  相似文献   

5.
Nitrate reductase (NR; EC 1.6.6.1) activity increased at the beginning of the photoperiod in mature green maize (Zea mays L.) leaves as a result of increased enzyme protein level and protein dephosphorylation. In vitro experiments suggested that phosphorylation of maize leaf NR affected sensitivity to Mg2+ inhibition, as shown previously in spinach. When excised leaves were fed 32P-labeled inorganic phosphate, NR was phosphorylated on seryl residues in both the light and dark. Tryptic peptide mapping of NR labeled in vivo indicated three major 32P-phosphopeptide fragments, and labeling of all three was reduced when leaves were illuminated. Maize leaf NR mRNA levels that were low at the end of the dark period peaked within 2 h in the light and decreased thereafter, and NR activity generally remained high. It appears that light signals, rather than an endogenous rhythm, account primarily for diurnal variations in NR mRNA levels. Overall, regulation of NR activity in mature maize leaves in response to light signals appears to involve control of gene expression, enzyme protein synthesis, and reversible protein phosphorylation.  相似文献   

6.
Heteroblastic Eucalyptus (Eucalyptus globulus L.) leaves were characterized for their functional diversity examining photosynthesis and photosynthesis limitations, transpiration, and the emission of isoprene and monoterpenes. In vivo and combined analyses of gas-exchange, chlorophyll fluorescence, and light absorbance at 830 nm were made on the adaxial and abaxial sides of juvenile and adult leaves. When adult leaves were reversed to illuminate the abaxial side, photosynthesis and isoprene emission were significantly lower than when the adaxial side was illuminated. Monoterpene emission, however, was independent on the side illuminated and similarly partitioned between the two leaf sides. The abaxial side of adult leaves showed less diffusive resistance to CO(2) acquisition by chloroplasts, but also lower ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, than the adaxial leaf side. In juvenile leaves, photosynthesis, isoprene, and monoterpene emissions were similar when the adaxial or abaxial side was directly illuminated. In the abaxial side of juvenile leaves, photosynthesis did not match the rates attained by the other leaf types when exposed to elevated CO(2), which suggests the occurrence of a limitation of photosynthesis by ribulose bisphosphate (RuBP) regeneration. Accordingly, a reduced efficiency of both photosystems and a high non-radiative dissipation of energy was observed in the abaxial side of juvenile leaves. During light induction, the adaxial side of juvenile leaves also showed a reduced efficiency of photosystem II and a large non-radiative energy dissipation. Our report reveals distinct functional properties in Eucalyptus leaves. Juvenile leaves invest more carbon in isoprene, but not in monoterpenes, and have a lower water use efficiency than adult leaves. Under steady-state conditions, in adult leaves the isobilateral anatomy does not correspond to an equal functionality of the two sides, while in juvenile leaves the dorsiventral anatomy does not result in functional differences in primary or secondary metabolism in the two sides. However, photochemical limitations may reduce the efficiency of carbon fixation in the light, especially in the abaxial side of juvenile leaves.  相似文献   

7.
Nitrate reductase from wheat (Triticum aestivum L. cv Bindawarra) leaves is inactivated by pretreatment with NADH, in the absence of nitrate, a 50% loss of activity occurring in 30 minutes at 25°C with 10 micromolar NADH. Nitrate (50 micromolar) prevented inactivation by 10 micromolar NADH while cyanide (1 micromolar) markedly enhanced the degree of inactivation.

A rapid reactivation of NADH-inactivated nitrate reductase occurred after treatment with 0.3 millimolar ferricyanide or exposure to light (230 milliwatts per square centimeter) plus 20 micromolar flavin adenine dinucleotide. When excess NADH was removed, the enzyme was also reactivated by autoxidation. Nitrate did not influence the rate of reactivation.

Leaf nitrate reductase, from plants grown for 12 days on 1 millimolar nitrate, isolated in the late photoperiod or dark period, was activated by ferricyanide or light treatment. This suggests that, at these times of the day, the nitrate reductase in the leaves of the low nitrate plants is in a partially inactive state (NADH-inactivated). The nitrate reductase from moisture-stressed plants showed a greater degree of activation after light treatment, and inactive enzyme in them was detected earlier in the photoperiod.

  相似文献   

8.
NO (nitric oxide) production from sunflower plants (Helianthus annuus L.), detached spinach leaves (Spinacia oleracea L.), desalted spinach leaf extracts or commercial maize (Zea mays L.) leaf nitrate reductase (NR, EC 1.6.6.1) was continuously followed as NO emission into the gas phase by chemiluminescence detection, and its response to post-translational NR modulation was examined in vitro and in vivo. NR (purified or in crude extracts) in vitro produced NO at saturating NADH and nitrite concentrations at about 1% of its nitrate reduction capacity. The K(m) for nitrite was relatively high (100 microM) compared to nitrite concentrations in illuminated leaves (10 microM). NO production was competitively inhibited by physiological nitrate concentrations (K(i)=50 microM). Importantly, inactivation of NR in crude extracts by protein phosphorylation with MgATP in the presence of a protein phosphatase inhibitor also inhibited NO production. Nitrate-fertilized plants or leaves emitted NO into purified air. The NO emission was lower in the dark than in the light, but was generally only a small fraction of the total NR activity in the tissue (about 0.01-0.1%). In order to check for a modulation of NO production in vivo, NR was artificially activated by treatments such as anoxia, feeding uncouplers or AICAR (a cell permeant 5'-AMP analogue). Under all these conditions, leaves were accumulating nitrite to concentrations exceeding those in normal illuminated leaves up to 100-fold, and NO production was drastically increased especially in the dark. NO production by leaf extracts or intact leaves was unaffected by nitric oxide synthase inhibitors. It is concluded that in non-elicited leaves NO is produced in variable quantities by NR depending on the total NR activity, the NR activation state and the cytosolic nitrite and nitrate concentration.  相似文献   

9.
The effect of water stress on glutathione reductase and catalase activities was evaluated in leaf blades of field-grown winter wheat (Triticum aestivum L.). Wheat was sown at two seeding rates under both irrigated and dryland conditions. Flag leaves from dryland plants sown at 60 kilograms/hectare showed no change in either glutathione reductase or catalase activities per unit leaf area, while leaves from the basal portion of the canopy exhibited a 273% increase in glutathione reductase activity and a 60% increase in catalase activity. Glutathione reductase activity in dryland plants sown at 120 kilograms/hectare increased 25% in flag leaves and 225% in basal leaves. No change in catalase activity was observed in either flag or basal leaves from these same plants. The increase in glutathione reductase activity in response to water stress was observed when activity was expressed on either a per unit leaf area, protein, or chlorophyll basis. No change in catalase activity was detected when enzyme activity was expressed on a protein basis.  相似文献   

10.
1. When leaves of Bryophyllum calycinum are suspended in moist air in a vertical plane and sidewise, roots and shoots are formed exclusively or predominate in the notches on the lower side of the leaves. When pieces of stems of the same plant are suspended horizontally in moist air, roots develop on the lower side of the stem, with the exception of the extreme basal end where they may develop on both sides. 2. The writer has suggested in a preceding paper that this directive influence of gravity on the arrangement of the regenerating organs may be due to the combination of two factors. The first factor is gravity, which causes a slightly greater collection of sap on the lower side of these organs, and as a consequence roots develop a little more quickly on the lower than on the upper side. The second factor is of an inhibitory character inasmuch as quite generally organs which grow out first, or which grow quickly, have a tendency to retard or inhibit the growth of similar organs in other places. 3. The writer was able to prove the action of this inhibitory factor by cutting off the lower edges of leaves suspended sidewise in a vertical plane or the lower halves of stems suspended in a horizontal plane (in moist air). In this case roots developed as abundantly on the upper side of these organs as they otherwise would have developed on the lower side. 4. It was, however, still necessary to prove the idea that gravity causes sap to collect in larger quantity in the lower parts of organs. This gap is filled by the present paper in which it is shown, first, that in the leaves suspended in moist air a red pigment is formed which has a tendency to collect gradually in the lowest parts of the leaf when the latter is suspended in a vertical plane. This red pigment serves as an indicator for the distribution of sap in the leaf and thus shows directly the tendency of the sap to collect in greater abundance on the lower edge of a leaf suspended in a vertical plane. Second, it is shown that when leaves or stems of Bryophyllum are suspended, in the way described, under water instead of in moist air, roots develop on the upper side as well as on the lower side. The directive effect of gravity upon the arrangement of organs disappears in this case since the abundance of the outside water makes the effect of a slight difference in the distribution of sap between the upper and lower side a negligible factor. Third, it is shown that the dry weight of the lower half of leaves suspended sidewise for several weeks in moist air in a vertical plane is greater than that of the upper half when roots and shoots are formed on the lower side only. This indicates that material from the upper half flows into the growing organs of the lower half. No such difference between upper and lower half of leaf is found when the leaves are suspended in the same way in water and roots and shoots are formed on both sides of the leaf. 5. It is shown that when a leaf connected with a piece of stem is suspended in moist air the red pigment goes into the stem instead of collecting in the lower part of the leaf, thus supporting the view expressed in a preceding paper that the inhibitory action of the stem on the root and shoot formation in a leaf of Bryophyllum is due to the fact that the material available in the leaf for organ formation is naturally sent into the stem.  相似文献   

11.
The regulation of carbonic anhydrase (CA) activity in maize (Zea mays L.) leaves by light and nitrogen nutrition was determined. CA activity increased by more than 100-fold in illuminated leaves and decreased in leaves placed in the dark; low levels of CA activity were observed in leaves illuminated with low light intensities. CA activity was reduced in plants grown under nitrogen deficiency and recovered only slowly when supplemented with nitrate. Parallel studies were conducted to follow the levels of phosphoenolpyruvate carboxylase. Experiments indicate that the level of CA and phosphoenolpyruvate carboxylase present in leaves may be controlled by similar mechanisms.  相似文献   

12.
cDNA clones were selected from a corn (Zea mays L.) leaf lambda gt11 expression library using polyclonal antibodies for corn leaf NADH:nitrate reductase. One clone, Zmnrl, had a 2.1 kilobase insert, which hybridized to a 3.2 kilobase mRNA. The deduced amino acid sequence of Zmnrl was nearly identical to peptide sequences of corn leaf NADH:nitrate reductase. Another clone, Zm6, had an insert of 1.4 kilobase, which hybridized to a 1.4 kilobase mRNA, and its sequence coded for chloroplastic NAD(P)+:glyceraldehyde-3-phosphate dehydrogenase based on comparisons to sequences of this enzyme from tobacco and corn. When nitrate was supplied to N-starved, etiolated corn plants, nitrate reductase, and glyceraldehyde-3-phosphate dehydrogenase mRNA levels in leaves increased in parallel. When green leaves were treated with nitrate, only nitrate reductase mRNA levels were increased. Nitrate is a specific inducer of nitrate reductase in green leaves, but appears to have a more general effect in etiolated leaves. In the dark, nitrate induced nitrate reductase expression in both etiolated and green leaves, indicating light and functional chloroplast were not required for enzyme expression.  相似文献   

13.
The relation between leaf age and the induction of nitrate reductase activity by continuous and intermittent light was studied with barley seedlings (Hordeum vulgare L. cv. Club Mariout). In general, nitrate reductase activity declined as the period of growth in darkness was extended beyond 5 days. Maximum activity was found near the leaf tip while activity was lowest in the morphologically youngest tissue near the base of the lamina. Increased activity was observed after continuous illumination of dark-grown seedlings for 24 hours. The increase in activity in response to light was greatly reduced when the dark pretreatment period was extended beyond 8 days. The amount of nitrate reductase activity present in the different sections of the leaf was closely related to the amount of polyribosomes present. The pattern of chlorophyll accumulation closely parallelled that of increases in nitrate reductase activity. The initial lag in the induction of nitrate reductase activity was removed by a 10-minute light treatment 6 hours before placing dark-grown barley seedlings in light. The enzyme was also induced under flashing light with various dark intervals. These induction curves closely resembled those of chlorophyll accumulation under the same conditions. The development of photosynthetic CO2 fixation follows the same induction pattern in this system. Our results suggest that photosynthetic products may be required for the induction of significant levels of nitrate reductase activity in leaves of dark-grown seedlings, although other light effects may not be discounted.  相似文献   

14.
Changes in peroxidase activity were studied in the attachedfirst leaf of dark-treated Oryza sativa L. cv. Bala seedlingsin response to benzyladenine and light treatments during laterperiods of leaf growth, prior to maturation. Darkness causeda mild decrease in peroxidase activity; but in illuminated leaves,the enzyme activity was stable at all times. There was a sharprise in peroxidase activity in dark-treated leaves upon lightor benzyladenine application, irrespective of the time of treatment.Benzyladenine treatment to illuminated leaves also caused arise in peroxidase activity. Exogenous hydrogen peroxide, glycolateand amizol resulted in a rise in peroxidase activity, whichwas further enhanced by benzyladenine treatment in both lightand dark incubated leaves. Proline maintained chlorophyll levels,whereas hydroxyproline caused chlorophyll degradation. Benzyladenineenhanced the proline effect and counteracted the hydroxyprolineeffect on chlorophyll. Both proline and hydroxyproline increasedperoxidase activity in the leaves of light and dark incubatedseedlings, and the enzyme activity further increased after benzyladeninetreatment. (Received December 7, 1984; Accepted May 8, 1985)  相似文献   

15.
An enzyme causing loss of a matrix enzyme (hydroxypyruvate reductase)from leaf peroxisomes was found in an extract of the primaryleaves of the mung bean and was purified 37-fold from the extract.The enzyme required calcium, magnesium, manganese or zinc ionfor its activity. Loss of matrix enzymes also was induced inmitochondria and chloroplasts. When etiolated seedlings of themung bean were illuminated, organelle-damaging activity in theprimary leaves increased markedly. (Received March 17, 1980; )  相似文献   

16.
Ferricyanide reduction by Elodea densa leaves, in the dark, is associated with: (a) acidification of the medium; (b) decrease (about 0.2-0.3 units) of intracellular pH (measured in cell sap, cytoplasm, and vacuole); (c) depolarization of the transmembrane potential; (d) net efflux of K+ to the medium. Ferricyanide-induced acid secretion is markedly increased by the presence of fusicoccin (FC), and this effect is severely inhibited by the proton pump inhibitors erythrosine B and vanadate. In the presence of ferricyanide FC-induced H+ extrusion no longer requires the presence of K+ in the medium. The (ferricyanide reduced)/(H+ extruded) ratio varies from about 2, in the absence of FC, to about 1 when the toxin is present, and to more than 4, when ATP-driven H+ extrusion is inhibited by erythrosine B or by vanadate. Fusicoccin markedly reduces K+ release to the medium. The ratio (ferricyanide reduced)/(H+ extruded + K+ released) approaches unity under all of the three conditions considered. These results indicate that ferricyanide reduction depends on a plasmalemma system transporting only electrons to the extracellular acceptor, with consequent potential depolarization and cytoplasm acidification. Most of the protons released in the cytoplasm would be secondarily extruded by the ATP-driven pump, stimulated by both intracellular acidification and depolarization. K+ efflux would depend on potential depolarization.  相似文献   

17.
  • When plants are exposed to a heterogeneous environment, photosynthesis of leaves is not only determined by their local condition, but also by certain signals from other parts of the same plant, termed systemic regulation. Our present study was conducted to investigate the effects of light‐dependent systemic regulation on the photosynthetic performance of soybean (Glycine max L. Merr.) under heterogeneous light conditions.
  • Soybean plants were treated with heterogeneous light. Then gas exchange characteristics were measured to evaluate the photosynthetic performance of leaves. Parameters related to photosynthetic pigments, chlorophyll fluorescence, Rubisco and photosynthates were examined to study the mechanisms of light‐dependent systemic regulation on photosynthesis.
  • Light‐induced systemic signalling by illuminated leaves reduced the Pn of both upper and lower non‐illuminated leaves on the same soybean plant. The decrease in gs and increase in Ci in these non‐illuminated leaves indicated restriction of carbon assimilation, which was further verified by the decline in content and activity of Rubisco. However, the activation state of Rubisco decreased only in upper non‐illuminated leaves. Quantum efficiency of PSII (ΦPSII) and ETR also decreased only in upper non‐illuminated leaves. Moreover, the effects of light‐induced systemic signalling on carbohydrate content were also detectable only in upper non‐illuminated leaves.
  • Light‐induced systemic signalling by illuminated leaves restricts carbon assimilation and down‐regulates photosynthetic performance of non‐illuminated leaves within a soybean plant. However, effects of such systemic regulation differed when regulated in upward or downward direction.
  相似文献   

18.
The seasonal change in leaf water potential and its components, stomatal resistance, specific leaf weight, photosynthesis rate, the activities of ribulose-1,5-bisphosphate carboxylase and nitrate reductase, and soluble proteins were measured in flag leaves (ninth from base in position), seventh and fifth leaves of wheat Triticum aestivum L. cv Kalyansona. Flag leaves had a lower water and solute potential and lower or equal turgor pressure than seventh and fifth leaves. These differences were found to be independent of environment. The rate of photosynthesis and nitrate reductase activity were always lower in fifth and seventh leaves than in flag leaf. The photosynthetic efficiency in flag leaves appeared to be associated with lower stomatal resistance and higher specific leaf weight. The relations between leaf water potential and relative water content showed a change with leaf position. This change possibly allows flag leaf to maintain its functional efficiency despite its lower water potential.  相似文献   

19.
We recently obtained evidence that the activity of spinach (Spinacia oleracea L.) leaf nitrate reductase (NR) responds rapidly and reversibly to light/dark transitions by a mechanism that is strongly correlated with protein phosphorylation. Phosphorylation of the NR protein appears to increase sensitivity to Mg2+ inhibition, without affecting activity in the absence of Mg2+. In the present study, we have compared the light/dark modulation of sucrose-phosphate synthase (SPS), also known to be regulated by protein phosphorylation, and NR activities (assayed with and without Mg2+) in spinach leaves. There appears to be a physiological role for both enzymes in mature source leaves (production of sucrose and amino acids for export), whereas NR is also present and activated by light in immature sink leaves. In mature leaves, there are significant diurnal changes in SPS and NR activities (assayed under selective conditions where phosphorylation status affects enzyme activity) during a normal day/night cycle. With both enzymes, activities are highest in the morning and decline as the photoperiod progresses. For SPS, diurnal changes are largely the result of phosphorylation/dephosphorylation, whereas with NR, the covalent modification is super-imposed on changes in the level of NR protein. Accumulation of end products of photosynthesis in excised illuminated leaves increased maximum NR activity, reduced its sensitivity of Mg2+ inhibition, and prevented the decline in activity with time in the light seen with attached leaves. In contrast, SPS was rapidly inactivated in excised leaves. Overall, NR and SPS share many common features of control but are not identical in terms of regulation in situ.  相似文献   

20.
Rapid modulation of nitrate reductase in pea roots   总被引:10,自引:0,他引:10  
The regulatory properties of nitrate reductase (NR; EC 1.6.6.1) in root extracts from hydroponically grown pea (Pisum sativum L. cv. Kleine Rheinländerin) plants were examined and compared with known properties of NR from spinach and pea leaves. Nitrate-reductase activity (NRA) extracted from pea roots decreased slowly when plants were kept in the dark, or when illuminated plants were detopped, with a half-time of about 4 h (= slow modulation in vivo). In contrast, the half-time for the dark-inactivation of NR from pea leaves was only 10 min. However, when root tip segments were transferred from aerobic to anaerobic conditions or vice versa, changes in NRA were as rapid as in leaves (= rapid modulation in vivo). Nitrate-reductase activity was low when extracted from roots kept in solutions flushed with air or pure oxygen, and high in nitrogen. Okadaic acid, a specific inhibitor of type-1 and type-2A protein phosphatases, totally prevented the in vivo activation by anaerobiosis of NR, indicating that rapid activation of root NR involved protein dephosphorylation. Under aerobic conditions, the low NRA in roots was also rapidly increased by incubating the roots with either uncouplers or mannose. Under these conditions, and also under anaerobiosis, ATP levels in roots were much lower than in aerated control roots. Thus, whenever ATP levels in roots were artificially decreased, NRA increased rapidly. The highly active NR extracted from anaerobic roots could be partially inactivated in vitro by preincubation of desalted root extracts with MgATP (2 mM), with a half-time of about 20 min. It was reactivated by subsequently incubating the extracts with excess AMP (2 mM). Thus, pea root NR shares many of the previously described properties of NR from spinach leaves, suggesting that the root enzyme, like the leaf enzyme, can be rapidly modulated, probably by reversible protein phosphorylation/ dephosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号