首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inactivation kinetics of penicillin acylase from Escherichia coli have been investigated over a wide pH range at 25 and 50 degrees C. The enzyme was very stable in neutral solutions and quickly lost its catalytic activity in acidic and alkaline solutions. In all cases, the inactivation proceeded according to first order reaction kinetics. Analysis of the pH dependence of enzyme stability provides evidence that stable penicillin acylase conformation is maintained by salt bridges. Destruction of the salt bridges due to protonation/deprotonation of the amino acid residues forming these ion pairs causes inactivation by formation of the unstable "acidic" EH(4)(3+), EH(3)(2+), EH(2)(+) and "alkaline" E(-) enzyme forms. At temperatures above 35 degrees C penicillin acylase apparently undergoes a conformational change that is accompanied by destruction of one of these salt bridges and change in the catalytic properties.  相似文献   

2.
Aeromonas sp. ACY 95 produces constitutively and intracellularly a penicillin V acylase at an early stage of fermentation (12 h) and a cephalosporin C acylase at a later stage (36 h). Some penicillins, cephalosporin C and their side chain moieties/analogues, phenoxyacetic acid, penicillin V and penicillin G, enhanced penicillin V acylase production while none of the test compounds affected cephalosporin C acylase production. Supplementation of the medium with some sugars and sugar derivatives repressed enzyme production to varying degrees. The studies on enzyme formation, induction and repression, and substrate profile suggest that the cephalosporin C acylase and penicillin V acylase are two distinct enzymes. Substrate specificity studies indicate that the Aeromonas sp. ACY 95 produces a true cephalosporin C acylase which unlike the enzymes reported hitherto hydrolyses cephalosporin C specifically.The authors are with Research and Development, Hindustan Antibiotics Limited, Pimpri. Pune 411 018, India  相似文献   

3.
Alcaligenes faecalis penicillin G acylase is more stable than the Escherichia coli enzyme. The activity of the A. faecalis enzyme was not affected by incubation at 50 degrees C for 20 min, whereas more than 50% of the E. coli enzyme was irreversibly inactivated by the same treatment. To study the molecular basis of this higher stability, the A. faecalis enzyme was isolated and its gene was cloned and sequenced. The gene encodes a polypeptide that is characteristic of periplasmic penicillin G acylase (signal peptide-alpha subunit-spacer-beta subunit). Purification, N-terminal amino acid analysis, and molecular mass determination of the penicillin G acylase showed that the alpha and beta subunits have molecular masses of 23.0 and 62.7 kDa, respectively. The length of the spacer is 37 amino acids. Amino acid sequence alignment demonstrated significant homology with the penicillin G acylase from E. coli A unique feature of the A. faecalis enzyme is the presence of two cysteines that form a disulfide bridge. The stability of the A. faecalis penicillin G acylase, but not that of the E. coli enzyme, which has no cysteines, was decreased by a reductant. Thus, the improved thermostability is attributed to the presence of the disulfide bridge.  相似文献   

4.
The penicillin acylase gene (pac) from Escherichia coli ATCC 11105 was cloned into pUC 9 and the resulting vector (pUPA-9), when transformed into E. coli strain 5K, allowed the constitutive overproduction of mature penicillin acylase when grown at 28 degrees C. The enzyme was purified from the periplasmic fraction of E. coli pUPA-9 by hydrophobic interaction chromatography and anion exchange. Crystals of penicillin acylase were grown in batch using polyethylene glycol 8000 as a precipitant. The crystals (space group P1) diffracted to beyond 2.3 A.  相似文献   

5.
A cascade of two enzymatic transformations is employed in a one-pot synthesis of cephalexin. The nitrile hydratase (from R. rhodochrous MAWE)-catalyzed hydration of D-phenylglycine nitrile to the corresponding amide was combined with the penicillin G acylase (penicillin amidohydrolase, E.C. 3.5.1.11)-catalyzed acylation of 7-ADCA with the in situ-formed amide to afford a two-step, one-pot synthesis of cephalexin. D-Phenylglycine nitrile appeared to have a remarkable selective inhibitory effect on the penicillin G acylase, resulting in a threefold increase in the synthesis/hydrolysis (S/H) ratio. 1,5-Dihydroxynaphthalene, when added to the reaction mixture, cocrystallized with cephalexin. The resulting low cephalexin concentration prevented its chemical as well as enzymatic degradation; cephalexin was obtained at 79% yield with an S/H ratio of 7.7.  相似文献   

6.
Penicillin acylase formation by the hybrid strain Escherichia coli 5K(pHM12) was studied under different culture conditions and reached 200 to 250 mumol of 6-aminopenicillanic acid per min per g of bacteria (wet weight) for penicillin G. The Km of whole-cell acylase was determined with 9 to 11 mM for penicillin G at a pH optimum of 7.8 at 45 degrees C. A competitive product inhibition for phenylacetic acid of Ki = 130 mM was found. 6-Aminopenicillanic acid acts as a noncompetitive inhibitor, with a Ki of 131. The temperature optimum of the reaction lies at 54 degrees C. Penicillin G inhibits the reaction at Ki(S) = 1,565 to 1,570 mM. Whole-cell acylase reacts on a wide spectrum of penicillins and cephalosporins, but those substrates with a delta-aminoadipyl rest are not hydrolized. beta-Lactamase activity of less than 1% relative to the acylase activity was found at reaction temperatures between 28 and 45 degrees C. After a comparison of different methods for the estimation of beta-lactamase activity, we found that high-pressure liquid chromatography is to be preferred. During batch fermentation of E. coli 5K(pHM12), problems of plasmid stability in the host strain arose which were overcome by the addition of 4 mg of tetracycline per liter to the medium as a selective marker.  相似文献   

7.
-Lactam acylases such as penicillin G acylases, penicillin V acylases and glutaryl 7-aminocephalosporanic acid acylases are used in the manufacture of 6-aminopenicillanic acid, 7-aminodesacetoxycephalosporanic acid and 7-aminocephalosporanic acid (7-ACA). Genetically-engineered strains producing 1050 U/g, 3200 U/g and 7000 to 10,000 U/I of penicillin G acylase, penicillin V acylase and glutaryl-7-ACA acylase, respectively, have been developed. The penicillin G acylase studied to date and the glutaryl-7-ACA acylase from Pseudomonas sp. share some common features: the active enzyme molecules are composed of two dissimilar subunits that are generated from respective precursor polypeptide; the proteolytic processing is a post-translational modification which is regulated by temperature; and the Ser residue at the N-terminus of the -sub-unit (Ser290; penicillin G acylase numbering) is implicated as the active site residue. Protein engineering, to generate penicillin G acylase molecules and their precursors with altered sequences, and the structure-function correlation of the engineered molecules are discussed.The authors are with Research and Development, Hindustan Antibiotics Ltd, Pimpri, Pune 411 018, India;  相似文献   

8.
Cross-linked enzyme aggregates (CLEAs) were prepared from several enzymes (penicillin G acylase, hydroxynitrile lyase, alcohol dehydrogenase, and two different nitrilases) by precipitation and subsequent cross-linking using dextran polyaldehyde. In most cases, higher immobilization yields were obtained using the latter cross-linker as compared with the commonly used glutaraldehyde. Active site titration of penicillin acylase CLEAs showed that the higher activity originated from a significantly lower loss in active sites using dextran polyaldehyde as a cross-linking agent. It is proposed that macromolecular cross-linkers are too large to penetrate the protein active site and react with catalytically essential amino acid residues.  相似文献   

9.
Penicillin acylase formation by the hybrid strain Escherichia coli 5K(pHM12) was studied under different culture conditions and reached 200 to 250 mumol of 6-aminopenicillanic acid per min per g of bacteria (wet weight) for penicillin G. The Km of whole-cell acylase was determined with 9 to 11 mM for penicillin G at a pH optimum of 7.8 at 45 degrees C. A competitive product inhibition for phenylacetic acid of Ki = 130 mM was found. 6-Aminopenicillanic acid acts as a noncompetitive inhibitor, with a Ki of 131. The temperature optimum of the reaction lies at 54 degrees C. Penicillin G inhibits the reaction at Ki(S) = 1,565 to 1,570 mM. Whole-cell acylase reacts on a wide spectrum of penicillins and cephalosporins, but those substrates with a delta-aminoadipyl rest are not hydrolized. beta-Lactamase activity of less than 1% relative to the acylase activity was found at reaction temperatures between 28 and 45 degrees C. After a comparison of different methods for the estimation of beta-lactamase activity, we found that high-pressure liquid chromatography is to be preferred. During batch fermentation of E. coli 5K(pHM12), problems of plasmid stability in the host strain arose which were overcome by the addition of 4 mg of tetracycline per liter to the medium as a selective marker.  相似文献   

10.
聚丙烯腈纤维固定化青霉素酰化酶合成头孢氨苄的研究   总被引:4,自引:0,他引:4  
将巨大芽孢杆菌胞外青霉素酰化酶通过共价键结合到聚丙烯腈纤维的衍生物上。制成的丝状固定化青霉素酰化酶表现活力达 1 5 3U g(湿重 )。固定化酶合成头孢氨苄的最适pH为 6 5 ,最适温度为 40℃。 7 ADCA的投料浓度以 4%为好 ,7 ADCA与PGME的投料量比率为1∶2 ,最佳用酶量为 1 70U g 7 ADCA。在pH6 5、温度 3 0℃时 ,固定化酶对 7 ADCA的表观米氏常数K7 ADCA为 0 1 6 2mol L ,对PGME的表观米氏常数KPGME为 0 3 6 4mol L ,最大反应速度Vmax为0 0 4 6 2mol·L- 1·min- 1,用固定化酶合成头孢氨苄 ,使用 5 0次保留酶活力 83 9%  相似文献   

11.
Penicillin acylase from E. coli (EC 3.5.1.11) was found to hydrolyze N-phenylacetylated 1-aminoethylphosphonic acid and its esters. The enzyme preferentially converts the R-form of the substrates: the ratios of the bimolecular rate constants of penicillin acylasecatalyzed hydrolysis of R- and S-forms of 1-(N-phenylacetamino)-ethylphosphonic acid and its dimethyl- and diisopropyl-esters are 58000, 2300, 1800; these derivatives were shown to have the greatest values of the catalytic constants for enzymatic hydrolysis of all known substrates for penicillin acylase: 237, 148 and 134 s-1; the corresponding Km values are 3.7 10(-5), 6.8 10(-4) and 6.2 10(-4) M at pH 7.0. The kinetics of enzymatic hydrolysis of 1-(N-phenylacetamino)-ethylphosphonic acid was investigated up to high degrees of conversion. The inhibition of penicillin acylase by high concentrations of the R-form of the substrate (with substrate inhibition constant of 0.07 M) and competitive inhibition by the reaction product, phenylacetic acid (Ki = 3.5 10(-5) M), was observed.  相似文献   

12.
The properties of penicillin acylase from E. coli solubilized by hydrated reversed micelles of Aerozol OT (AOT) in octane were studied. The catalytic activity dependence on the hydration degree, a parameter which determines the size of the micelle inner cavity, represents a curve with three optima, each corresponding to the enzyme functioning either in a dimer form (omega 0 = 23) or in the form of separate subunits--heavy, beta, and light, alpha, at omega 0 = 20 and 14, respectively. Reversible dissociation of the enzyme was confirmed by ultracentrifugation followed by electrophoresis. Preparative isolation of penicillin acylase subunits, their catalytic activity being retained, was shown to be possible.  相似文献   

13.
Formation of inclusion bodies is an important obstacle to the production of active recombinant protein in Escherichia coli. Thus, soluble expression of penicillin G acylase from Kluyvera citrophila was investigated in BL21(DE3). In this study, the yield of active enzyme was significantly enhanced by the composition of the medium and induction opportunity. When 0.5 mmol/L IPTG was added to complex medium at 15 h after incubation, the volumetric and specific activities of penicillin G acylase both achieved the highest values, respectively. However, aggravation of intracellular proteolysis and decline of enzyme expression were also observed if induction occurred too much later. Ca2+ ion was another critical factor in cell growth and protein expression. When 24 mmol/L Ca2+ ion was adding to the medium at the beginning of fermentation, a greater than 2-fold increase in cell density and a 7-fold increase in volumetric activity of penicillin G acylase were reached. Nevertheless, no significant benefit for recombination protein expression was found when excess Ca2+ was added after induction time. This study demonstrates that the induction starting time and Ca2+ ion are two critical factors for the expression of active penicillin G acylase.  相似文献   

14.
Penicillin Acylase Activity of Penicillium chrysogenum   总被引:3,自引:3,他引:3       下载免费PDF全文
The penicillin acylase activity of Penicillium chrysogenum was studied. Washed mycelial suspensions of a high penicillin-producing and a nonproducing strain were found to be similar in respect to relative acylase activity on benzylpenicillin, 2-pentenylpenicillin, heptylpenicillin, and phenoxymethylpenicillin. The relative rates for both strains, as determined by 6-aminopenicillanic acid formation, were approximately 1.0, 2.5, 3.5, and 6.0 on the penicillins in the order given. The high producing strain formed both 6-aminopenicillanic acid and "natural" penicillins in fermentations to which no side-chain precursor had been added. Therefore, its demonstrated ability to cleave the natural penicillins, 2-pentenylpenicillin and heptylpenicillin, suggests that at least some of the 6-aminopenicillanic acid produced during such fermentations arises from the hydrolysis of the natural penicillins. At pH 8.5, the mycelial acylase activity of the nonproducing strain was about three times that at pH 6.0; at 35 C, it was about 1.5 times as active as it was at 30 C. When tested on penicillin G or V, no differences in either total or specific penicillin acylase activity were observed among mycelia harvested from cultures of the nonproducer to which penicillin G, penicillin V, or no penicillin had been added. Acetone-dried mycelium from both strains displayed acylase activity, but considerably less than that shown by viable mycelium. Culture filtrates were essentially inactive, although a very low order of activity was detected when culture filtrate from the nonproducer was treated with acetone and the acetone-precipitated material was assayed in a minimal amount of buffer.  相似文献   

15.
The effect of a number of inhibitors adsorbed at the active site of penicillin acylase during immobilisation/stabilisation is reported. Each inhibitor, when it is adsorbed at the active centre of penicillin acylase promotes a specific enzymatic conformation which remains fixed after the stabilisation process by multipoint covalent attachment to pre-existing supports. A number of inhibitors: penicillin sulfoxide, phenylacetic acid, mandelic acid, and phenylglycine were employed to induce conformational changes. The activity towards different substrates of the enzyme derivative (in hydrolysis and in synthesis) was determined. The stability of the derivatives was also measured. This technique provides a broad spectrum of enzymatic derivatives with a range of activity/stability depending on the inhibitors used in their stabilisation. The resulting choice offers a considerably increased potential for the use of the enzyme since one can select a derivative which will specifically catalyse the reaction of interest.  相似文献   

16.
Aculeacin A acylase from Actinoplanes utahensis produced by Streptomyces lividans revealed acylase activities that are able to hydrolyze penicillin V and several natural aliphatic penicillins. Penicillin K was the best substrate, showing a catalytic efficiency of 34.79 mM(-1) s(-1). Furthermore, aculeacin A acylase was highly thermostable, with a midpoint transition temperature of 81.5 degrees C.  相似文献   

17.
聚丙烯腈纤维固定化青霉素酰化酶性质的研究   总被引:3,自引:0,他引:3  
将巨大芽孢杆菌(Bacillusmegaterium)青霉素酞化酶连接到聚丙烯腈纤维载体上,制成固定化青霉素酰化酶。其表现活力约为2000u/g。水解青霉素G的最适温度为50℃;最适PH为9.0;在PHS.5~10.3、温度50℃以下酶的活力稳定;表观米氏常数Ka为1.33×10-8mol/L;最大反应速度Vm为2.564mmol·min-1;苯乙酸为竞争性抑制剂,抑制常数为0.16mol/L。水解10%的青霉素G钾盐溶液,使用20批,保留酶活力80%。  相似文献   

18.
The two constituent subunits of the enzyme penicillin acylase from Escherichia coli strain ATCC 11105 are derived from a single precursor polypeptide by post-translational processing. Mutant penicillin acylase precursors were constructed carrying insertions and deletions in various domains and they were analysed for their processing behaviour. It was found that an endopeptide region of appropriate size and an intact C-terminus were absolutely necessary for the maturation process. Internal deletions within the beta-subunit domain also prevented post-translational cleavage. Processing competence, therefore, was not merely determined by the amino acid sequence in the vicinity of the processing sites but relied on a correct overall conformation of the protein. The processing pathway in vivo proceeds via an intermediate comprising the alpha subunits plus endopeptide and is thus identical to the pathway which has been determined previously by in vitro analysis. The post-translational modification of the precursor is probably not carried out by a specific processing enzyme(s) as the heterologous expression of the penicillin acylase (pac) structural gene yielded processed and active enzyme in different enterobacteria and in a Pseudomonas species.  相似文献   

19.
Summary Penicillin G acylase of Escherichia coli ATCC 11105 catalyzes hydrolysis as wellas synthesis of penicillin G. In this work a recombinant penicillin G acylase genewas mutagenized in vivo. A mutant with altered penicillin G acylase was selectedby its ability to grow with phthalyl-L-leucine as sole source of leucine. Themutant enzyme obtained was deficient in hydrolyzing penicillin G. A mutation ofGly359 to aspartic acid was mapped first by construction of chimeric pac genescomposed of wild type and mutant DNA, followed by nucleotide sequencing.  相似文献   

20.
Hydrolytic activity of penicillin V acylase (EC 3.5.1.11) can be improved by using organic cosolvents in monophasic systems. However, the addition of these solvents may result in loss of stability of the enzyme. The thermal stability of penicillin V acylase from Streptomyces lavendulae in water-organic cosolvent monophasic systems depends on the nature of the organic solvent and its concentration in the media. The threshold solvent concentration (at which half enzymatic activity is displayed) is related to the denaturing capacity of the solvent. We found out linear correlations between the free energy of denaturation at 40 degrees C and the concentration of the solvent in the media. On one hand, those solvents with logP values lower than -1.8 have a protective effect that is enhanced when its concentration is increased in the medium. On the other hand, those solvents with logP values higher than -1.8 have a denaturing effect: the higher this value and concentration, the more deleterious. Deactivation constants of PVA at 40 degrees C can be predicted in any monophasic system containing a water-miscible solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号