首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evade the immune system, the etiologic agent of plague, Yersinia pestis, injects an exceptionally active tyrosine phosphatase called YopH into host cells using a type III secretion system. We recently reported that YopH acutely inhibits T cell antigen receptor signaling by dephosphorylating the Lck tyrosine kinase. Here, we show that prolonged presence of YopH in primary T cells or Jurkat T leukemia cells causes apoptosis, detected by annexin V binding, mitochondrial breakdown, caspase activation, and internucleosomal fragmentation. YopH also causes cell death when expressed in HeLa cells, and this cell death was inhibited by YopH-specific small molecule inhibitors. Cell death induced by YopH was also prevented by caspase inhibition or co-expression of Bcl-xL. We conclude that YopH not only paralyzes T cells acutely, but also ensures that the cells will not recover to induce a protective immune response but instead undergo mitochondrially regulated programmed cell death.  相似文献   

2.
Apoptosis is an important mechanism enabling the selection of the non-self-reactive T cell repertoire and for maintaining homeostasis in the immune system after it has expanded to combat infections. Highly activated, proliferating T cells become susceptible to apoptosis driven by a number of stimuli, and T cells activated during a viral infection become susceptible to “activation induced cell death” after repeated stimulation through the T cell receptor (TcR). This is a major mechanism for the immune deficiencies observed during many viral infections. During infections with a high antigen load this can lead to a selective deletion of virus-specific cytotoxic T lymphocytes (CTL) and to the establishment of persistent infection. More commonly, the CTL control the infection first, and high levels of apoptosis in the expanded lymphocyte population occur after antigen and growth factors become limiting. This cell death does not seem to depend on TcR specificity, as the residual population contains a remarkably stable population of memory CTL precursors that approximate the frequency per CD8 cell of that seen during the peak of the acute infection. Subsequent infections with heterologous viruses result in an expansion and then an apoptotic elimination of T cells, with the consequence being a reduction in precursor CTL specific for the first virus. Thus, apoptosis shapes the quality and quantity of T cell memory. © 1995 Wiley-Liss, Inc.  相似文献   

3.
It is still enigmatic under which circumstances cellular demise induces an immune response or rather remains immunologically silent. Moreover, the question remains open under which circumstances apoptotic, autophagic or necrotic cells are immunogenic or tolerogenic. Although apoptosis appears to be morphologically homogenous, recent evidence suggests that the pre-apoptotic surface-exposure of calreticulin may dictate the immune response to tumor cells that succumb to anticancer treatments. Moreover, the release of high-mobility group box 1 (HMGB1) during late apoptosis and secondary necrosis contributes to efficient antigen presentation and cytotoxic T-cell activation because HMGB1 can bind to Toll like receptor 4 on dendritic cells, thereby stimulating optimal antigen processing. Cell death accompanied by autophagy also may facilitate cross priming events. Apoptosis, necrosis and autophagy are closely intertwined processes. Often, cells manifest autophagy before they undergo apoptosis or necrosis, and apoptosis is generally followed by secondary necrosis. Whereas apoptosis and necrosis irreversibly lead to cell death, autophagy can clear cells from stress factors and thus facilitate cellular survival. We surmise that the response to cellular stress like chemotherapy or ionizing irradiation, dictates the immunological response to dying cells and that this immune response in turn determines the clinical outcome of anticancer therapies. The purpose of this review is to summarize recent insights into the immunogenicity of dying tumor cells as a function of the cell death modality.  相似文献   

4.
T helper cell activation and human retroviral pathogenesis.   总被引:3,自引:1,他引:2       下载免费PDF全文
T helper (Th) cells are of central importance in regulating many critical immune effector mechanisms. The profile of cytokines produced by Th cells correlates with the type of effector cells induced during the immune response to foreign antigen. Th1 cells induce the cell-mediated immune response, while Th2 cells drive antibody production. Th cells are the preferential targets of human retroviruses. Infections with human T-cell leukemia virus (HTLV) or human immunodeficiency virus (HIV) result in the expansion of Th cells by the action of HTLV (adult T-cell leukemia) or the progressive loss of T cells by the action of HIV (AIDS). Both retrovirus infections impart a high-level activation state in the host immune cells as well as systemically. However, diverging responses to this activation state have contrasting effects on the Th-cell population. In HIV infection, Th-cell loss has been attributed to several mechanisms, including a selective elimination of cells by apoptosis. The induction of apoptosis in HIV infection is complex, with many different pathways able to induce cell death. In contrast, infection of Th cells with HTLV-1 affords the cell a protective advantage against apoptosis. This advantage may allow the cell to escape immune surveillance, providing the opportunity for the development of Th-cell cancer. In this review, we will discuss the impact of Th-cell activation and general immune activation on human retrovirus expression with a focus upon Th-cell function and the progression to disease.  相似文献   

5.
The role of apoptosis in the development and function of T lymphocytes   总被引:6,自引:0,他引:6  
Apoptosis plays an essential role in T cell biology. Thymocytes expressing nonfunctional or autoreactive TCRs are eliminated by apoptosis during development. Apoptosis also leads to the deletion of expanded effector T cells during immune responses. The dysregulation of apoptosis in the immune system results in autoimmunity, tumorogenesis and immunodeficiency. Two major pathways lead to apoptosis: the intrinsic cell death pathway controlled by Bcl-2 family members and the extrinsic cell death pathway controlled by death receptor signaling. These two pathways work together to regulate T lymphocyte development and function.  相似文献   

6.
TGF-beta is a powerful mediator of immune cell phenotype and function. In TGF-beta1 homozygous null mice, aberrant regulation of the immune response culminates in lethal cardiopulmonary inflammation. In dissecting the underlying mechanisms leading to the attack of self, a role for TGF-beta1 in controlling apoptosis and T cell selection patterns was uncovered. Increased levels of apoptosis and TCR mediated cell death disrupted normal negative and positive T cell selection in the thymus. Moreover, in peripheral T cell populations, increased T lymphocyte death was associated with increased expression of apoptosis-inducing receptors. Persistent activation of T cells engendered unchecked apoptosis which, rather than reducing, further exacerbated, tissue inflammation due to the absence of TGF-beta1. TGF-beta, normally generated by macrophages during clearance of apoptotic cells contributes to dampening of inflammatory sequelae associated with phagocytosis. Collectively, these data demonstrate a pivotal role for TGF-beta in multiple stages of T cell apoptosis, selection, activation and clearance.  相似文献   

7.
Anti-apoptotic protein Lifeguard (LFG) is upregulated on T cells upon in vitro activation. To investigate its role in T cell immunity we infected wild type and LFG knockout bone marrow chimaeras mice with LCMV. We observed a decreased number of LFG KO activated CD8 and CD4 T cells throughout the infection and a marked decrease in LFG KO LCMV specific memory T cells. WT and KO T cells proliferated at the same rate, however, LFG KO CD44hi T cells showed increased cell death during the initial phase of the immune response. LFG KO and WT T cells were equally sensitive to the FAS antibody Jo-2 in ex vivo cultures, and blocking extrinsic pathways of cell death in vivo with Fas L or caspase 8 inhibitors did not rescue the increased apoptosis in LFG KO T cells. Our data suggest that LFG plays a role in T cell survival during the initial phase of anti-viral immune response by protecting pre-existing memory T cells and possibly newly activated T cells resulting in a diminished immune response and a decreased number of LCMV specific memory T cells.  相似文献   

8.
Expression of CD95 ligand on parenchymal, epithelial, or tumor cells has been suggested to downregulate the immune response and to control lymphocyte activation. Suppression might be mediated by induction of apoptosis or by inhibition of Ca(2+) channels upon CD95 triggering. We, therefore, aimed to employ this model to modify the immune response to an antigen presented to cytotoxic T cells by antigen-presenting MC57 cells. This model would be very useful to specifically downregulate the immune response to autoantigens in autoimmune situations. However, cytotoxic T cell lines tested in the present study were resistant to CD95 ligand expression on antigen-presenting MC57 cells. In addition, coincubation of the lymphocytes with antigen presenting cells failed to block cytotoxicity mediated by the T lymphocytes. We, therefore, conclude that single expression of CD95 ligand on antigen-presenting cells is insufficient to specifically downregulate an immune response by CD8(+-)triggered immune response.  相似文献   

9.
Immunity to tumors as well as to viral and bacterial pathogens is often mediated by cytotoxic T lymphocytes (CTLs). Thus, the ability to induce a strong cell-mediated immune response is an important requirement of novel immunotherapies. Antigen-presenting cells (APCs), including dendritic cells (DCs), are specialized in initiating T-cell immunity. Harnessing this innate ability of these cells to acquire and present antigens, we sought to improve antigen presentation by targeting antigens directly to DCs in vivo through apoptosis. We engineered Fas-mediated apoptotic death of antigen-bearing cells in vivo by co-expressing the immunogen and Fas in the same cell. We then observed that the death of antigen-bearing cells results in increased antigen acquisition by APCs including DCs. This in vivo strategy led to enhanced antigen-specific CTLs, and the elaboration of T helper-1 (Th1) type cytokines and chemokines. This adjuvant approach has important implications for viral and nonviral delivery strategies for vaccines or gene therapies.  相似文献   

10.
CD4(+)CD25(+)FoxP3(+) regulatory T cells (T(reg)) suppress T cell function and protect rodents from autoimmune disease. Regulation of T(reg) during an immune response is of major importance. Enhanced survival of T(reg) is beneficial in autoimmune disease, whereas increased depletion by apoptosis is advantageous in cancer. We show here that freshly isolated FACS-sorted T(reg) are highly sensitive toward CD95-mediated apoptosis, whereas other T cell populations are resistant to CD95-induced apoptosis shortly after isolation. In contrast, TCR restimulation of T(reg) in vitro revealed a reduced sensitivity toward activation-induced cell death compared with CD4(+)CD25(-) T cells. Thus, the apoptosis phenotype of T(reg) is unique in comparison to other T cells, and this might be further explored for novel therapeutic modulations of T(reg).  相似文献   

11.
T lymphocytes can undergo an activation/proliferation response or an apoptotic response following T cell receptor engagement. The choice between these outcomes is dictated by the activation state of the T lymphocyte, the presence of interleukin-2 and the strength of the T cell receptor stimulus. Specifically, when quiescent cells encounter effectively presented antigen they are activated and begin to proliferate. In contrast, activated cells, moving through the cell cycle under the influence of IL-2, undergo apoptosis upon reencountering antigen. Both the tumour necrosis factor receptor and CD95 (FAS) are known to participate in mediating this cell death. Genetic defects in the molecules of the lymphocyte death pathway (CD95, FAS ligand, IL-2 receptor) lead to syndromes of autoimmunity and dysregulated lymphocyte homeostasis. An understanding of the principles of the autocrine feedback death model can provide the rationale basis for effective antigen specific modulation of T cell mediated disease processes.  相似文献   

12.
A linear dependence of the response to the thymus-dependent antigen (log of the plaque-forming cell count) on the T cell dose at the initial curve section was observed in syngeneic transfer of T and B cells mixture. The exponential slope differed for T cells of different origin and could serve as the measure of helper activity. In case of an excess of T-lymphocytes the response reaches the maximum, whose level is independent of the organic origin of T cells. By the helper activity T cells are distributed in the following order: T cells of the spleen and cortisone-resistant thymocytes greater than T cells of the lymph nodes greater than cortisone-sensitive thymocytes. There was established a quantitative equivalence by the capacity to activate B cells between the T-lymphocytes and E. coli lipopolysaccharide.  相似文献   

13.
Regulation of activation-induced cell death of mature T-lymphocyte populations   总被引:11,自引:0,他引:11  
Resting mature T lymphocytes are activated when triggered via their antigen-specific T-cell receptor (TCR) to elicit an appropriate immune response. In contrast, preactivated T cells may undergo activation-induced cell death (AICD) in response to the same signals. along with cell death induced by growth factor deprivation, AICD followed by the elimination of useless or potentially harmful cells preserves homeostasis, leads to the termination of cellular immune responses and ensures peripheral tolerance. T-cell apoptosis and AICD are controlled by survival cytokines such as interleukin-2 (IL-2) and by death factors such as tumor necrosis factor (TNF) and CD95 ligand (CD95L). In AICD-sensitive T cells, stimulation upregulates expression of one or several death factors, which in turn engage specific death receptors on the same or a neighboring cell. Death receptors are activated by oligomerization to rapidly assemble a number of adapter proteins and enzymes to result in an irreversible activation of proteases and nucleases that culminates in cell death by apoptosis. Increased knowledge of the molecular mechanisms that regulate AICD of lymphocytes opens new immunotherapeutic perspectives for the treatment of certain autoimmune diseases, and has implications in other areas such as transplantation medicine and AIDS research.  相似文献   

14.
At the end of an immune response, apoptosis drastically reduces the numbers of activated T cells. It has been a matter of intense research how this form of apoptosis is regulated and initiated, and a number of proteins have been identified that contribute to this process. The present, widely accepted model assumes that the interplay of pro- and anti-apoptotic Bcl-2 family members determines the onset of activated T cell death, with the BH3-only protein Bim activating pro-apoptotic Bax/Bak. In the search for up-stream signals, factors from other immune cells have been shown to play a role, and the NF-κB family member Bcl-3 has been implicated as a signalling-intermediate in T cells. Recent work has tested the interrelation of these factors and has suggested that Bcl-3 acts as a regulator of Bim activation, that the induction of apoptosis through Bim can be complemented by its relative Puma, and that the presence of certain cytokines during T cell activation delays the activation of Bim and Puma. Here we discuss these recent insights and provide a view on how the regulation of activated T cell death is achieved and how extrinsic signals may translate into the activation of the apoptotic pathway.  相似文献   

15.
The induction of heat shock protein gene expression in response to stress is critical for the ability of organisms to cope with and survive exposure to these stresses. However, most studies on HSF1-mediated induction of hsp70 gene expression have utilized immortalized cell lines and temperatures above the physiologically relevant range. For these reasons much less is known about the heat shock response as it occurs in mammalian cells within tissues in the intact organism. To gain insight into this area we determined the temperature thresholds for activation of HSF1 DNA binding in different mouse tissues. We have found that HSF1 DNA binding activity and hsp70 synthesis are induced in spleen cells at significantly lower temperatures relative to cells of other tissues, with a temperature threshold for activation (39 degrees C) that is within the physiological range for fever. Furthermore, we found that the lowered temperature set point for induction of the stress response in spleen is specific to T-lymphocytes residing within this tissue and is not exhibited by B-lymphocytes. This lowered threshold is also observed in T-lymphocytes isolated from lymph nodes, suggesting that it is a general property of T-lymphocytes, and is seen in different mouse strains. Fever is an early event in the immune response to infection, and thus activation of the cellular stress response in T-lymphocytes by fever temperatures could serve as a way to give these cells enough time to express hsps in anticipation of their function in the coming immune response. The induced hsps likely protect these cells from the stressful conditions that can exist during the immune response, for example increasing their protection against stress-induced apoptosis.  相似文献   

16.
In the early phase of an immune response, T cells are activated and acquire effector functions. Whereas these short term activated T cells are resistant to CD95-mediated apoptosis, activated T cells in prolonged culture are readily sensitive, leading to activation-induced cell death and termination of the immune response. The translation inhibitor, cycloheximide, partially overcomes the apoptosis resistance of short term activated primary human T cells. Using this model we show in this study that sensitization of T cells to apoptosis occurs upstream of mitochondria. Neither death-inducing signaling complex formation nor expression of Bcl-2 proteins is altered in sensitized T cells. Although the caspase-8 inhibitor c-FLIP(long) was only slightly down-regulated in sensitized T cells, c-FLIP(short) became almost undetectable. This correlated with caspase-8 activation and apoptosis. These data suggest that c-FLIP(short), rather than c-FLIP(long), confers resistance of T cells to CD95-mediated apoptosis in the context of immune responses.  相似文献   

17.
During the course of an immune response, antigen-reactive T cells clonally expand and then are removed by apoptosis to maintain immune homeostasis. Life and death of T cells is determined by multiple factors, such as T-cell receptor triggering, co-stimulation or cytokine signalling, and by molecules, such as caspase-8 (FLICE)-like inhibitory protein (FLIP) and haematopoietic progenitor kinase 1 (HPK1), which regulate the nuclear factor-kappaB (NF-kappaB) pathway. Here, we discuss the concepts of activation-induced cell death (AICD) and activated cell-autonomous death (ACAD) in the regulation of life and death in T cells.  相似文献   

18.
19.
gammadelta T cells participate in the innate immune response to a variety of infectious microorganisms. They also link to the adaptive immune response through their induction of maturation of dendritic cells (DC) during the early phase of an immune response when the frequency of Ag-specific T cells is very low. We observe that in the presence of Borrelia burgdorferi, synovial Vdelta1 T cells from Lyme arthritis synovial fluid potently induce maturation of DC, including production of IL-12, and increased surface expression of CD40 and CD86. The activated DC are then able to stimulate the Vdelta1 T cells to up-regulate CD25. Both of these processes are initiated primarily by Fas stimulation rather than CD40 activation of DC via high expression of Fas ligand by the Vdelta1 T cells. DC are resistant to Fas-induced death due to expression of high levels of the Fas inhibitor c-FLIP. This effect serves to divert Fas-mediated signals from the caspase cascade to the ERK MAPK and NF-kappaB pathways. The findings affirm the importance of the interaction of certain T cell populations with DC during the early phases of the innate immune response. They also underscore the view that as levels of c-FLIP increase, Fas signaling can be diverted from induction of apoptosis to pathways leading to cell effector function.  相似文献   

20.
Glioblastoma is the most common and highly malignant brain tumor. It is also one among the most therapy-resistant human neoplasias. Patients die within a year of diagnosis despite the use of available treatment strategies such as surgery, radiotherapy, and chemotherapy. Thus, there is a critical need to find a novel therapeutic strategy for treating this disease. Here, we have investigated the molecular mechanisms for induction of apoptosis as well as for activation of immune components in human malignant glioblastoma T98G and U87MG cells following treatment with all-trans retinoic acid (ATRA) plus interferon-gamma (IFN-gamma). Treatment of glioblastoma cells with ATRA alone prevented cell proliferation and induced astrocytic differentiation, while IFN-gamma alone induced apoptosis and modulated expression of human leukocyte antigen (HLA) class II molecules such as HLA-DRalpha, HLA-DR complex, invariant chain (Ii), HLA-DM (an important catalyst of the class II-peptide loading), and gamma interferon-inducible lysosomal thiol-reductase (GILT). Interestingly, both T98G and U87MG cells showed more increase in apoptosis with expression of the HLA class II components for an effective immune response following treatment with ATRA plus IFN-gamma than with IFN-gamma alone. Apoptotic mode of cell death was confirmed morphologically by Wright staining and biochemically by measuring an increase in caspase-3 activity. While conversion of tumor cells into HLA class II+/Ii- cells by stimulation with the helper CD4+ T cells is thought to be challenging, this study reports for the first time that treatment of glioblastoma cells with ATRA plus IFN-gamma can simultaneously enhance apoptosis and expression of the HLA class II immune components with a marked suppression of Ii expression. Taken together, this study suggests that induction of apoptosis and immune components of the HLA class II pathway by ATRA plus IFN-gamma may be a promising chemoimmunotherapeutic strategy for treatment of human malignant glioblastoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号